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Abstract

A new exemplar-based framework unifying image com-

pletion, texture synthesis and image inpainting is presented

in this work. Contrary to existing greedy techniques, these

tasks are posed in the form of a discrete global optimization

problem with a well defined objective function. For solving

this problem a novel optimization scheme, called Priority-

BP, is proposed which carries two very important exten-

sions over standard belief propagation (BP): “priority-

based message scheduling” and “dynamic label pruning”.

These two extensions work in cooperation to deal with the

intolerable computational cost of BP caused by the huge

number of existing labels. Moreover, both extensions are

generic and can therefore be applied to any MRF energy

function as well. The effectiveness of our method is demon-

strated on a wide variety of image completion examples.

1. Introduction

Based only on the observed part of an incomplete im-

age, the goal of image completion is to fill its (possibly

large) missing part so that a visually plausible outcome is

obtained. Compared to statistical-based [11] or PDE-based

methods [1] (which are mostly suitable for texture synthe-

sis or inpainting respectively), exemplar-based techniques

have been the most successful in dealing with this prob-

lem up to now. Here one tries to fill the unknown region

simply by copying pixels or source patches from the ob-

served part of the image [9, 4]. Starting with the seminal

work in [4], these methods have been mainly used for the

purpose of texture synthesis while, recently, a few authors

have tried to extend them to image completion as well. In

this case, however, a major drawback of these approaches

stems from their greedy way of filling the image, which

can often lead to visual inconsistencies. Some methods try

to alleviate this problem by taking a more global approach

and using an EM-like scheme for optimizing the comple-

tion process [8, 13]. EM, however, is known to be partic-

ularly sensitive to initialization and can be trapped to poor

local minima. Other methods require assistance from the

user instead. E.g. Jian Sun et al. [12] require the user to

specify the curves on which the most salient missing struc-

tures reside, while Drori et al. [3] use “points of interest”.

Also, a few approaches rely on having a segmentation of

the input image [7]. But natural images segmentation is an

extremely difficult task and no general method for reliably

solving it currently exists. Finally, recent exemplar-based

methods also place emphasis on the order by which the im-

age synthesis proceeds, usually using a confidence map for

this purpose[2, 3]. However, two are the main shortcomings

of such techniques. First, the confidence map is computed

based on heuristics and ad hoc principles that may not ap-

ply in the general case and second, once an observed patch

has been assigned to a missing block of pixels, that block

cannot change its assigned patch thereafter. This last fact

reveals the greediness of these techniques, which may again

lead to visual inconsistencies. To overcome all these limita-

tions, a new exemplar-based approach for image completion

is proposed which makes the following contributions:

1) Contrary to greedy synthesis methods, we pose image

completion as a discrete global optimization problem with a

well defined objective function. 2) Our formulation applies

not only to image completion but also to texture synthesis

and image inpainting, thus providing a unified framework

for all of these tasks. 3) No user intervention is required by

our method, which manages to avoid greedy patch assign-

ments by maintaining (throughout its execution) many can-

didate source patches for each block of missing pixels. 4)

To this end, a novel optimization scheme is proposed, the

“Priority-BP” algorithm, which carries 2 major improve-

ments over standard belief propagation: “label pruning”

and “priority-based message scheduling”. Together, they

bring a dramatic reduction in the overall computational cost

of BP which would otherwise be intolerable due to the huge

number of existing labels. We should finally note that both

extensions are generic and can be used for the optimization

of any MRF (i.e. a wide class of problems in vision).

2. Image completion as a discrete global opti-

mization problem

Given an input image I0 as well as a target region T and

a source region S (where S is always a subset of I0−T ), the



goal of image completion is to fill T in a visually plausible

way simply by copying patches from S. We propose to turn

this into a discrete optimization problem with a well defined

objective function. To this end, we propose the use of the

following discrete Markov Random Field (MRF):

The labels L of the MRF will consist of all w×h patches

from the source region S1. For defining the nodes of the

MRF, an image lattice will be used with an horizontal and

vertical spacing of gapx and gapy pixels respectively. The

MRF nodes {ni}
N
i=1 will be all lattice points whose w × h

neighborhood intersects the target region, while the edges E
of the MRF will make up a 4-neighborhood system on that

lattice (see Figure 1(a)).

The single node potential Vi(l) (called label cost here-

after), for placing patch l over node ni, will encode how

well that patch agrees with the source region around ni and

will equal the following sum of squared differences (SSD):

Vi(l) =
∑

p∈[−w

2

w

2
]×[−h

2

h

2
]

M(ni+p)
(

I0(ni+p)−I0(l+p)
)2

, (1)

where M(·) is a binary mask non zero only in region S
(obviously, due to this definition, the label costs of interior

nodes, i.e. nodes whose w×h neighborhood does not inter-

sect S, will be all zero). In a similar fashion, the pairwise

potential Vij(l, l
′), due to placing patches l, l′ over neigh-

bors ni, nj , will measure how well these patches agree at

the resulting region of overlap and will again be given by the

SSD over that region (see Figure 1(b)). Note that gapx and

gapy are set so that such a region of overlap always exists.

Based on this formulation, our goal will then be to as-

sign a label l̂i ∈ L to each node ni so that the total energy

E({l̂i}) of the MRF is minimized where:

E({l̂i}) =

N
∑

i=1

Vi(l̂i) +
∑

(i,j)∈E

Vij(l̂i, l̂j) (2)

Intuitively, any algorithm optimizing this energy is roughly

solving a huge jigsaw puzzle where source patches are the

puzzle pieces while region T represents the puzzle itself.

One important advantage of our formulation is that it also

provides a unified framework for texture synthesis and im-

age inpainting. E.g. to handle texture synthesis (where one

wants to extend an input texture T0 to a larger region T1)

one suffices to set S = T0 and T = T1−T0. Moreover, our

framework allows the use of (what we call) “completion by

energy refinement” techniques, one example of which we

will see later.

3. Priority-BP

Furthermore, an additional advantage would be that we

can now hopefully apply belief propagation (i.e. a state-of-

1Hereafter each label (i.e. patch) will be represented by its center pixel
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Fig. 1. (a) An MRF with w = 2gapx, h = 2gapy (b) For bound-

ary node ni its label cost Vi(l) will be an SSD over the red region,

while for nodes nκ, nλ their potential Vκλ(l, l′) will be an SSD

over the green region. Interior node nj has zero label costs.

the-art optimization method) to our energy function. Un-

fortunately, however, this was not feasible. The reason was

the intolerable computational cost of BP caused by the huge

number of existing labels. Motivated by this fact, one other

major contribution of this work is the proposal of a novel

MRF optimization scheme, called Priority-BP, that can deal

exactly with this type of problems and carries two signifi-

cant extensions over standard BP: one of them, called dy-

namic label pruning, is based on the key idea of drastically

reducing the number of labels. However, instead of this hap-

pening beforehand (which will almost surely lead to throw-

ing away useful labels), pruning takes place on the fly (i.e.

while BP is running) with a (possibly) different number of

labels kept for each node. The important thing to note is

that only the beliefs calculated by BP are used for that pur-

pose. Furthermore, the second extension, called priority-

based message scheduling, makes use of label pruning and

allows us to always send cheap messages between the nodes

of the graphical model. Moreover, it considerably improves

BP’s convergence, thus accelerating completion even fur-

ther.

The significance of our contribution also grows due to

the fact that (as we shall see) Priority-BP is a generic algo-

rithm applicable to any MRF energy function. It therefore

resolves what is currently considered one of the main lim-

itations of BP: its inefficiency to handle problems with a

huge number of labels. In fact, this issue has been a highly

active research topic over the last years. Until now, how-

ever, the techniques that have been proposed were valid

only for restricted classes of MRFs [5]. Not only that but

our priority-based message scheduling scheme can be used

(independently of label pruning) as a general method for

accelerating the convergence of BP.

3.1. Prioritybased message scheduling

BP is an iterative algorithm, which works by propagating

local messages along the nodes of an MRF [10, 6]. Mes-

sages sent from node ni to node nj form a set {mij(l)}l∈L,

where element mij(l) indicates how likely node ni thinks

that node nj should be assigned label l. Furthermore, mes-



sages are updated (i.e. sent) until convergence as follows2:

mij(l) = min
li∈L

{

Vi(li)+Vij(li, l)+
∑

k:k 6=j,(k,i)∈E

mki(li)
}

(3)

After convergence, a set of beliefs {bi(l)}l∈L is computed

for each node, where belief bi(l) is defined as follows:

bi(l) = −Vi(l) −
∑

k:(k,i)∈E

mki(l) (4)

bi(l) approximates the max-marginal of the posterior at

node ni and is therefore roughly related to how likely label

l is for that node. Based on this fact, a node is then assigned

the label of maximum belief, i.e. l̂i = arg maxl∈L bi(l). It

is known that, for tree structured graphs, BP always gives

the optimal solution, while, for graphs with loops, it can

only guarantee to find a local optimum.

In this form, however, BP is impractical for problems

with a large number of labels like ours. In particular, if |L| is

the total number of labels (which, in our case, can be many

many thousands) then just the basic operation of updating

the messages from one node ni to another node nj takes

O(|L|2) time. In fact the situation is much more worse for

us. The huge number of labels also implies that for any pair

of adjacent nodes ni, nj their matrix of pairwise potentials

Vij(·, ·) is so large that cannot fit into memory and therefore

be precomputed. That matrix therefore must be reestimated

every time node ni sends its messages to node nj , mean-

ing that |L|2 SSD calculations (between image patches) are

needed for each such update.

To deal with this issue we will try to reduce the number

of labels by exploiting the beliefs calculated by BP. How-

ever not all nodes have beliefs which are adequate for this

purpose in our case. To see that, it suffices to observe that

the label costs at all interior nodes are all equal to zero. This

in turn implies that the beliefs at an interior node will ini-

tially be all equal as well, meaning that the node is “uncon-

fident” about which labels to prefer. No label pruning may

therefore take place and so any message originating from

that node will be very expensive to calculate, i.e. it will take

O(|L|) time. On the contrary, if we had a node whose labels

could be pruned (and assuming that the maximum number

of labels after pruning is Lmax with Lmax ≪ |L|) then any

message from that node would take only O(Lmax) time.

Based on this observation, we therefore propose to use

a specific message scheduling scheme whose goal will be

twofold. On on hand, it will make label pruning possi-

ble and favor the circulation of cheap messages. On the

other hand, it will speed up BP’s convergence. This issue

of BP message scheduling, although known to be crucial

for the success of BP, it has been largely overlooked until

now. Also, to the best of the authors’ knowledge it is the

2We work in the −log domain so we use the min-sum version of BP

first time that message scheduling is used in this manner for

general graphical models. Roughly, our message schedul-

ing scheme will be based on the notion of priorities that are

assigned to the nodes of the MRF. Any such priority will

represent a node’s confidence about which labels to prefer

and will be dynamically updated throughout the algorithm’s

execution. Our message scheduling will then obey the fol-

lowing simple principle:

Message-scheduling principle. The node most confident

about its labels should be the first one (i.e. it has the highest

priority) to transmit outgoing messages to its neighbors.

There are two reasons why one may want to do this. The

first is that the more confident a node is, the more label prun-

ing it can tolerate (before sending its outgoing messages)

and therefore the cheaper these messages will be. The sec-

ond reason is that we also help other nodes become more

amenable to pruning this way. Intuitively, this happens be-

cause the more confident a node is, the more informative

its messages are going to be, meaning that these messages

can help the neighbors of that node to increase their own

confidence and thus become more tolerable to pruning as

well. Furthermore, by first propagating the most informa-

tive messages around the graphical model we also help BP

to converge much faster. This has been verified experimen-

tally as well. E.g. Priority-BP never needed more than a

small fixed number of iterations to converge for all of our

image completion examples.

Algorithm 1 Priority-BP

assign priorities to nodes and declare them uncommitted

for k = 1 to K do {K is the number of iterations}
execute ForwardPass and then BackwardPass

assign to each node ni its label l̂i that maximizes bi(·)

ForwardPass:

for time = 1 to N do {N is the number of nodes}
ni = “uncommitted” node of highest priority

apply “label pruning” to node ni

forwardOrder[time] = ni; ni→committed = true;

for any “uncommitted” neighbor nj of node ni do

send all messages mij(·) from node ni to node nj

update beliefs bj(·) as well as priority of node nj

BackwardPass:

for time = N to 1 do

ni = forwardOrder[time]; ni→committed = false;

for any “committed” neighbor nj of node ni do

send all messages mij(·) from node ni to node nj

update beliefs bj(·) as well as priority of node nj

A pseudocode description of Priority-BP is contained in

algorithm 1. Each iteration of Priority-BP is divided into a

forward and a backward pass. The actual message schedul-

ing mechanism as well as label pruning takes place during
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Fig. 2. Message scheduling during the forward pass: currently

only red nodes have been committed and only messages on red

edges have been transmitted. Among uncommitted nodes (i.e. blue

nodes) the one with the highest priority (i.e. node ni) will be com-

mitted next and will also send messages only along the green edges

(i.e. only to its uncommitted neighbors nj , nk). Messages along

dashed edges will be transmitted during the backward pass. Prior-

ities are indicated by the numbers inside uncommitted nodes.

the forward pass. This is also where one half of the mes-

sages gets transmitted (i.e. each MRF edge is traversed in

only one of the 2 directions). To this end, all nodes are vis-

ited in order of priority. Each time we visit a node, say ni,

we mark it as “committed” meaning that we must not visit

him again during the current forward pass. We also prune

its labels and then allow him to transmit its “cheap” (due

to pruning) messages to all of its neighbors apart from the

committed ones (as these have already sent a message to ni

during the current pass). The priorities of all neighbors that

received a new message are then updated and the process

continues with the next uncommitted (i.e. unvisited) node

of highest priority until no more uncommitted nodes exist.

The role of the backward pass is then just to ensure that

the other half of the messages gets transmitted as well. To

this end, we do not make use of priorities but simply visit

the nodes in reverse order (with respect to the order of the

forward pass) just transmitting the remaining unsent mes-

sages from each node. For this reason no label pruning

takes place during this pass. We do update node priorities,

though, so that they are available during the next forward

pass.

Also, as we shall see, a node’s priority depends only on

the current beliefs at that node. One big advantage out of

this is that keeping the node priorities up-to-date can be

done very efficiently in this case since only priorities for

nodes with newly received messages need to be updated.

The message scheduling mechanism is further illustrated in

Figure 2.

3.2. Assigning priorities to nodes

It is obvious that our definition of priority will play a

very crucial role for the success of the algorithm. As al-

ready mentioned, priority must relate to how confident a

node is about the labels that should be assigned to him with

the more confident nodes having higher priority. An impor-

tant thing to note in our case is that the confidence of a node

will depend solely on information that will be extracted by

the BP algorithm itself. This makes our algorithm generic

(i.e. applicable to any MRF energy function) and therefore

appropriate for a very wide class of problems.

In particular our definition of confidence (and therefore

priority as well) for node ni will depend only on the current

set of beliefs {bi(l)}l∈L that have been estimated by the BP

algorithm for that node. Based on the observation that belief

bi(l) is roughly related to how likely label l is for node ni,

one way to measure the confidence of this node is simply

by counting the number of likely labels e.g. those whose

belief exceed a certain threshold bconf . The intuition for

this is that the greater this number the more labels with high

probability exist for that node and therefore the less confi-

dent that node turns out to be about which specific label to

choose. And vice versa, if this number is small then node

ni needs to choose its label only among a small set of likely

labels. Of course only relative beliefs brel
i (l) = bi(l)−bmax

i

(where bmax
i = maxl∈L bi(l)) matter in this case and so by

defining the set CS(ni) = |{l ∈ L : brel
i (l) ≥ bconf}|

(which we will call the confusion set of node ni hereafter)

the priority of ni is then inversely related to the cardinality

of that set:

priority(ni) =
1

|CS(ni)|
(5)

This definition of priority also justifies why during ei-

ther the forward or the backward pass we were allowed

to update priorities only for nodes that had just received

new incoming messages: the reason is that the beliefs (and

therefore the priority) of a node may change only if at

least one incoming message to that node changes as well

(this is true due to the way beliefs are defined, i.e. bi(l) =
−Vi(l)−

∑

k:(k,i)∈E mki(l)). Although we tested other def-

initions of priority as well (e.g. by using an entropy-like

measure on beliefs) the above criterion for quantifying con-

fidence gave the best results in practice by far.

3.3. Applying PriorityBP to image completion

We pause here for a moment (postponing the description

of label pruning to the next section) in order to stress the

advantages of applying our algorithm to image completion

while also showing related results.

First of all we should mention that although confidence

has already been used for guiding image completion in other

works as well [2, 3], our use of confidence differs (with re-

spect to these approaches) in two very important aspects.

The first is that we use confidence in order to decide upon

the order of BP message passing and not for greedily de-

ciding which patch to fill next. These are two completely

different things: the former is part of a principled global

optimization procedure, whereas the latter just results in

patches that cannot change their appearance after they have

been filled.

The second aspect is that in all of the previous ap-

proaches the definition of confidence was mostly based ei-

ther on heuristics or on ad hoc principles that were simply



(a) original image (b) masked image
(c) visiting order during first

forward pass
(d) Priority-BP result (e) result of [2]

Fig. 3. In column (c) darker patches correspond to nodes that are visited earlier during message scheduling at the first forward pass

0    10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.
 b

e
li
e
f 

a
t 

n
o
d
e
 a

threshold b
conf

rel. beliefs > b
conf

(a) node a has minimum priority

0    10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.
 b

e
li
e
f 

a
t 

n
o
d
e
 b

threshold b
conf

rel. beliefs > b
conf

rel. beliefs < b
conf

(b) node b has low priority

0    10000 20000

-4

-3

-2

-1

0

x 10
6

re
l.
 b

e
li
e
f 

a
t 

n
o
d
e
 c

threshold b
conf

rel. beliefs > b
conf

rel. beliefs < b
conf

(c) node c has high priority (d) the MRF nodes a, b and c

Fig. 4. The plots in (a), (b) and (c) show the sorted relative beliefs for the MRF nodes a, b and c in figure (d) at the start of Priority-BP.

Relative beliefs plotted in red (i.e. ≥ bconf ) correspond to labels in the confusion set. The size of this set determines the node’s priority.

making use of application-specific knowledge about the im-

age completion process. On the contrary, as we saw, our

definition of confidence is generic and therefore applicable

to any kind of images. Moreover, this way our method is

placed on firm theoretical grounds.

Three examples of applying Priority-BP to image com-

pletion are shown in Figure 3. As can be seen, the algorithm

has managed to fill the missing regions in a visually plausi-

ble way. The third column in that figure shows the visiting

order of the nodes during the first forward pass (based on

our definition of priority). The darker a patch is in these im-

ages, the earlier the corresponding node was visited. Notice

how the algorithm learns by itself how to propagate first the

messages of the nodes containing salient structure, where

the notion of saliency depends on each specific case. E.g.

the nodes that are considered salient for the first example

of Figure 3 are those lying along the horizon boundary. On

the contrary, for the second example of that figure, the al-

gorithm prefers to propagate information along the MRF

edges at the interior of the wooden trunk first. The remark-

able thing is that in both cases such information was not ex-

plicitly encoded but was, instead, inferred by the algorithm.

This is in contrast to the state-of-the-art method in [2]

where the authors had to hardwire isophote-related infor-

mation into the definition of priority (i.e. a measure which

is not always reliably extracted or even appropriate e.g. in

images with texture). The corresponding results produced

by that method are shown in the last column of Figure 3. In

these cases only one label (i.e. patch) is greedily assigned to

each missing block of pixels and so any errors made early

cannot be later backtracked, thus leading to the observed

visual inconsistencies. On the contrary, due to our global

optimization approach, any errors that are made during the

very first iterations can be very well corrected later since

our algorithm always maintain not one but many possible

labels for each MRF node. A characteristic case for this is

the third example in Figure 3 where, unless one employs a

global optimization scheme, it is not easy to infer the miss-

ing structure.

Also, the plots in Figures 4(a), 4(b), 4(c) illustrate our

definition of priority in equation (5). They display the

largest 20000 relative beliefs (sorted in descending order)



(a) (b)

5 10 15 20

25%

50%
’number of active labels’ histogram

(c) (d)

Fig. 5. (a) Although the red, green and blue patches correspond to distinct labels, they are very similar and so only one has to be an active

label for a node. (b) A map with the number of active labels per node (for the 2nd example of Figure 3). Darker patches correspond to

nodes with fewer labels. As can be seen, interior nodes often require more labels. (c) The corresponding histogram showing the percentage

of nodes using a certain number (in the range Lmin = 3 to Lmax = 20) of active labels. (d) The active labels for node a in Fig. (a).

that are observed at the very beginning of the algorithm for

each of the MRF nodes a, b, c in Figure 4(d) respectively.

Relative beliefs plotted in red correspond to labels in the

confusion set. Node a, being an interior node, has initially

all the labels in its confusion set (since their relative beliefs

are all zero) and is therefore of lowest priority. Node b still

has too many labels in its confusion set due to the uniform

appearance of the source region around that node. On the

contrary node c is one of the nodes to be visited early during

the first forward pass since only very few labels belong to

its confusion set. Indeed, even at the very beginning, we can

easily exclude (i.e. prune) many source patches from being

labels of that node without the risk of throwing away useful

labels. This is why Priority-BP prefers to visit him early.

3.4. Label pruning

The main idea of “label pruning” is that, as we are visit-

ing the nodes of the MRF during the forward pass (in the or-

der induced by their priorities), we dynamically reduce the

number of possible labels for each node by discarding labels

that are unlikely to be assigned to that node. In particular,

after committing a node, say ni, all labels having a very low

relative belief at ni, say less than bprune, are not considered

as candidate labels for ni thereafter. The remaining labels

are called the “active labels” for that node. An additional

advantage we gain this way is that after all MRF nodes have

pruned their labels at least once (e.g. at the end of the first

forward pass), then we can precompute the reduced matri-

ces of pairwise potentials (which can now fit into memory)

and thus greatly enhance the speed of our algorithm. The

important thing to note is that “label pruning” relies only

on information carried by the Priority-BP algorithm itself

as well. This keeps our method generic and therefore appli-

cable to any energy function. A key observation, however,

relates to the fact that label pruning is a technique not meant

to be used on its own. Its use is allowed only in conjunction

with our priority-based message scheduling scheme of vis-

iting most confident nodes first (i.e. nodes for which label

pruning is safe and does not throw away useful labels). This

is exactly the reason why label pruning does not take place

during the backward pass.

In practice we apply label pruning only to nodes whose

number of active labels exceeds a user specified number

Lmax. To this end, when we are about to commit a node we

traverse its labels in order of belief (from high to low) and

each such label is declared active until either no more labels

with relative belief greater than bprune exist or the maxi-

mum number of active labels Lmax has been reached. In

the case of image completion, however, it turns out that we

also have to apply an additional filtering procedure as part

of label pruning. The problem is that otherwise we may end

up having too many active labels which are similar to each

other, thus wasting part of the Lmax labels we are allowed

to use. This issue is further illustrated in Figure 5(a). To

this end, as we traverse the sorted labels, we declare a label

as active only if it is not similar to any of the already ac-

tive labels (where similarity is measured by calculating the

SSD between image patches), otherwise we skip that label

and go to the next one. Alternatively, we apply a cluster-

ing procedure to the patches of all labels beforehand (e.g.

cluster them into textons) and then never use more than one

label from each cluster while traversing the sorted labels.

Finally, we should note that for all nodes a (user-specified)

minimum number of active labels Lmin is always kept.

The net result of label pruning is thus to obtain a compact

and diverse set of active labels for each MRF node (all of

them having reasonably good beliefs). E.g. Figure 5(b) dis-

plays the number of active labels used by each of the nodes

in the second example of Figure 3. The darker a patch is

in that figure, the fewer are the active labels of the corre-

sponding node. As it was expected, interior nodes often

require more active labels to use. The corresponding his-

togram showing the percentage of nodes that use a certain

number of active labels is displayed in Figure 5(c). No-

tice that more than half of the MRF nodes do not use the

maximum number of active labels (which was Lmax = 20
in this case). Also, Fig. 5(d) displays the active labels that

have been selected by the algorithm for node a in Fig. 5(a).

4. Extensions & further results

Completion via energy refinement: One advantage of

posing image completion as an optimization problem is that



Fig. 6. Image completion. From left to right: original images, masked images, visiting order at 1st forward pass, Priority-BP results

one can now refine completion simply by refining the en-

ergy function (i.e. adding more terms to it). E.g., to favor

spatial coherence during image completion (i.e. to fill the

target region with large chunks of the source region), one

simply needs to add the following “incoherence penalty

terms” V 0
ij to our energy function: V 0

ij(li, lj) = w0 if

li − lj 6= ni − nj while in all other cases V 0
ij(li, lj) = 0.

These terms simply penalize (with a weight w0) the assign-

ment of non-adjacent patches (with centers li, lj) to adja-

cent nodes ni, nj and have proved useful in texture syn-

thesis problems (e.g. see Figure 7(b)). Thanks to the abil-

ity of Priority-BP to handle effectively any energy function,

we intend to explore the utility (with respect to image com-

pletion) of many other refinement terms in the future. We

believe that this will also be an easy and effective way of

applying prior knowledge or imposing user specified con-

straints on the image completion process.

Pyramid-based image completion: Another important

advantage of our method is that it can also be used in multi-

scale image completion, where a Gaussian pyramid of im-

ages Ik, Ik−1, . . . , I0 is given as input. For this, we begin

by applying Priority-BP to the image at the coarsest scale

Ik. The output of this procedure is then up-sampled and the

result, say I ′
k, is used for guiding the completion of the im-

age Ik−1 at the next finer scale. To this end, the only part of

our algorithm that needs to be modified is that of how label

costs are computed. In particular, the mask M in equation

(1) will now be non zero everywhere and so not only pix-

els from the source region of Ik−1 are taken into account

but also pixels from the unknown target region, where now

the values for these pixels are borrowed from the approx-

imation image I ′
k. The rest of the algorithm remains the

same and this process is repeated until we reach the image

at the finest scale I0. An advantage we gain this way is that

features at multiple scales can be captured.

Figure 6 contains further results on image completion.

These results along with those in Figure 3 demonstrate the

effectiveness of our method. As can be seen, Priority-BP



(a) texture synthesis

(b) texture synthesis with “incoherence penalty terms”

(c) text removal and image inpainting

Fig. 7. Priority-BP results (order at 1st forward pass is also shown)

was able to handle the completion of smooth regions, tex-

tured areas, areas with structure as well as any combinations

of the above. Besides image completion, we also show re-

sults on texture synthesis, text removal as well as image in-

painting (Figure 7). Our method had no problem of han-

dling these tasks as well. In Figure 7(b) we demonstrate an

example of using the “incoherence penalty terms” in tex-

ture synthesis. As one can observe, the output texture does

contain large chunks of the input texture as intended. Also

in the last example of Figure 6 we show the final result of

a pyramid-based image completion. In this case the input

image was 481 × 321 and a 2-level pyramid has been used.

Also, for all examples we show the visiting order of the

nodes during the first forward pass. In our tests the patch

size ranged between 7×7 and 27×27. The running time on

a 2.4GHz CPU varied from a few seconds up to 2 minutes

for 256× 170 images, while the maximum number of labels

Lmax was set between 10 and 50 (depending on the input’s

difficulty). For all of the examples, the belief thresholds

were set equal to bconf =−SSD0, bprune=−2·SSD0, where

SSD0 represents a predefined mediocre SSD score between

w × h patches. For the composition of the final patches,

these are usually blended with weights that are proportional

to the confidence of the corresponding nodes. More elab-

orate schemes, like feathering or multi-resolution splining,

have been also tried in some cases. Finally, to accelerate

the SSD calculations required by the algorithm, the com-

mon method of moving to the frequency domain and using

the fast Fourier transform has been applied.

5. Conclusions

A novel approach which treats image completion, tex-

ture synthesis and image inpainting in a unified manner has

been presented. To avoid visually inconsistent results due

to greedy patch assignments, we pose all of these tasks in

the form of a discrete labeling problem with a well defined

objective function. To solve that problem, a novel global

optimization scheme, Priority-BP, has been proposed that

carries two very important extensions over standard BP:

priority-based message scheduling and label pruning. Our

algorithm does not rely on image-specific prior knowledge

and can be applied to any kind of images. Furthermore, it is

generic (i.e. applicable to any MRF energy) and thus copes

with one of the main limitations of BP: its inefficiency to

handle problems with a huge number of labels. Finally, a

wide variety of examples have verified its effectiveness.

References

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image in-

painting. In SIGGRAPH, 2000. 1

[2] A. Criminisi, P. Pérez, and K. Toyama. Object removal by exemplar-

based inpainting. In CVPR, 2003. 1, 4, 5

[3] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image com-

pletion. In SIGGRAPH, 2003. 1, 4

[4] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric

sampling. In ICCV, 1999. 1

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propaga-

tion for early vision. In CVPR, 2004. 2

[6] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-

level vision. IJCV, 40(1):25–47, 2000. 2

[7] J. Jia and C.-K. Tang. Image repairing: Robust image synthesis by

adaptive nd tensor voting. In CVPR, 2003. 1

[8] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization

for example-based synthesis. In SIGGRAPH, 2005. 1

[9] V. Kwatra and et al. Graphcut textures: Image and video synthesis

using graph cuts. In SIGGRAPH, 2003. 1

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann Publishers Inc., 1988. 2

[11] J. Portilla and E. P. Simoncelli. A parametric texture model based on

joint statistics of complex wavelet coefficients. IJCV, 40(1), 2000. 1

[12] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion with

structure propagation. In SIGGRAPH, 2005. 1

[13] Y. Wexler, E. Shechtman, and M. Irani. Space-time video comple-

tion. In CVPR, pages 120–127, 2004. 1


