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Abstract. This paper proposes a framework that provides significant
speed-ups and also improves the effectiveness of general message passing
algorithms based on dual LP relaxations. It is applicable to both pair-
wise and higher order MRFs, as well as to any type of dual relaxation.
It relies on combining two ideas. The first one is inspired by algebraic
multigrid approaches for linear systems, while the second one employs
a novel decimation strategy that carefully fixes the labels for a growing
subset of nodes during the course of a dual LP-based algorithm. Ex-
perimental results on a wide variety of vision problems demonstrate the
great effectiveness of this framework.

1 Introduction

Message passing methods are extremely popular MRF optimization techniques
in computer vision, with BP being the earliest method of this kind. Recently,
many state of the art message-passing techniques have been proposed that rely
on solving dual LP relaxations [1,2,3,4]. Compared to BP, they offer signifi-
cant advantages such as better convergence properties, as well as the ability to
provide suboptimality guarantees based on dual lower bounds. Moreover, they
have been shown to significantly outperform BP and all other MAP estimation
techniques [5]. On the other hand, one main drawback is that they often have
a higher computational cost. As a result, given the large scale nature of the
majority of vision problems, one of the key challenges in energy minimization is
currently the acceleration of these methods. This is even more so considering the
fact that computer vision researchers start gradually to resort to higher order
MRF models, where such dual-based methods are expected to have much wider
applicability due to their generality.

Motivated by the above observations, the goal of this work is to increase
the overall efficiency of dual LP-based algorithms both for pairwise and higher
order MRFs, while at the same time improving their effectiveness (i.e., their
accuracy). To this end, it proposes a framework that combines together two very
general techniques in order to significantly speed up such algorithms. The first
one is inspired by algebraic multigrid techniques for linear systems of equations,
and uses a multiresolution hierarchy of dual relaxations for accelerating the
convergence of dual-LP based methods. It relies on the premise that information
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is expected to propagate faster at lower resolutions. In the past, a geometric
multigrid approach has been used for accelerating the BP algorithm for grid-
structured graphs [6]. Here we extend and generalize such an approach to LP-
based algorithms. Our algebraic multigrid framework can handle MRFs defined
on any kind of graph, or having any kind of potentials. Moreover, it can be
applied to higher order MRFs, as well as to LP relaxations that are tighter than
the standard marginal polytope relaxation.

But to be able to achieve a significant speed up, besides accelerating the
convergence, we also need to significantly reduce the time per iteration of a dual
LP-based algorithm. To this end, we introduce a second technique, which consists
of a decimation strategy that carefully fixes the labels for a growing subset of
nodes during the course of the algorithm and thus one does not need to update
their dual variables thereafter. It is based on the observation that, when using
an algrebraic multigrid approach, a set of nodes typically exists that contribute
a very small increase to the objective of the dual relaxation when their dual
variables are updated. Similarly to the first technique, it is very general, and
is applicable to both pairwise and higher order MRFs. Furthermore, it allows
better primal solutions to be computed. Note that MRF decimation techniques
have also been used in the past, and have been applied either to variants of BP
[7,8] or to dual LP-based algorithms [9,10,11]. However, the latter techniques are
not as widely applicable as our method.

After introducing in the next section the general setting used in the paper,
we describe our framework in §3 - §7, while we discuss some extensions in §8.
We present experimental results in §9 and finally conclude in §10.

2 Dual LP Relaxations for MRF Optimization

The problem of MAP estimation for discrete MRFs is typically formulated as
follows. Given a graph G = (V , E) (where V , E represent the nodes and edges of
the graph) and a discrete set of labels L, we want to assign a label xp to each
node p so that the total MRF energy (i.e., the sum of all MRF potentials) is
minimized, or

MRFG(U,P) := min
x

∑

p∈V
Up(xp) +

∑

pq∈E
Ppq(xp, xq) . (1)

In the above, U = {Up}p∈V and P = {Ppq}pq∈E denote respectively the set of
all unary and pairwise potential functions.

As mentioned in the introduction, here we will concentrate on optimization
methods that rely on dual LP relaxations. The most general setting for describing
all these methods is based on the dual decomposition framework [3]. According
to this framework, the original problem MRFG(U,P) (also called the master
MRF) is decomposed into a set of simpler MRFs that are called the slaves and
are denoted by MRFGi(θGi ,P). Here we assume that each slave MRF is defined
on a subgraph Gi = (Vi, Ei), has its own unary potentials (denoted by θGi),
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while it inherits1 the pairwise potentials P of the master MRF. In this case,
the dual variables are the unary potentials {θGi} of the slave MRFs, and the
key property that these variables have to satisfy is

∑
i θGi = U, i.e., the sum of

the unary potentials of the slaves should give back the unary potentials of the
master MRF.

Based on this property, it is easy to prove that the sum of the optimal energies
of the slaves always provides a lower bound to the optimal energy of the master,
and so the goal of the dual LP relaxation is exactly to adjust the dual variables
so as to maximize this lower bound, or

max{θGi}
∑

i
MRFGi(θ

Gi ,P) (2)

s.t.
∑

i
θGi = U . (3)

Different dual-based optimization algorithms have been proposed in the litera-
ture, all of which try to solve the above dual relaxation, and the key property
that has to be maintained (either implicitly or explicitly) is condition (3).

3 Accelerating Dual LP-Based Optimization Algorithms
via an Algrebraic Multigrid Approach

Due to the decomposition of the master MRF into a set of smaller slave MRFs,
the update of the dual variables is essentially done based only on local informa-
tion. As a result, information travels slowly across the graph, and this has the
undesirable effect of slowing down the convergence of dual LP-based algorithms,
which thus require many iterations to converge to the correct solution. This is-
sue is essentially very similar to the slow convergence problem faced by iterative
algorithms for linear systems. Again, due to the local nature of the updates,
such algorithms can recover very fast (i.e., in few iterations) the high-frequency
part of the solution, but they are very slow at recovering the lower frequencies.
Multigrid is introduced to overcome this problem, where the basic idea is based
on the trivial observation that low frequencies in the original grid reappear as
high frequencies in a grid of lower resolution. A multigrid approach thus replaces
the original linear system with a hierarchical multiresolution set of linear sys-
tems. The two key elements in a multigrid algorithm are the so called restriction
and prolongation operators, that specify the transition between linear systems
at adjacent levels in the hierarchy. These operators are combined to generate a
so called V-cycle, which consists of a fine-to-coarse restriction phase followed by
a coarse-to-fine prolongation phase.

Our aim here will be to apply a similar strategy to dual based MRF algorithms
for quickly solving (2). This will be done by using a hierarchy of dual decom-
positions, defined on a sequence of graphs G = G(0), G(1), . . . , G(T ), where each
1 In general, each slave can have its own pairwise potentials (just like the unary po-

tentials) and does not need to inherit them from the master MRF. Here we assume
they are inherited only to simplify the presentation and to reduce notational clutter,
but everything described can be very easily extended to the more general case.



Towards More Efficient and Effective LP-Based Algorithms 523

graph G(t+1) is assumed to be a “coarser” version of graph G(t) (we will explain
what precisely we mean by “coarser” later). We will also define a restriction and
prolongation operator, denoted hereafter by Proj and Lift respectively. The
role of the restriction operator will be to take as input a master MRF and its
dual decomposition at level t, and to project them onto level t + 1, i.e., create a
corresponding master problem and a corresponding dual decomposition at level
t + 1

MRFG(t)(U(t),P(t)){
MRF

G
(t)
i

(θG
(t)
i ,P(t))

} Proj−→ MRFG(t+1)(U(t+1),P(t+1)){
MRF

G
(t+1)
i

(θG
(t+1)
i ,P(t+1))

} (4)

On the contrary, the role of the prolongation operator Lift will be to take as
input a feasible set of dual variables

{
θG

(t+1)
i

}
for the decomposition defined

at the “coarser” level t + 1, and to lift them to a feasible set of dual variables{
θG

(t)
i

}
for the decomposition that has been previously defined at level t, i.e.,

{
θG

(t+1)
i

} Lift−→ {
θG

(t)
i

}
. (5)

Just like in multigrid, a V-cycle in our case will consist of a restriction phase
followed by a prolongation phase (see Fig. 1(a)). In the restriction phase we
sequentially apply operator Proj to all but the last level in the hierarchy, i.e.,
we start from level t = 0 and go up to level t = T − 1. In this manner, a
master MRF along with a dual decomposition is generated for each level. All of
these decompositions are essentially projections of the original master problem
and its dual decomposition. In the prolongation phase, we move in the opposite
direction. This means that for each level t (where t now starts from t = T
and terminates at t = 0) we solve the dual relaxation corresponding to the
decomposition at that level, and then we lift the resulting solution onto the
next finer level (if one exists) via using the operator Lift, thus initializing the
dual variables for the decomposition at level t − 1. Due to the the information
traveling much faster at the “coarser” levels of the hierarchy, the dual relaxations
for these levels can be solved very fast, i.e., in very few iterations. Furthermore,
this quick spreading of the information that took place in the coarser levels is
carried over to the finer levels, thanks to the initialization of the dual variables
via the Lift operator (assuming, of course, that this operator has been properly
defined, which is crucial for the success of this scheme). This, in turn, results
into accelerating the convergence of the dual relaxations at the finer levels as
well.

Having explained the overall structure of our method, it still remains to de-
scribe how to generate the hierarchy of graphs, how the master problems and
their dual decompositions are defined at each level, and, most importantly, how
to efficiently compute the operators Lift and Proj, which is, of course, one of
the key technical issues. Before doing so, we must note that we want our scheme
to be applicable to any kind of graph G, and not only to grids, as well as to
MRFs with any kind of potential functions. Drawing an analogy with multigrid
methods, we want to derive an algebraic (and not a geometric) multigrid solver,
as the former is much more widely applicable.



524 N. Komodakis

4 Defining the Hierarchy of Graphs

Given a graph G = (V , E), where V = {p1, p2, . . . , pn}, we want to define a
“coarser” graph Ḡ = (V̄ , Ē). All that is needed as input for this purpose, is
a partition {p̄1, p̄2, . . . , p̄n̄} of V , i.e., ∪p̄i = V and p̄i ∩ p̄j = ∅. Each node of
the “coarser” graph Ḡ will then correspond to a subset of this partition, i.e., it
will hold V̄ = {p̄1, p̄2, . . . , p̄n̄}, where we hereafter use p̄i to denote both a node
of V̄ as well as a subset of nodes of V . Under this convention, the projection
(denoted by proj(p)) of a node p ∈ V is defined as the unique node p̄ ∈ V̄
that satisfies the condition p ∈ p̄, while the projection of a subset of nodes
{pk} ⊆ V is naturally equal to the union of the individual projections, i.e.,
proj({pk}) = ∪proj(pk). Based on this notation, the set of edges Ē of Ḡ is
then defined as Ē = {proj(pipj)|pipj ∈ E , proj(pi) �= proj(pj)}. The resulting
“coarser” graph Ḡ = (V̄ , Ē) is called the projection of graph G, and is denoted
by proj(G) (e.g., see Fig. 1(b)). Therefore, to define a hierarchy of graphs, it
suffices to set G(t+1) = proj(G(t)), where we assume that a partition has been
specified by the user for each of the projections and G(0) = G.

Assigning a label to a node p̄ ∈ V̄ of the “coarser” graph Ḡ = proj(G) will
mean that this label is assigned to all nodes of G in the set {p ∈ V | proj(p) = p̄}.
Based on this convention, if MRFG(U,P) is an MRF2 on the graph G, its pro-
jection on Ḡ will be an MRF, denoted by proj(MRFG(U,P)) := MRFḠ(Ū, P̄),
whose potentials Ū, P̄ are defined as follows3:

Ūp̄(l) =
∑

p:proj(p)=p̄
Up(l), P̄p̄q̄(l, l′) =

∑
pq:proj(pq)=p̄q̄

Ppq(l, l′) . (6)

Naturally, we want the master MRF at each level of our hierarchy to be a
projection of the original MRF.

5 Defining the Restriction Operator Proj

It suffices to show how to define this operator for one level of the hierarchy,
i.e., during a transition from a graph G to a coarser graph Ḡ = proj(G). Let
MRFG(U,P) be the master MRF on G, and let

{
MRFGi(θGi ,P)

}
be its dual

decomposition (i.e., the set of slaves defined on subgraphs {Gi}). The main role
of operator Proj will be to define the corresponding dual decomposition for the
graph Ḡ, denoted by

{
MRFḠj

(θ̄Ḡj , P̄)
}
. To this end, it first needs to determine

the set of subgraphs {Ḡj} on which the new slaves will be defined. This set will
consist of all subgraphs of the form proj(Gi), i.e.,

{Ḡ1, Ḡ2, . . . , ḠJ } = {proj(G1), proj(G2), . . . , proj(GI)} . (7)

2 Depending on the context, MRFG(U,P) denotes either a MRF (on a graph G) with
unary and pairwise potentials U, P or a minimum MRF energy (as in (1)).

3 To reduce notational clutter, we assume it holds P (l, l) = 0 when defining the poten-
tials Ū, otherwise we must set Ūp̄(l) =

∑
p:proj(p)=p̄ Up(l) +

∑
pq:proj(pq)=p̄ Ppq(l, l).
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Fig. 1. (a) V-cycle of the ‘algrebraic multigrid’ approach for dual LP-based algorithms
(b) Ḡ is the projection of graph G based on the partition {a, c}, {b, d}. (c) If G1, G2,
G3, G4 are the subgraphs of the slaves in G, then Ḡ1, Ḡ2, Ḡ3 will be the subgraphs
of the 3 slaves in Ḡ. Note that Ḡ has fewer slaves since both G3, G4 project onto Ḡ3.
Also note that the slaves for Ḡ1, Ḡ2 have no pairwise potentials. (d) The projection of
0 onto C ∩D is computed via alternating projections on C and D (note that although
C and D are drawn here as polytopes, they are actually affine subspaces in our case).

Since it can hold proj(Gi) = proj(Gi′ ) for i �= i′, it is important to emphasize that
the number of subgraphs Ḡj may be strictly less than the number of subgraphs
Gi (see Fig. 1(c)). The operator Proj then associates to each different subgraph
Ḡj a slave MRFḠj

(θ̄Ḡj , P̄) whose potential functions are defined as follows:

θ̄
Ḡj

p̄ (l) =
∑

i:proj(Gi)=Ḡj

∑
p:proj(p)=p̄

θGi
p (l) , (8)

P̄p̄q̄(l, l′) =
∑

pq:proj(pq)=p̄q̄
Ppq(l, l′) , (9)

i.e., essentially it holds MRFḠj
(·, ·) =

∑
i:proj(Gi)=Ḡj

MRFGi(·, ·). Eqs. (7)-(9)
completely specify the dual decomposition for graph Ḡ. Furthermore, this de-
composition, in turn, completely specifies the potentials of the master MRF
for Ḡ, denoted by MRFḠ(Ū, P̄), since it must hold Ū =

∑
j θ̄Ḡj due to (3).

However, there still remains one critical question that must be answered: is the
resulting master MRF a projection onto Ḡ of the master MRF for G, as we
want? It turns out that this is indeed the case, as the following theorem certifies:

Theorem 1 ([12]). If MRFḠ(Ū, P̄) is the master MRF resulting from the
dual decomposition defined by eqs. (7)-(9), it then holds MRFḠ(Ū, P̄) =
proj(MRFG(U,P)).
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6 Defining the Prolongation Operator Lift

Let MRFG(U,P),
{
MRFGi(θGi ,P)

}
and MRFḠ(Ū, P̄),

{
MRFḠj

(θ̄Ḡj , P̄)
}

be
the master MRFs along with their set of slaves for two graphs G, Ḡ = proj(G)
that are adjacent in the hierarchy. We assume that all these MRFs have been
constructed during the restriction phase. We are now at the prolongation phase,
where we assume that the dual relaxation for Ḡ has already been solved (i.e.,
the dual variables {θ̄Ḡj} are set to their optimal values), and we now want to
compute the Lift operator whose role is to initialize the dual variables {θGi}
for graph G. Note that, since {θ̄Ḡj} are already set to their optimal values, this
implies that an important amount of information has already been spread across
the whole graph Ḡ (and hence across G as well, since Ḡ = proj(G)). Therefore,
if we manage to properly take into account this information when initializing
{θGi}, we will succeed in accelerating the convergence of the dual relaxation for
graph G as well.

But how can we go about doing that? A first idea that comes in mind is
the following one: Let OptḠ be the already computed optimal value of the dual
relaxation for Ḡ. Recall that our goal is to maximize the dual objective function
for graph G as well. Therefore, perhaps we should aim at initializing the dual
variables {θGi} such that the resulting dual objective is at least as large as OptḠ.
Unfortunately, this is not, in general, possible, as the following theorem shows:

Theorem 2 ([12]). Let OptḠ, OptG denote the optimal values of the dual relax-
ations for graphs Ḡ and G respectively. Then, in general, it holds OptḠ > OptG.

However, dual variables {θ̄Ḡj} still provide very important information about
dual variables {θGi} that we can take advantage of. In particular, they provide
the linear constraints (8), where values θ̄

Ḡj

p̄ (·) are now assumed to be known. By
imposing these constraints when initializing variables {θGi}, we implicitly take
into account all information that is encoded in {θ̄Ḡj} and has propagated across
graph Ḡ. Of course, besides eqs. (8), {θGi} must also satisfy the dual feasibility
constraints (3). Therefore, in total, variables {θGi} should be initialized so as
to satisfy the linear system composed of Eqs. (3) and (8). Among the many
solutions of this underdetermined linear system, we must compute the one that
has minimum Euclidean norm. Intuitively, this regularization of the solution is
important because otherwise the resulting initial dual variables {θGi} for the
finer graph may exhibit large variations in magnitude, which can have as a
result that too much energy/information is concentrated on local parts of the
fine graph. This can destroy the propagation of “information” that took place
at the coarser level and can thus hinder convergence. We next show how to
efficiently perform this minimum norm computation.

6.1 Solving for {θGi}
During this section, in order to make the exposition more clear, we will use
z = {zk}K

k=1 to denote the vector from concatenating all {θGi}. Our goal is to
find the least norm solution of an underdetermined linear system, i.e.,
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min
z

‖z‖2 (10)

s.t. Az = b , (11)

where Az = b encodes the linear constraints (3) and (8). Theoretically, such
a z can be computed as z = AT (AAT )−1b, but this may be too slow for our
purposes. Fortunately, a solution to (10) can be computed extremely fast by
exploiting the special structure existing in the constraints (3), (8). To this end,
we first rewrite the above optimization problem as follows:

min
z

‖z − 0‖2 (12)

s.t. z ∈ C ∩ D , (13)

where C, D denote the linear subspaces of R
K corresponding to the linear equa-

tions (3) and (8) respectively. Therefore, the optimal z coincides with the or-
thogonal projection of the zero vector onto the intersection of the two linear
subspaces C and D. To compute this projection, we apply the well known Dyk-
stra algorithm [13], which is an alternating projection method, i.e., it starts from
the zero vector z̄(0) = 0, and then alternately projects onto C and D:

z(n) = PC(z̄(n)), z̄(n+1) = PD(z(n)), n = 0, 1, 2, . . . (14)

wherePC(·) andPD(·) denote projection onto C and D, respectively (see Fig 1(d)).
This generates a sequence z(n) ∈ C which provably converges to the optimal solu-
tion.Theadvantage indoing so is that theprojectionsPC(·),PD(·) canbecomputed
extremely fast in our case due to the special structure of the linear subspaces C and
D. Namely, it is easy to verify that both subspaces are specified by a set of equations
of the following form:

∑

k∈Ij

zk = bj , j = 1, 2, . . . , J , (15)

where the sets {Ij}J
j=1 form a partition of the set of indices I = {1, 2, . . . , K},

i.e., ∪jIj = I and Ij ∩ Ij′ = ∅ for j �= j′. The projection of a point z′ onto such
a linear subspace is easily seen to be given by the following vector z:

∀k ∈ Ij , zk = z′k + (bj −
∑

i∈Ij

z′i)/|Ij |, j = 1, 2, . . . , J . (16)

Furthermore, the Dykstra algorithm converges very fast in our case (i.e., ex-
tremely few alternating projections are required). Theoretically this can be at-
tributed to the fact that the rate of convergence of this algorithm increases with
the angle θ ∈ [0, π

2 ] between the two subspaces, i.e., the more orthogonal the
subspaces are, the faster the convergence. Hence, overall, this algorithm leads to
a very fast method for minimizing (10), i.e., for initializing {θGi}.
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7 Accelerating Dual LP-Based Methods via Fixing
Variables

The multigrid approach described above allows information to propagate faster
across the MRF graph, and this helps us to reduce the number of iterations
to convergence at the finest level. But to be able to take full advantage of this
fact and achieve a significant speed up, we also need to reduce the time spent
per iteration at that level. To this end, we now describe a technique that is
applied only at the finest level of the hierarchy during the multigrid approach.
As mentioned above, its main role is to bring a significant reduction in the
time per iteration at that level (but, in addition to that, it also helps us to
speed up the convergence of the algorithm). This reduction is achieved via a
decimation strategy, where we carefully fix the labels for a dynamically growing
subset of nodes during the algorithm, and do not update their dual variables
thereafter. Recall that the cost of an iteration essentially comes from locally
updating the dual variables {θGi

p (·)} for each node p in the graph. These updates
aim to improve the dual objective. However, it is often the case that the rate of
improvement per iteration is very small despite the great computational effort,
i.e., the dual function increases only slightly per iteration, and this in turn
leads to a slow progress towards a good primal solution. The reason for this
behaviour comes from the fact that many nodes cannot contribute a positive
increase when their local dual variables are updated during an iteration. The
following definition is important in this regard: we say that a node p is stabilized
at the t-th iteration if, exactly before the update of the local variables {θGi

p (·)}
at that iteration, there exists a label that optimizes all the current instances of
slaves containing p (any such label will be called stable w.r.t. p). It is easy to
verify the following proposition:

Proposition 1 ([12]). If a node p is stabilized then no update of its local
dual variables {θGi

p (·)} can increase the dual objective. Conversely, if p is non-
stabilized, then there always exists an update of variables {θGi

p (·)} that improves
the dual.

According to this proposition, for example, stabilized nodes leave the dual func-
tion unmodified in sequential algorithms such as TRW-S or max-diffusion. But
stabilized nodes also lead us to the central concept in our decimation method,
that of an R-nested node: we say that node p is R-nested for the t-th iteration
if both p and all other nodes of graph G within distance4 R from p were found
to be stabilized at that iteration (see Fig. 2(a)). Motivated by proposition 1, we
have empirically verified the following two important observations: in practice,
many nodes quickly become stabilized during a dual-based algorithm when a
multigrid scheme is used, and, furthermore, stabilized nodes that consistently
remain R-nested for a number of iterations (with R large enough) turn out to
contribute a very small (even zero) total change to the dual objective thereafter.
This leads to the following decimation strategy (that depends on two positive
4 The distance of two nodes is the number of edges of their minimum connecting path.
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integer parameters R, D): at each iteration, we fix all nodes that are stabilized
at the current iteration and that were R-nested for the past D iterations (each
such node is simply assigned one of its current stable labels). This strategy is
applied after a few initial iterations have passed, while parameters R and D
determine how fast nodes can become fixed, and must be set to some reasonably
large values.

To intuitively understand the necessity for the conditions of the above dec-
imation strategy notice that an R-nested node is essentially surrounded by a
‘layer’ (of width R) of stabilized nodes. Note also that if a node, say q, becomes
non-stabilized at the current iteration, this means that q is able to contribute to
the dual objective. This in turn implies that extra dual information (in the form
of messages) can originate from q and propagate to nearby nodes, thus possibly
affecting the labels of any node p within a certain distance, say R, from q. This
explains why p must be R-nested. On the other hand, if a certain number of
iterations, say D, have passed since the start of this propagation and p has still
remained stabilized during all that time, it is highly likely that the new messages
did not actually affect that node.

(a) (b) (c)

Fig. 2. (a) The red node is 2-nested, if itself and all blue nodes are stabilized. (b)
Distribution of fixed nodes (red pixels) at 3 different iterations. (c) The same part of
the ‘confidence’ map at 2 iterations of Tsukuba. More fixed nodes exist in the right
map, which results into some non-fixed nodes becoming more ‘confident’ (i.e., brighter).

As the dual-based algorithm progresses towards convergence, more and more
nodes become fixed. This results into significant computational savings per iter-
ation as only a very small number of dual variables have to be updated, which in
turn results into a larger rate of improvement of the dual objective per iteration
and thus in faster convergence. Fig. 2(b) shows examples from the distribution
of the fixed nodes at different iterations of the multigrid algorithm for Tsukuba.
Notice the order by which nodes become fixed: ‘easier’ nodes fix their labels
earlier, while ‘uncertain’ nodes are fixed towards the end.

Another very important advantage of the decimation strategy is that, by fix-
ing some of the labels, it manages to propagate additional information into the
graph, which further increases the rate of improvement of the dual. This was
found to considerably speed up convergence in our experiments. This propaga-
tion is illustrated by the ‘confidence’ maps for the ‘tsukuba’ example in Fig. 2(c),
which show that, as a result of the decimation process, the ‘confidence’ of non-
fixed nodes increases as well. Note that the confidence of a node p is calculated
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by computing for each label the sum of its min-marginals for all the slave MRFs
containing p and taking the difference between the two lowest sums.

But how can we empirically test the soundness of the above decimation pro-
cess? A very strong empirical indication comes from the following fact: let us
assume that the original dual LP relaxation is tight (or almost tight), i.e., the re-
sulting labels are (almost) optimal, which is the main case of interest. Note that
each time we fix the label of a node, we are essentially modifying that relaxation.
Moreover, the optimum of the modified dual relaxation increases only whenever
a newly fixed node is assigned a suboptimal label. Therefore, in this case we
can check how well the decimation process performed by simply comparing the
original dual optimum with the dual optimum of the modified relaxation that
results from fixing all the nodes. In all the real examples that we have tried,
the two dual optima were either exactly the same (when the original relaxation
was exact) or differed by a very small amount (when the original relaxation was
almost tight). We have also verified this property with experiments on synthetic
problems. Moreover, the obtained MRF energies were always better than the
ones of the full algorithm (we found no case where this was not true).

Intuitively, the reason that we are able to obtain better primal solutions is be-
cause, by fixing some of the labels, we implicitly manage to gradually tighten the
relaxation. Typically, LP-based solvers for MAP estimation function by solving
the LP and then rounding each node to generate an integer solution. Instead,
a better approach would be that, after rounding each node, we add its fixed
state as an additional constraint to the LP and then solve this new LP before
rounding the next node. This second approach, however, is very expensive but
gives better solutions as the LP guiding the rounding scheme gets progressively
tighter. The proposed decimation strategy can be thought of as an efficient way
to approximately perform such an expensive series of computations. Stable nodes
will have the same reparameterization in the final stage of the LP as they do
now. Therefore, they can be immediately rounded, and their new solution prop-
agated as a constraint. Note that the benefit of a decimation process to solving
difficult problems has also been observed in other cases as well, e.g., for solving
SAT instances using survey propagation [8].

8 Extensions

Higher order MRFs: Due to the generality of the proposed formulation, the
“algebraic multigrid” approach can also be extended to higher-order MRF opti-
mization problems. These problems have the following form:

MRFG(U,H) := min
x

∑

p∈V
Up(xp) +

∑

c∈C
Hc(xc) , (17)

where H = {Hc} are the higher order potential functions, which are now defined
on cliques c ∈ C and replace the pairwise potentials P.

Therefore, the dual objective function (2) now involves higher order potentials
H (instead of P), while the slave MRFs are defined on sub-hypergraphs Gi of
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a hypergraph G [14]. The projection proj(G) of any hypergraph G is defined
analogously to the projection of a graph, i.e., as the projection of its cliques.
Similarly, the projection of an MRF with higher potentials H gives rise to an
MRF with higher potentials H̄, which are again defined analogously to (6), i.e.,

H̄c̄(·) =
∑

c:proj(c)=c̄
Hc(·) . (18)

Hence, by replacing P and P̄ with H and H̄ respectively, the restriction and
prolongation operators Proj and Lift can then be computed using exactly the
same algorithms as described in sections 5 and 6.

Tighter LP relaxations: In the dual decomposition framework, a tighter dual
relaxation can result simply by choosing a set of non tree-structured slave MRFs.
For instance, one can use loopy subgraphs of small tree-width for this purpose
(intuitively, such a relaxation is tighter because the slaves now have higher opti-
mal energies, and thus lead to better lower bounds). As a result, exactly the same
algrebraic multigrid framework can be applied, thus leading to a multiresolution
set of tighter relaxations in this case.

Data-driven projections: Typically the partitions that determine each pro-
jection in the hierarchy are chosen a priori (e.g., for grids, a node at one level can
project to a block of nodes at a coarser level). However, due to the generality of
the proposed formulation, this could very well not be the case. Instead, one can
use data driven partitions for defining these projections. In vision problems, for
instance, it would be very useful to define these partitions so as to align with
some of the edges in the image. If chosen properly, such data driven projections
can lead to even greater computational savings.

9 Experimental Results

We have applied our method to a wide variety of vision problems. We first
report results on pairwise MRFs. To this end, we tested our algorithm on the
Middlebury dataset [5], which contains a variety of MRF problems on stereo
matching, image segmentation and image denoising (all MRF potentials were
set exactly the same as in that dataset). To demonstrate our framework for
pairwise MRFs, we have used it to improve the TRW-S algorithm [2], which is
a popular dual LP-based method for pairwise energies. We thus report results
when we apply that algorithm with and without our framework. In both cases
we use the same implementation of TRW-S as well as the same set of settings.5

Slaves were chosen to be trees, with one tree per horizontal and vertical line
of the input grid structured graph. We show typical plots of how the energy
varies in Figs. 3(a),3(b) and the corresponding solutions in Figs. 3(c),3(d). Notice
the much faster convergence when our framework is used. Further running times
and energies for problems from the middlebury dataset are reported in Fig. 4. As
5 For completeness we also compared our method with the original implementation of

TRW-S by V. Kolmogorov (see the supplemental material [12] for these results).
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Fig. 3. Convergence plots and results for Tsukuba and Venus

can be seen, our method provides a very significant speedup in all cases, while
at the same time it increases the effectiveness of the optimization. In fact, it
always computed solutions whose energy was lower than the best energy reported
in the Middlebury dataset. This behaviour was consistent throughout all our
experiments. For instance, for the ‘tsukuba’ example, our method computed the
global optimum in a time that was at least an order of magnitude faster than
the method in [15] (global optimality can be verified based on the dual lower
bounds). For obtaining these results, we used an MRF hierarchy consisting of
3-5 levels, where the partition at each level was consisting of sets of 2×2 pixels.
Also, parameters R and D (used in the decimation strategy) were set to some
reasonably large values (e.g., R ≥ 30 and D ≥ 10 on average).

We also tested our method on problems with higher order MRFs. To this end,
we applied it to image segmentation and stereo matching problems, where we
used a Pn Potts model [16] and a truncated second order derivative as higher
order potentials, respectively. Both of them were solved using the framework of
pattern-based potentials from [14]. We report indicative energies and running
times for two such cases in Fig. 5(a), while Fig. 5(b) shows the corresponding
result for stereo matching. As can be observed, even for high order MRF prob-
lems, our framework enables us to obtain high quality solutions much faster. It
also increases the effectiveness of the optimization, as it still consistently leads
to solutions of lower energy even in this case.

Finally, for completeness, we also compare our algorithm to the algorithm
from [6] that uses BP in conjunction with a geometric multigrid method. Fig. 5(c)
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Fig. 4. Energies and running times for MRFs from the Middlebury dataset with and
without our framework (energies have been normalized by subtracting a constant)
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Fig. 5. (a) Energies and running times for high order MRFs. (b) Disparity for ‘cones’.
(c) Comparison between our method and the method in [6].

shows the convergence of the energy when these two algorithms are run on the
stereo example from [6]. As can be seen, although the BP algorithm is very fast,
our method computes a solution of lower energy even faster.

10 Conclusions

A framework for significantly improving the overall efficiency and effectiveness
of dual-LP based methods was proposed in this paper, which is currently one of
the main challenges encountered in energy minimization problems for vision. It
relies on an algebraic multigrid approach and an efficient decimation strategy. It
is also extremely general, and can be applied to both pairwise and higher order
MRF problems. Due to this fact, and the very wide applicability of dual-LP
based methods, we hope that our framework will help in making such methods
much more practical for a wider class of vision problems in the future.
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