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Abstract

A new framework is presented for both understanding and developing graph-cut based combinatorial

algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently

encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear

programming in order to provide an alternative and more general view of state-of-the-art techniques

like the α-expansion algorithm, which is included merely as a special case. Moreover, contrary toα-

expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much

wider class of problems, e.g. even for MRFs with non-metric potentials. In addition, they are capable of

providing per-instance suboptimality bounds in all occasions, including discrete Markov Random Fields

with an arbitrary potential function. These bounds prove to be very tight in practice (i.e. very close to

1), which means that the resulting solutions are almost optimal. Our algorithms’ effectiveness is demon-

strated by presenting experimental results on a variety of low level vision tasks, such as stereo matching,

image restoration, image completion and optical flow estimation, as well as on synthetic problems.

Index Terms

Global optimization, graph-theoretic methods, linear programming, Markov Random Fields, pixel

classification, graph labeling, graph algorithms, early vision, stereo, motion, image restoration.

I. I NTRODUCTION

A large variety of important tasks in low-level vision, image analysis and pattern recognition

can be formulated as labeling problems, where one seeks to optimize some measure related to

the quality of the labeling [1]. For example, such is the case in optical flow estimation, stereo

matching, image restoration, to mention only a few of them. Therefore, an issue of paramount
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importance, that has attracted a significant amount of computer vision research over the past

years, is how to solve this class of labeling problems efficiently and accurately.

The Metric Labeling Problem (or ML for short), that has been introduced by Kleinberg and

Tardos [2] recently, can capture a broad range of these classification problems that arise in early

vision. According to that problem’s definition, the task is to classify a setV of n objects by

assigning to each object a label from a given setL of labels. To this end, we are also given a

weighted graphG = (V , E , w), where the set of edgesE represents the pairwise relationships be-

tween the objects, with the weightwpq of an edgepq representing the strength of the relationship

between objectsp, q. Each labeling of the objects inV is represented by a functionf : V → L
and is also associated with a certain cost, which can be decomposed into terms of 2 kinds.

On one hand, for eachp ∈ V , there is alabel costcp(a) ≥ 0 for assigning labela=fp to p.

Intuitively, the label costs express the likelihood of assigning labels to objects. On the other hand,

for each pair of objectsp, q that are related (i.e. connected by an edge in the graphG), there

is a so-calledseparation costfor assigning labelsa=fp, b=fq to them. This separation cost is

equal towpqd(a, b), where, as already mentioned, the edge weightwpq represents the strength

of the relationship betweenp, q, while d(a, b) is a distance function between labels, measuring

how similar two labels are. The intuition behind this definition of the separation cost is that

objects which are strongly related to each other should be assigned similar labels. This helps

in preserving the spatial coherence of the final labeling. To simplify notation, we assume that

all edges share a common distanced(a, b), but in fact each edgepq could have its own unique

distancedpq(a, b). Also, in the original formulation of Metric Labeling, the distanced(a, b) was

assumed to be a metric, i.e.d(a, b)=0⇔a=b, d(a, b)=d(b, a)≥0, d(a, b)≤d(a, c)+d(c, b), but

here we will relax this assumption. Based on these definitions the total cost of a labelingf equals:

COST(f) =
∑

p∈V
cp(fp) +

∑
(p,q)∈E

wpqd(fp, fq)

and the goal is to find a labeling with the minimum total cost.

The Metric Labeling problem is directly connected to the theory of Markov Random Fields

(MRFs). In fact, optimizing the cost in the Metric Labeling problem is essentially equivalent to

minimizing the energy of a discrete MRF, with the potential function of the MRF to be now

replaced by the distance function between labels [2]. Due to this connection to MRFs, solving the

Metric Labeling problem is (in general) NP-hard and therefore one can only hope for methods

that provide approximate solutions. To this end, two are the main classes of methods that have
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been proposed so far: those based on combinatorial optimization [1], [3], [4], [5], [6], as well as

those based on linear programming [2], [7], [8]. Methods of the first class are efficient and have

been applied with great success to many problems in vision. However, up to now, they have been

interpreted only as greedy local search techniques. On the other hand, methods of the second

class possess good theoretical properties, but their main drawback is the intolerable computational

cost due to that they formulate Metric Labeling as an equivalent integer program with a very

large number of variables. E.g. one such formulation, introduced in [7], is the following:

min
∑
p∈V

∑
a∈L

cp(a)xp(a) +
∑

(p,q)∈E
wpq

∑

a,b∈L
d(a, b)xpq(a, b) (1)

s.t.
∑

a
xp(a) = 1 ∀ p ∈ V (2)

∑
a
xpq(a, b) = xq(b) ∀ b ∈ L, (p, q) ∈ E (3)

∑
b
xpq(a, b) = xp(a) ∀ a ∈ L, (p, q) ∈ E (4)

xp(·), xpq(·, ·) ∈ {0, 1}

The {0, 1}-variablexp(a) indicates that vertexp is assigned labela, while the{0, 1}-variable

xpq(a, b) indicates that verticesp, q are assigned labelsa, b respectively. The variablesxpq(a, b),

xqp(b, a) therefore indicate the same thing. So, in order to eliminate one of them and reduce the

number of variables, we assume (without loss of generality) that only one of(p, q), (q, p) belongs

to E for any neighborsp, q. The notation “p ∼ q” will hereafter denote thatp, q are neighbors,

i.e. “either only(p, q)∈E or only (q, p)∈E”. The first constraints (2) simply express the fact

that each vertex must receive exactly one label, while constraints (3), (4) maintain consistency

between variablesxp(·), xq(·) and xpq(·, ·), in the sense that ifxp(a) = 1 and xq(b) = 1 holds

true, then these constraints forcexpq(a, b) = 1 to hold true as well.

To overcome the limitations of current state-of-the-art methods, a new framework [9], [10] is

proposed in this paper, which provides novel global minimization algorithms for the approximate

optimization of the Metric Labeling problem (and thus of a very wide class of MRFs frequently

encountered in computer vision). It makes use of the primal-dual schema of linear programming

in order to derive efficient (i.e. combinatorial) approximation techniques with guaranteed opti-

mality properties, thus bridging the gap between the two classes of approximation algorithms

mentioned above. The major contributions of the proposed framework are the following:
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LINEAR METRIC ARBITRARY

LABEL 
DISTANCE

GLOBAL OPTIMUM
CAN BE COMPUTED

EXACTLY [6]

GLOBAL OPTIMUM CAN 
BE APPROXIMATED [1] 

ONLY LOCAL OPTIMUM
CAN BE COMPUTED

DIFFICULTY OF
ML PROBLEM

(a)

Method Metric d(·,·) Non-metric d(·,·)

α-expansion Approximation ×
α-β-swap Local optimum

our framework Approximation

Local optimum

Approximation

(b)

Fig. 1: (a) The difficulty of the ML problem depends critically on the type of chosen label distanced(·, ·) (b) A

comparison of our framework with respect to state-of-the-art optimization methods that are based on graph-cuts.

1) It turns out that the difficulty of the Metric Labeling problem depends critically on the type

of the chosen distanced(·, ·) between labels (see Figure 1(a)). Up to now, one limitation of the

state-of-the-artα-expansion method was that it had to assume that this distance was a metric,

i.e. it satisfied the triangle inequality. However, this case often does not hold in practice, thus

limiting the applicability of theα-expansion method. On the contrary, the algorithms derived in

the proposed framework only require a non-metric distance function that satisfiesd(a, b) = 0 ⇔
a = b, d(a, b) = d(b, a) ≥ 0, which is a weaker assumption.1

This opens the way for applying our techniques to a wider class of MRFs with more general

energy functions. Given that MRFs are ubiquitous in computer vision, this also implies that these

algorithms can handle many more instances of a large variety of computer vision tasks (including

stereo matching, image restoration, image completion, optical flow estimation etc.). For all these

problems, the use of more sophisticated MRF priors is allowed based on our framework, thus

leading to a better modeling of the problem at hand. This is important, since it is well-known

that the choice of the prior plays a very significant role for the quality of the generated solutions.

2) Furthermore, the quality of these solutions also depends critically on how close they are to

the true optimum of the MRF energy function. Another contribution of our framework is that,

even in the case of a non-metric distance, it can still guarantee that the generated solution will

always be within a known factor of the global optimum, i.e. a worst-case suboptimality bound

can be provided in this case (see Figure 1(b)). This is in contrast to local MRF optimization

methods, such as the ICM algorithm or the Highest Confidence First method, for which no such

1In fact, the assumption of a symmetric distance is not used by any of the theorems in this paper and so our algorithms can han-

dle any distance for whichd(a, b)=0⇔a=b, d(a, b)≥0. The term “non-metric” will thus refer just to these conditions hereafter.

Furthermore, our framework can be easily extended to even handle certain distances for whichd(a, b)=0⇔a=b is not true.



5

theoretical guarantees (i.e. no such analysis) can be provided. We should also note that, although

any algorithm (e.g. theα-expansion) can be converted to handle non-metric distances without

a loss in the worst case bounds (e.g. by replacing non-metric terms with Potts terms, see [1]),

this completely misses any structure of the non-metric distance function. On the contrary, our

method can handle both metric as well as non-metric costs naturally.

3) In fact, in practice, the resulting solutions are much closer to the true optimum than what the

worst-case approximation factors predict, i.e. they are nearly optimal. This can be verified thanks

to our algorithms’ ability of also providing per-instance suboptimality bounds, a property com-

mon to any other primal-dual or LP-rounding based algorithm as well [2], [7], [11]. Moreover, in

our case, these bounds can be derived without having to solve large linear programs to optimality,

and they also prove to be very tight (i.e. close to 1) in practice. They can therefore be used to

access the optimality of the generated solutions and thus are very useful in deciding the ability of

the chosen MRF to model the problem under consideration (e.g., the existence of a nearly optimal

solution that does not look intuitively good, implies that a different MRF should be chosen).

Moreover, since these per-instance bounds are updated throughout the algorithm’s execution,

they can be also used in assessing its convergence, thus possibly reducing the total running time.

4) The generality and power of our framework is exhibited by presenting various algorithms,

just one of which is proved to be equivalent to theα-expansion graph cut technique (i.e. a

method which is currently considered state-of-the-art). Our framework therefore provides an

alternative and more general view of these very successful graph-cut techniques, which can now

be interpreted not merely as greedy local search, but in terms of principles drawn from duality

theory of linear programming, thus shedding further light on their essence (e.g. a connection

betweenα-expansion and the belief propagation algorithm TRBP [11], which also tries to solve

exactly the same dual LP relaxation, can thus be established). This is an important advance which,

we believe, may open the way for new related research and can thus lead to even better MRF

optimization algorithms in the future. Moreover, the primal-dual schema, a powerful optimization

tool, that was already known to people in combinatorial optimization (since it has already been

used for tackling many LP problems [12], e.g. for providing an alternate way to derive Dijkstra’s

algorithm, Ford-Fulkerson’s algorithm, the Hungarian method, etc.), is now also introduced to

the field of computer vision, which can prove to be a great benefit too.

The rest of the paper is organized as follows. We review related work in section II. In section
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III the primal-dual schema is presented, which will guide the design of all of our approximation

algorithms. These algorithms are described in sections IV - VI. More specifically, to handle

the various cases of the distance function, we will progressively present 3 different families of

primal-dual algorithms, which are thus named PD1, PD2 and PD3 respectively. Algorithm PD1

forms the base for deriving and understanding the other two types of algorithms and so the main

points of that algorithm are described thoroughly in section IV. In section V, we derive PD2µ

(based on PD1), which is the second family of primal-dual algorithms and are parameterized by

a variableµ. Unlike algorithm PD1, all algorithms in this family can be applied only to metric

MRFs. Furthermore, we show that the well-knownα-expansion technique is equivalent to just

one member of this family of algorithms. In particular,α-expansion arises if we simply setµ = 1,

i.e. it is equivalent to algorithm PD2µ=1. In section VI, we present algorithms PD3, which make

up the third family of our primal-dual methods. These algorithms manage to extend, as well

as generalize theα-expansion method (i.e. algorithm PD2µ=1) to the case of non-metric MRFs.

In addition, despite this generalization, these algorithms manage to maintain the theoretical

approximation guarantees of the PD2µ=1 algorithm. Experimental results are shown in section

VII, while we conclude in section VIII. We note that, for reasons of clarity (as well as space),

not all technical proofs of the theorems are presented here, but they can all be found in [10].

II. RELATED WORK

There is a vast amount of computer vision methods on how MRFs can be optimized. Such

methods include for example the ICM-algorithm, the Highest-Confidence-First heuristic, multi-

scale MRFs, relaxation labeling, graduated nonconvexity and mean field annealing, to mention

just a few of them. However, all of the above-mentioned methods, as well as the great majority

of the methods in the literature are only able to provide a local minimum that can be arbitrarily

far away from the true optimum, thus giving no guarantees about the quality of the resulting

solutions (i.e. how close these are to the true optimum). Most closely related to our work are

those (few) approaches that do provide such guarantees about the optimality of their solutions.

One such class of approximation algorithms [2], [7], [8] is based on formulating MRF opti-

mization as a natural integer program. A linear programming relaxation of that integer program

is then solved and a randomized rounding technique is being used to extract a near the optimum

integer solution. Different authors choose different linear programs or rounding techniques for
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that purpose. Although these algorithms appear to have good theoretical properties, they are still

impractical to use in problems of early vision, since, in that case, the linear program to be solved

becomes extremely large. Moreover, in order to provide any guarantees about the suboptimality

of their solutions, they usually need to further assume that the MRF potential function is a metric.

Another class of approximation algorithms is based on combinatorial optimization. Out of

these algorithms, a very popular one is theα-expansion graph cut method [1], [3]. This can

be interpreted as an iterative local search technique which, at each iteration, tries to extract a

better solution (i.e. one with lower energy) by finding the minimum cut in a suitable graph. This

state-of-the-art method has proved to be very efficient in practice and has been applied with

great success to many problems in computer vision [13], [14]. Its drawback, however, is that it

is only applicable to MRFs with a metric potential function. In fact, for some of these metrics,

graph-cut techniques with better optimality properties seem to exist as well [5].

Related toα-expansion is also theα-β-swap algorithm [1]. Although this is a more general

method, as it applies to non-metric potentials as well, it does not seem to be as effective asα-

expansion. This mainly has to do with the fact that it provides no guarantees about the optimality

of its solutions and thus may very well get stuck to a bad local minimum. Finally, we should note

that, for a certain class of MRFs, there also exist graph cut based methods which are capable of

extracting the exact global optimum [4], [6]. These, however, require the potential function to

be convex, as well as the labels to be one-dimensional, a fact which restricts their applicability.

Finally, we should also mention that there also exist those optimization algorithms that are

based on belief propagation [15]. Although they impose no restrictions on the type of the MRF

potential function to be chosen, their theoretical optimality and convergence properties are not

yet well understood. However, significant progress has been made with respect to this issue

over the last years. In particular, the tree-reweighted max-product BP algorithm [11] can be

implemented in a way that will provably converge [16] and can also be used to obtain bounds

on the optimal solution. In fact, it was recently shown that for certain instances of the stereo

problem it can even find the global minimum [17].

III. T HE PRIMAL-DUAL SCHEMA

Let us consider the following pair of primal and dual linear programs:
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Fig. 2: (a) By weak duality, the optimal costcT x∗ will lie between the costsbT y andcT x of any pair(x,y) of

integral-primal and dual feasible solutions. Therefore, ifbT y andcT x are close enough (e.g. their ratior1 is ≤ f ),

so arecT x∗ and cT x (e.g. their ratior0 is ≤ f as well), thus proving thatx is an f -approximation tox∗. (b)

According to the primal-dual schema, dual and integral-primal feasible solutions make local improvements to each

other, until the final costsbT yt, cT xt are close enough (e.g. their ratio is≤ f ). We can then apply the primal-dual

principle (as in Fig. (a)) and thus conclude thatxt is anf -approximation tox∗.

PRIMAL : min cTx DUAL : max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c

HereA = [aij] represents anm × n rectangular matrix, whileb, c are column vectors of size

m,n respectively. We would like to find an optimal solution to the primal program under the

additional constraint that its components are integer numbers. Due to this integrality requirement,

this problem is in general NP-hard and so we need to settle with estimating approximate solutions.

A primal-dualf -approximation algorithm achieves that by use of the following principle:

Primal-Dual Principle. If x and y are integral-primal and dual feasible solutions satisfying:

cTx ≤ f · bTy (5)

thenx is an f -approximation to the optimal integral solutionx∗, i.e. cTx∗≤ cTx ≤ f · cTx∗

The reason that this principle holds true is rather simple and is illustrated graphically in

Figure 2(a): in particular, due to weak duality it will hold that the costcTx∗ of the optimal

integral solution will always lie between the dual costbTy and the primal costcTx, i.e.

bTy ≤ cTx∗ ≤ cTx. If we therefore manage to bring the two quantitiesbTy and cTx close

to each other (e.g. by making their ratior1 = cTx/bTy less or equal tof , as in (5)), then we

will also have succeeded in bringing the costscTx∗ andcTx close to each other as well (e.g. the

ratio r0 = cTx/cTx∗ will also be less thanf ), thus proving thatx is indeed anf -approximation

to x∗. Put otherwise, what the above principle does is to make use of the fact that the primal
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LP gives a lower bound to the primal IP (integer program) and thus the dual of the LP, which

is (by weak duality) always a lower bound to the primal LP, will also give a lower bound to

the primal IP as well (i.e. dual-LP≤primal-LP≤primal-IP). This also implies that the quality

of solutionx will depend on how tight the LP relaxation is with respect to the IP.

The above principle lies at the heart of any primal-dual technique. In fact, the various primal-

dual methods mostly differ in the way that they manage to estimate a pair(x,y) satisfying the

fundamental inequality (5). One very common way for that (but not the only one), is by relaxing

the so-called primal complementary slackness conditions [18]:

Theorem (Relaxed Complementary Slackness).If the pair (x,y) of integral-primal and dual

feasible solutions satisfies the so-called relaxed primal complementary slackness conditions:

∀ xj > 0 ⇒
m∑

i=1

aijyi ≥ cj/fj ,

then (x,y) also satisfies the Primal-Dual Principle withf = maxj fj and thereforex is an

f -approximation to the optimal integral solution.

To prove this, one must simply combine the relaxed complementary slackness conditions with

the fact that solutionsx, y satisfy the feasibility conditions of the primal and dual program respec-

tively (fundamental inequality (5) then follows trivially). Thus, based on the above theorem, the

following iterative schema is usually applied during a primal-dualf -approximation algorithm:

Primal-Dual Schema.Keep generating pairs of integral-primal, dual solutions{(xk,yk)}t
k=1,

until the elementsxt, yt of the last pair are both feasible and satisfy the relaxed primal

complementary slackness conditions.

This schema is illustrated graphically in Figure 2(b). At each iteration, based just on the current

dual feasible solutionyk, we perturb the current primal feasible solutionxk, so that its primal

costcTxk comes closer to the dual costbTyk. This is also applied in reverse (i.e.yk is perturbed

as well) and a new primal-dual pair, say(xk+1,yk+1), is thus generated. This is repeated until the

costs of the final primal-dual pair are close enough. The remarkable thing with this procedure is

that the two processes (i.e. the primal and the dual) make local improvements to each other and

yet they manage to achieve an approximately global objective at the end. Also, it is worth men-

tioning thatone can thus devise different approximation algorithms, merely by specifying a differ-

ent set of complementary conditions (i.e. differentfj) each time, which is exactly what we will do

for the case of Metric Labeling and thus derive 3 different types of algorithms PD1, PD2 and PD3.
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A. Applying the primal-dual schema to Metric Labeling

For the case of Metric Labeling, our primal linear program will be integer program (1), after

first relaxing its{0, 1}-constraints toxp(·)≥0, xpq(·, ·)≥0. The dual of that LP will then be:

max zT · 1 (6)

s.t. z ≤ min
a∈L

ha ( min
a∈L

ha takes the elementwise minimum between vectors ha) (7)

ypq(a) + yqp(b) ≤ wpqd(a, b) ∀a, b∈L, ∀(p, q)∈E (8)

In this case, dual variables consist of:1) a vectorz={zp}p∈V with one component per vertex ofG,

2) an auxiliary vectorha={hp(a)}p∈V per labela (eachha has one component per vertex ofG),

3) as well as a vectory containing all variablesypq(·), yqp(·), called the“balance variables”here-

after. Also, any 2 variablesypq(a), yqp(a) will be referred to as“conjugate balance variables”.

The variableshp(·) are named the“height variables” and are just auxiliary variables which

implicitly depend on the balance variables as follows:

hp(·) ≡ cp(·) +
∑

q:q∼p
ypq(·) (9)

The reason for giving this name to thehp(·) variables, as well as for introducing these redundant

variables in the first place, will become clear in the sections that are following. Also, note that,

due to (6) and (7), thezp variables should always be set as follows:

z = min
a∈L

ha , (10)

and so we do not have to worry about constraints (7) or how to estimate thezp variables any more.

Furthermore, for defining a dual solution, only the balance variablesypq(·) must be specified,

since the height variableshp(·) can then be computed by (9).

Since we will be considering only feasible{0, 1}-primal solutions, instead of the variables

xp(·) and xpq(·, ·), a primal solutionx will hereafter simply refer to a set of labels{xp}p∈V ,

wherexp denotes the label assigned to vertexp. Thenxp(a) = 1 is equivalent toxp = a, while

xpq(a, b) = 1 meansxp = a, xq = b and so, under this notation, it is not difficult to see that the

complementary condition related to a non-zeroxp(a) variable reduces to:

zp ≥ cp(xp)/f1 +
∑

q:q∼p
ypq(xp) , (11)

while the complementary condition related to a non-zeroxpq(a, b) variable reduces to:

xp 6= xq ⇒ ypq(xp) + yqp(xq) ≥ wpqd(xp, xq)/f2 (12)

xp = xq = a ⇒ ypq(a) + yqp(a) = 0 (13)
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1: x ←INIT PRIMALS( ); y ←INIT DUALS( ); LabelChange←0

2: for each labelc in L do
3: y ← PREEDIT DUALS(c,x,y);

4: [x′,y′] ←UPDATE DUALS PRIMALS(c,x,y);

5: y′ ←POSTEDIT DUALS(c,x′,y′);

6: if x′ 6= x then LabelChange←1

7: x ← x′, y ← y′;
8: end for
9: if LabelChange= 1 then goto 2;

10: if algorithm 6= PD1 then yfit ←DUAL FIT(y);

Fig. 3: The primal dual schema, as applied by algorithms PD1, PD2 and PD3.

Our objective will therefore be to find feasible solutionsx,y satisfying the above conditions

(11), (12) and (13) for specific values off1 and f2. Conditions (13) simply say that conjugate

balance variables are opposite to each other. For this reason, we set by definition:

yqp(·) ≡ −ypq(·) ∀ (p, q) ∈ E (14)

and so we do not have to worry about conditions (13) hereafter.

Most of our primal-dual algorithms will achieve an approximation factor offapp =2dmax

dmin
(i.e.

max{f1, f2}=fapp), wheredmin≡mina6=b d(a, b) anddmax≡maxa6=b d(a, b). Their basic structure

can be seen in Figure 3. The initial primal-dual solutions are generated insideINIT PRIMALS

and INIT DUALS. During an inner iteration (lines4-8 in Figure 3), a labelc is selected and a new

primal-dual pair of solutions(x′,y′) is generated by updating the current pair(x,y). During

this iteration, among all balance variables ofy (i.e. ypq(.)), only the balance variables of thec

labels(i.e. ypq(c)) are modified. We call this ac-iteration of the algorithm.|L| such iterations

(onec-iteration for each labelc in the setL) make up an outer iteration (lines2-9 in Figure 3)

and the algorithm terminates if no vertex changes its label during the current outer iteration.

During an inner iteration, the main update of the primal and dual variables takes place inside

UPDATE DUALS PRIMALS, while PREEDIT DUALS andPOSTEDIT DUALS modify the dual vari-

ables before and after the main update. TheDUAL FIT routine, which is used only in algorithms

PD2 and PD3, serves only the purpose of applying a scaling operation to the last dual solution.

IV. T HE PD1 ALGORITHM

An intuitive view of the dual variables, that will prove useful for designing our approximation

algorithms, is the following: for each vertexp, we consider a separate copy of all labels inL. It

is then assumed that all these labels represent balls, which float at certain heights relative to a

reference plane. The role of the height variables is then to determine the balls’ height (see Figure

4(a)). E.g. the height of labela at vertexp is given by the dual variablehp(a). Expressions like

“label a at p is below/above labelb” imply hp(a) ≶ hp(b). Furthermore, balls are not static,

but may move in pairs through updating pairs of conjugate balance variables. E.g., in Figure
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a=xp c

c=xr
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a=xq

a
+δ -δ

a=xp c

c=xr
c

p q r
wpq wqr

a=xq

a

hp(xp)

hq(xq)

hr(xr)

hp(c)

hq(c) hr(a)
hp(xp)

hq(xq)

hr(xr)

hp(c)

hq(c) hr(a)

(a) 1st type of dual variables: height variables (b) 2nd type of dual variables: balance variables

Fig. 4: Visualization of the dual variables for a graphG with verticesp, q, r and labelsL = {a, c}. (a) A copy of

labels{a, c} exists for each vertex and all these labels are represented as balls floating above a reference plane. The

role of the height variables is to specify the balls’ height.(b) Furthermore, balls are not static, but may move in pairs

by updating conjugate balance variables. E.g., here, ballc at p is pulled up by+δ (due to increase ofypq(c) by +δ)

and so ballc at q moves down by−δ (due to decrease ofyqp(c) by−δ). Active labels are drawn with a thicker circle.

4(b), labelc at p is raised by+δ (due to adding+δ to ypq(c)) and so labelc at q has to move

down by−δ (due to subtracting−δ from yqp(c), so that conjugate variables remain opposite

to each other). Therefore, the role of balance variables is to raise or lower labels. In particular,

due to (9), the height of labela at p may change only if at least one of the balance variables

{ypq(a)}q:q∼p changes as well. The value of balance variableypq(a) thus represents the partial

raise of labela at p due to edgepq, while the total raise ofa at p equals the sum of all partial

raises due to edges inG incident top. Note that eachypq(·) represents net raise (called just raise

hereafter) and not relative raise. E.g., in Fig. 4(b), labela at p has relative raise+δ, but its (net)

raise isypq(c)+δ, whereypq(c) is the previous value of the balance variable.

Before proceeding to PD1, let us define some terminology. Letx,y be a pair of integral-primal,

dual solutions. We call the label thatx assigns top (i.e. xp) the active label atp. The sum of

heights of all active labels is called the“Approximate Primal Function”(or APF for short), i.e.

APFx,y =
∑

p hp(xp). This function’s name comes from the fact that, ifx,y satisfy the relaxed

slackness conditions, then it is easy to prove that APF approximates the primal objective function.

Also, any balance variable of an active label atp (i.e. any variable in{ypq(xp)}q:q∼p) will be called

anactive balance variable at vertexp. The ”load” between neighborsp, q (denoted byloadpq) is

then defined asloadpq = ypq(xp)+yqp(xq) (i.e. as the sum of 2 active balance variables atp, q) and

represents the partial raises of active labels atp, q due to edgepq. If relaxed slackness conditions

(12) hold, then, due to (12) and (8), it is easy to see thatwpqd(xp, xq)/f2 ≤ loadpq ≤ wpqd(xp, xq)

and so the load ofp, q can be also thought of as avirtual separation costwhich approximates the

actual separation costwpqd(xp, xq) of p, q (this will prove useful later for our PD3 algorithms).

Our first algorithm, called PD1, assumes thatd(·, ·) is merely a non-metric distance and
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then tries to find feasiblex,y satisfying complementary conditions (11), (12) withf1 = 1 and

f2 = fapp (recall thatfapp ≡ 2dmax

dmin
). If f1 = 1, then condition (11) becomeszp ≥ hp(xp) and

so, sincezp = mina hp(a) (due to (10)), complementary condition (11) finally reduces to:

hp(xp) = min
a

hp(a) (15)

Also, if f2 = fapp, then complementary condition (12) reduces to:

xp 6= xq ⇒ loadpq ≥ wpqd(xp, xq)/fapp (16)

Furthermore, to ensure feasibility ofy, PD1 enforces (for any labela):

ypq(a) ≤ wpqdmin/2 (17)

To see that (17) ensures feasibility, one suffices to observe thatypq(a) + yqp(b) ≤ 2wpqdmin/2 =

wpqdmin ≤ wpqd(a, b) and so the dual constraints (8) hold true.

Therefore, the goal of PD1 is to findx,y satisfying conditions (15)-(17). To this end, it

ensures that conditions (16), (17) always hold true (which is easy) and then iteratively drives

x,y towards satisfying (15) as well, by alternating between updates of primal and dual variables.

For this, it also maintains the following invariant,active balance variables are nonnegative, i.e.:

∀p ∈V , ypq(xp) ≥ 0 (18)

To see then how the update of primal and dual variables should proceed, one simply needs to

reinterpret conditions (15)-(17) based on the dual variables’ aforementioned interpretation. E.g.:

• (15) simply says that, at each vertex, the active label should have the lowest height,

• (16) requires that any 2 active labels should be raised proportionally to their separation costs,

• and, finally, (17) says that there is an upper bound on how much we can raise a label.

Based on these, and assuming that (16), (17) already hold true at the current (outer) iteration,

the update of the primal and dual variables for the next (outer) iteration proceeds as follows:

DUAL VARIABLES UPDATE : Given the current active labels (i.e. the current primal), any non-

active label (which is below the corresponding active label) is raised (by increasing the appro-

priate balance variables), until it either reaches the active label, or attains the maximum raise

allowed by (17). Note that conditions (16) still hold true, since no active labels have moved.

PRIMAL VARIABLES UPDATE : Given the new heights (i.e. the new dual), there might still be

vertices violating (15), i.e. their active labels are not at the lowest height. For each such vertex

p, we select a non-active label, which is belowxp, but has already reached the maximum raise

allowed by (17). That label, sayc, is then made the new active label ofp, i.e. we setxp = c. One

can then show that conditions (16) will still hold for the new active label. To see that, it suffices
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to observe that, becausec has reached its maximum raise atp, then for any neighborq it will

hold thatypq(c) = wpqdmin

2
, which is≥ wpqdmin

2

d(xp,xq)

dmax
= wpqd(xp,xq)

fapp
. This, in conjunction with the

nonnegativity of any variableyqp(xq) (due to (18)), thus proves that condition (16) will still hold.

This way, since we keep assigning lower active labels to vertices, one may easily show that

conditions (15) will finally hold true in the end, i.e. after a finite number of outer iterations.

During an outer iteration, the update of the dual variables takes place in groups, one group

per inner iteration. In particular, during an innerc-iteration, only the heights of thec-labels are

rearranged, so that as many of these labels as possible are raised above the corresponding active

labels. To this end, solutiony is changed into solutiony′ by changing only variablesypq(c) (i.e.

the balance variables of allc-labels) intoy′pq(c). This way, the new heightsh′p(c) are produced.

We must be careful, though, during this update of thec-heights. E.g., in Figure 4(a), we would

like the c-label atp to move at least as high asxp=a (the c-label atq is already abovexq=a,

while thec-label atr does not need to move at all, as it is already the active label ofr). However,

if we raise labelc at p until it reachesxp, say by increasingypq(c), then labelc at q will go

belowxq, due to the decrease of the conjugate variableyqp(c), thus breaking condition (15) forq.

It turns out that the optimal update of thec-heights can be simulated by pushing the maximum

amount of flow through a directed graphGc = (Vc, Ec, Cc). CapacitiesCc of this graph depend on

x,y, while its nodesVc consist of all nodes of graphG (the internal nodes) plus 2externalnodes,

the sources and the sinkt. Furthermore, all nodes ofGc are connected by two types of edges,in-

terior andexterioredges, which are constructed using the following simple rules (see also Fig. 5):

Interior edges: For each edge(p, q) ∈ G, we insert 2 directed interior edgespq andqp in graph

Gc. Flows fpq (throughpq), fqp (throughqp) will represent respectively the increase, decrease

of balance variableypq(c). The net change ofypq(c) will therefore befpq − fqp, i.e.:

y′pq(c) = ypq(c) + fpq − fqp (19)

Similarly, the net change ofyqp(c) will be fqp − fpq and soy′pq(c) = −y′qp(c), i.e. conjugate

balance variables remain opposite to each other, as they should.

Due to (19), it is obvious that capacitycappq of edgepq determines the maximum allowed value

of y′pq(c) (attained atfpq =cappq, fqp =0), while a similar conclusion holds forcapqp andy′qp(c).

But, e.g.y′pq(c) represents the new partial raise of labelc at p due to edgepq. Therefore, if the

c-labels atp, q aren’t active (i.e.xp 6=c, xq 6=c) and may thus move, thencappq, capqp are set so

that thesec-labels cannot raise too much and violate (17), i.e. they are set so thaty′pq(c), y′qp(c)
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Fig. 5: Four simple rules for constructing graphGc: (a) if c at p is belowxp, we connect nodep to sources and flow

fp throughsp represents the total relative raise ofc (and alsocapsp =hp(xp)−hp(c)). (b) if c is abovexp, we connect

nodep to sinkt and flowfp atpt equals the total relative decrease in the height ofc (andcappt =hp(c)−hp(xp)). (c)

if c is the active label atp, it need not move(i.e. flow fp throughsp should be0) and we thus setcappq =capqp =0

(and by conventioncapsp =1). (d) Capacities of interior edges are set so that constraints (17) always hold true.

can’t exceed1
2
wpqdmin, thus ensuring that (17) holds true for new dual solutiony′ as well (see

also Fig. 5(d)): cappq + ypq(c) =
1

2
wpqdmin = capqp + yqp(c) (20)

On the other hand, ifc is already the active label ofp (or q), then labelc at p (or q) need not

move (from their current positions) and soypq(c), yqp(c) should equaly′pq(c), y′qp(c), i.e. (see

also Fig. 5(c)): xp = c or xq = c ⇒ cappq = capqp = 0 (21)

Exterior edges: Each internal nodep connects to either the source nodes or the sink node

t (but not to both of them) through an exterior edge. We have 3 possible cases to consider:

− CASE 1
(
c is “below” xp, i.e. hp(c) < hp(xp)

)
: we would then like to raise labelc as

much as needed so that it reaches labelxp (e.g. see Fig. 5(a)). To this end, we connect source

nodes to nodep through a directed edgesp. The flowfp through that edge will then represent

the total relative raise of labelc, i.e.:2 h′p(c) = hp(c) + fp (22)

Therefore, based on (22), capacitycapsp of edgesp will represent the maximum allowed

relative raise in the height ofc. Since we need to raisec only as high as the current active label

of p, but not higher than that, we therefore set:capsp = hp(xp)− hp(c) (see Fig. 5(a)).

− CASE 2
(
c is not “below” xp, i.e.hp(c) ≥ hp(xp), and not the active label ofp, i.e.c 6= xp

)
:

we can then afford a decrease in the height ofc at p, as long asc remains “above”xp. To this

end, we connectp to the sink nodet through directed edgept (e.g. see Fig. 5(b)). This time the

2To verify (22), it suffices to combine (19) with the flow conservation at nodep, which reduces tofp =
∑

q:q∼p

(
fpq − fqp

)
.

It then holds:hp(c) + fp
(9)
=

(
cp(c) +

∑
q:q∼p ypq(c)

)
+ fp =

(
cp(c) +

∑
q:q∼p ypq(c)

)
+

∑
q:q∼p

(
fpq − fqp

) (19)
=

(
cp(c) +

∑
q:q∼p ypq(c)

)
+

∑
q:q∼p

(
y′pq(c)− ypq(c)

)
= cp(c) +

∑
q:q∼p y′pq(c)

(9)
= h′p(c)
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flow fp through edgept will equal the total relative decrease in the height ofc i.e.:

h′p(c) = hp(c)− fp (23)

and socappt will represent the maximum value of such a decrease. Therefore, based on the fact

that c has to remain abovexp, we setcappt = hp(c)− hp(xp) (see Fig. 5(b)).

− CASE 3
(
c is the active label ofp, i.e. c = xp

)
: we then want to keep the height ofc fixed

at the current iteration. As in case 1, we again connect the source nodes to nodep through

directed edgesp (see Fig. 5(c)). This time, however, the flow for any interior edgepq or qp

incident top will be zero (due to (21)). Therefore,fp = 0 as well (due to flow conservation at

p) and soh′p(c) = hp(c) (see (22)), as it was intended. By convention we setcapsp = 1.

A. Main routines for updating primal and dual variables during ac-iteration

We are now ready to summarize the main actions executed during an innerc-iteration of PD1:

PREEDIT DUALS: This routine’s role is to edit current solutiony before the construction of

the graphGc. In the case of the PD1 algorithm, no such editing is needed.

UPDATE DUALS PRIMALS: The primal-dual pairx′,y′ is generated here. For generatingy′,

the graphGc is constructed and a maximum flow algorithm is applied to it. The resulting flows

are used in updating only theypq(c) variables as explained in the previous section (see (19)),

i.e.: y′pq(c) = ypq(c) + fpq − fqp (24)

Therefore, due to (22), (23), only thec-heights will change as follows:

h′p(c) = hp(c) +





fp if p is connected to nodes

−fp if p is connected to nodet
(25)

Based on the new heights, we now need to updatex into x′, i.e. assign new active labels. As

only thec-heights have changed (i.e. onlyc-labels may have gone above or below an active label),

this amounts to deciding whether a vertex keeps its current active label or is assigned the labelc.

This can again be achieved by considering only the flows inGc and applying the following rule:

REASSIGN RULE. Labelc will be the new label ofp (i.e.x′p = c) ⇔ ∃ unsaturated3 path between

the source nodes and nodep. In all other cases,p keeps its current label i.e.x′p = xp.

Intuitively, on one hand, this rule ensures that ifc 6= xp, then (after the heights’ update) the

“lowest” of c, xp is assigned top (i.e. it ensures property A below, so that conditions (15) finally

3A path is unsaturated if “flow<capacity” for all forward arcs and “flow>0” for all backward arcs
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Fig. 6: (Left) Red/blue arrows show howc-labels will move due to update of balance variables. Dashed circles

indicate new positions ofc-labels.(Right) Associated graphGc and resulting flows responsible for the update of

balance variables in the left figure (current balance variables were assumed to be 0). Based on the reassign rule,

only vertexp will have to change its active label intoc, since only edgesp of Gc is unsaturated, whereas any path to

q or r is not. This is indeed the right choice, since, as can be seen, (after the update) onlyp will have labelc below

its previous active labela. Also, as expected, flowsfp, fq, fr at exterior edges equal the total relative movement

of the c-labels atp, q, r respectively. (The Potts distance has been used in this example, i.e.a 6= b ⇒ d(a, b) = 1).

hold true). To see that, assume e.g. pathsp in Fig. 5(a) is unsaturated, i.e.fp <capsp. But then,

sincefp equals the total relative raise ofc (i.e. fp =h′p(c)−hp(c)), andcapsp = hp(xp)−hp(c), it

follows thath′p(c)<hp(xp)
xp 6=c
= h′p(xp). I.e. labelc should indeed be assigned top, as it is “lower”

than previous active labelxp (see also labelc at p in Fig. 6 for another such example).

On the other hand, this rule also ensures that ifc is the new label assigned top, thenc has raised

high enough so that (16) still holds. This is ensured by property B below (together withy′qp(x
′
q) ≥

0 from (18) and the definition ofcappq in (20)). The reason property B holds is because, e.g. in the

previous example, ifsp is unsaturated, then forward arcpq, as well as backward arcqp must both

be saturated (or else an unsaturated path froms to t can be shown to exist, which is impossible

by max-flow min-cut). But thenfpq =cappq, fqp = 0 and so property B arises due to (24).

Due to “reassign rule”, these 3 properties can thus be proved [10] for the new solutionsx′,y′:4

(A) h′p(x
′
p)=min{h′p(xp), h

′
p(c)}, (B) x′p = c 6=x′q⇒ y′pq(x

′
p)= cappq +ypq(c), (C) x 6=x′⇒

APFx′,y′<APFx,y. The last one (i.e. property C) proves the algorithm terminates (assuming

integer capacities), and the intuition for being true is due to the reassign rule, which ensures that

a new active label has always lower height than the previous active label, i.e.h′p(x
′
p)≤hp(xp).

POSTEDIT DUALS: This routine’s role is to restore invariant (18) for the next iteration. It thus

changesy′ so that its active balance variables are all≥ 0, while neither the APF nor any “load”

is altered during this change. For PD1, one can show that only ifx′p =x′q (and never ifx′p 6=x′q)

may then (18) not hold, in which casePOSTEDIT DUALS simply setsy′pq(x
′
p)=y′qp(x

′
q)=0.

4The reassign rule, and thus properties (A), (B) and (C), apply not only to PD1, but to our other primal-dual algorithms as well.
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INIT PRIMALS : initialize x by a random label assignment

INIT DUALS

• y = 0

• for all (p, q) ∈ E with xp 6= xq do {impose (17)}
ypq(xp)=−yqp(xp)=wpqdmin/2=yqp(xq)=−ypq(xq)

• z = mina ha {impose (10)}

PREEDIT DUALS: y ← y {no change needed fory}

UPDATE DUALS PRIMALS {generatex′,y′}
• x′ = x, y′ = y

• Apply max-flow toGc and compute flowsfp, fpq

• y′pq(c) = ypq(c) + fpq − fqp ∀p, q : p ∼ q

• ∀p ∈ V, x′p = c ⇔ ∃ unsaturated paths Ã p in Gc

POSTEDIT DUALS {edit y′}
• for all (p, q) ∈ E with x′p = x′q = c do {impose (18)}

if y′pq(c) < 0 or y′qp(c) < 0 then y′pq(c) = y′qp(c) = 0

• z′ = mina h′a {impose (10)}

INIT PRIMALS : initialize x at random

INIT DUALS

• y = 0

• for all (p, q) ∈ E with xp 6= xq do {impose (26)}
ypq(xp) = −yqp(xp) = µwpqd(xp, xq)/2

yqp(xq) = −ypq(xq) = µwpqd(xp, xq)/2

• z = mina ha {impose (10)}

PREEDIT DUALS {edit y}
• for each(p, q) ∈ E with xp 6= c, xq 6= c do

yqp(c) = −yqp(c) = µwpqd(xp, c)− ypq(xp)

POSTEDIT DUALS {edit y′}
• edit y′ so that its active balance variables are≥ 0

• z′ = mina h′a {impose (10)}

DUAL FIT : yfit = y
µfapp

Fig. 7: Left: Pseudocode of PD1Right: Pseudocode of PD2µ. The routineUPDATE DUALS PRIMALS is common

to both algorithms (and is thus shown only for PD1). Also, regarding the construction ofGc, the only difference

between the 2 algorithms is that a subset of the edges ofGc are assigned different capacities (see (29), (30)).

Based on the above analysis (see also pseudocode in Fig. 7), the next theorem can thus be

proved [10], asserting that PD1 always leads to anfapp-approximate solution:

Theorem IV.1. The final primal-dual solutions generated byPD1satisfy all conditions (15)-(17)

and thus they satisfy the relaxed complementary slackness conditions withf1 = 1, f2 = fapp.

V. THE PD2 ALGORITHM

Algorithm PD2 (unlike PD1) applies only ifd(·, ·) is a metric. In fact, PD2 represents a family

of algorithms parameterized by a variableµ∈[ 1
fapp

1]. PD2µ will achieve slackness conditions

(11), (12) withf1=µfapp andf2=fapp. The reason forµ≥ 1
fapp

is becausef1 <1 can never hold.

A main difference between algorithms PD1 and PD2µ is that, PD1 always generates a feasible

dual solution at any of its inner iterations, whereas PD2µ may allow any such dual solution to be-

come infeasible. However, PD2µ ensures that the (probably infeasible) final dual solution is“not

too far away from feasibility”. This practically means that if that solution is divided by a suitable

factor, it will become feasible again. This method (i.e. turning an infeasible dual solution into a

feasible one by scaling) is also known as“dual-fitting” [18] in the linear programming literature.

More specifically, PD2µ generates a series of intermediate pairs, all of them satisfying com-

plementary condition (12) as an equality withf2 = 1
µ
, i.e.:
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xp 6= xq ⇒ loadpq = µwpqd(xp, xq) (26)

In addition, using a similar strategy with PD1, PD2µ drives the last intermediate pair towards

satisfying complementary condition (11) withf1 = 1 again, i.e.:

hp(xp) = min
a

hp(a), (27)

while, also like PD1, it tries to maintain nonnegativity of active balance variables, i.e. (18).

However, unlike PD1, the dual solution of the last intermediate pair may be infeasible, since,

in place of constraints (8), it can be shown to satisfy only the following conditions:

ypq(a) + yqp(b) ≤ 2µwpqdmax ∀a, b∈L, ∀(p, q)∈E (28)

Nevertheless, these conditions ensure that the last dual solution, sayy, is not “too far away

from feasibility”. This means that by replacingy with yfit = y
µfapp

, we can then show that:

yfit
pq(a) + yfit

qp(b) =
ypq(a) + yqp(b)

µfapp

(28)

≤ 2µwpqdmax

µfapp

=
2µwpqdmax

µ2dmax/dmin

= wpqdmin ≤ wpqdab ,

meaning thatyfit satisfies constraints (8) and is thus feasible. Furthermore, the primal-dual

pair (x,yfit) (x is the last primal solution) satisfies complementary conditions (11), (12) with

f1 = µfapp, f2 = fapp, thus leading to anfapp-approximate solution as well. Indeed, it holds that:

zfit
p ≡ zp

µfapp

(10)
=

mina hp(a)

µfapp

(27)
=

hp(xp)

µfapp

=
cp(xp) +

∑
q:q∼p ypq(xp)

µfapp

=
cp(xp)

µfapp

+
∑
q:q∼p

yfit
pq(xp) ,

yfit
pq(xp) + yfit

qp(xq) =
ypq(xp) + yqp(xq)

µfapp

=
loadpq

µfapp

(26)
=

µwpqd(xp, xq)

µfapp

=
wpqd(xp, xq)

fapp

The generation ofyfit (given y) is exactly what theDUAL FIT routine does.

A. Main routines for updating primal and dual variables during ac-iteration

PD2µ routines (see Fig. 7) are mostly similar to those of PD1. The main difference (which

is also the only difference regarding the construction ofGc) is the definition of capacity for all

interior edgespq, qp whose endpoints have labels6= c at the start of currentc-iteration, i.e.

xp≡a 6=c andxq≡b 6=c. In place of (20), we then define:

cappq = µwpq

(
d(a, c) + d(c, b)− d(a, b)

)
(29)

capqp = 0 (30)

Furthermore, in this case,PREEDIT DUALS editsy so that:ypq(a) + yqp(c) = µwpqd(a, c).

The above difference is because, in PD1, the “reassign rule” needed to ensure thatloadpq

satisfied (16), whereas nowloadpq must fulfill (26), even if new labels are assigned byx′ (i.e.x′ 6=
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x), which is exactly the rationale behind definitions (29), (30), as well asPREEDIT DUALS. To see

that, assume e.g.x′ assigns a new labelc to q (i.e.x′q =c 6=xq), but not top (i.e.x′p =xp 6=c), then:

y′pq(x
′
p)

x′p 6=c
= ypq(x

′
p)

x′p=xp

= ypq(xp)
a≡xp
= ypq(a) and y′qp(x

′
q)

property B
= capqp + yqp(c)

(30)
= yqp(c)

Combining these with the definition ofPREEDIT DUALS immediately proves that (26) remains

true in this case (with other cases being handled similarly as well). Finally, as in PD1, the role

of POSTEDIT DUALS is again to restore (18), i.e. nonnegativity of active balance variables. Also,

note that (29) explains whyd(·, ·) must be a metric (or else it would holdcappq < 0).

B. Equivalence of algorithms PD2µ=1 and α-expansion

It can thus be shown that PD2µ indeed generates anfapp-approximate solution. Furthermore,

it holds that all PD2µ algorithms withµ < 1 are non-greedy algorithms, meaning that neither the

primal (nor the dual) objective function necessarily decreases (increases) per iteration. Instead, it

is APF which constantly decreases (see property C in section IV-A), but sinceAPF is always kept

close to the primal function, the decrease inAPF is finally reflected to the values of the primal

function as well. In fact, a notable thing happens ifµ = 1. In that case, due to (26), the load of any

p, q equals exactly their separation cost(i.e. loadpq = wpqd(xp, xq)) and it can then be shown that

APF coincides with the primal function, i.e.APF=PRIMAL, whereas in any other caseAPF≤
PRIMAL. Furthermore, it turns out that, during ac-iteration, PD2µ=1 chooses anx′ that mini-

mizesAPF with respect to any otherc-expansion, saȳx, of current solutionx (to see that, recall

thatAPF is the sum of active labels’ heights and PD2µ=1 always tries choosing the “lowest” label

amongxp andc, see property A). All these can be formally summarized in the next lemma [10]:

Lemma V.1. Let (x′,y′)≡ next primal-dual pair due toc-iteration, x̄≡ c-expansion of current

primal. Then:PRIMALx′ =APFx′,y′≤APFx̄,y′≤PRIMALx̄, (PRIMALx ≡ primal cost of x)

But this, due toPRIMALx′≤PRIMALx̄, actually proves that thec-expansion algorithm in [1]

(that was interpreted only as a greedy local search technique up to now) is equivalent to PD2µ=1!

Theorem V.2 ([10]). The label assignmentx′ selected during ac-iteration of PD2µ=1 has smaller

primal cost than any other label assignmentx̄ which is ac-expansion of current solutionx.

VI. PD3: EXTENDING PD2 TO THE NON-METRIC CASE

By modifying PD2µ, three different variations (PD3a, PD3b, PD3c) may result, that are

applicable even ifd(·, ·) is a non-metric distance function. For simplicity, we will consider
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only theµ = 1 case, i.e. only variations of PD2µ=1. We also recall a fact that will prove to be

useful for explaining the rationale behind the algorithms’ definition: (OPTIMALITY CRITERION)

the load between anyp, q represents a virtual separation cost, which should be equal to the

actual separation cost ofp, q, if the current primal-dual solutions are optimal.

The main difficulty of extending PD2µ=1 to the non-metric case relates to all edgespq with

capacity defined by (29) during ac-iteration, i.e. all interior edgespq whose endpointsp, q are

currently assigned labels6= c (i.e. xp ≡ a 6= c, xq ≡ b 6= c) while, in addition, the following

inequality holds:d(a, b) > d(a, c) + d(c, b). Hereafter, we will call any such pair(p, q) a

“conflicting pair” and the corresponding labels(a, b, c) a “conflicting label-triplet” . Depending

on the way we deal with such a “conflicting pair”, three different variations of PD2µ=1 may arise.

PD3a algorithm : We choose to setcappq = 0 in place of (29). In this case, it can be shown

that if x′ assigns the pair of labelsc, b to the objectsp, q respectively, then the resulting load of

p, q will be wpq

(
d(a, b)−d(a, c)

)
, i.e. it will be greater than the actual separation costwpqd(c, b)

of p, q, becaused(a, b) > d(a, c)+d(c, b) as(a, b, c) is a “conflicting label-triplet”. Equivalently,

this says that the virtual separation cost ofp, q overestimates their actual separation cost, contrary

to the OPTIMALITY CRITERION above (in all other cases, one can prove that there is no such

overestimation). Therefore, in this case,POSTEDIT DUALS modifies the dual variables so that

the equality between the load and the actual separation cost is restored and thus the violation of

the OPTIMALITY CRITERION is canceled by the start of the next iteration. No other differences

between PD2µ=1 and PD3a exist.

One may also view this cost overestimation as an equivalent overestimation of the correspond-

ing distance between labels. In the above case, for example, we saw that if labelsc, b are assigned

to p, q by x′, then, instead of the actual separation costwpqd(c, b), the resulting overestimated

cost would have beenwpqd̄(c, b) with d̄(c, b) = d(a, b) − d(a, c). This is equivalent to saying

that the algorithm has assigned the virtual distanced̄(c, b) > d(c, b) to labelsc, b instead of their

actual distanced(c, b). On the other hand, if(a, b) or (a, c) are assigned top, q by x′, then no

cost overestimation takes place and so the virtual distances for these labels coincide with their

actual distances, i.e.̄d(a, b) = d(a, b), d̄(a, c) = d(a, c). Since d̄(a, c) + d̄(c, b) = d̄(a, b), one

could then argue that, by replacingd with d̄, what PD3a actually did was to overestimate the

distance between labelsc, b in order to restore the triangle inequality for the current “conflicting

label-triplet” (a, b, c). Put otherwise, it is as if a “dynamic approximation” of the non-metricd
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by a varying metricd̄ is taking place, with this metric̄d being constantly modified. Note also

that, for restoring the triangle inequality, we could have instead designed our algorithm so that

it overestimates the distance between labelsa, c in place of that betweenc, b. Not only that,

but we could have also defined an application-dependent function, sayRESOLVE, which would

decide (based on the current “conflicting pair”) which one of the two distances (i.e.d(a, c) or

d(c, b)) should be overestimated each time.

Based on these observations, it can be shown [10] that the primal-dual solutions generated

by both PD3a and PD2µ=1 satisfy exactly the same conditions (26)-(28) and so PD3a is always

guaranteed to lead to anfapp-approximate solution as well.Therefore,PD3a directly generalizes

PD2µ=1 (i.e. theα-expansion) to the case of a non-metric distance functiond(·, ·). We should

note here that, recently, Rother et al. [19] have also described an extension of theα-expansion

technique, which can be applied to the non-metric case and seems related to our PD3 method.

PD3b algorithm : We choose to setcappq = +∞ and no further differences between PD3b and

PD2µ=1 exist. This has the following important effect:the solutionx′, produced at the current

iteration, can never assign the pair of labelsc, b to the objectsp, q respectively (due to this fact

we will call labelsc, b the “excluded labels”5). To prove this, it suffices to recall the “reassign

rule” and also observe that the directed edgepq can never become saturated by increasing its

flow (sincecappq = +∞). Therefore, if labelc is assigned top by x′ (which, by the “reassign

rule”, means that there is an unsaturated paths Ã p) then labelb can never be assigned toq,

since, in that case, the paths Ã p → q would also be unsaturated (sincecappq = +∞) and, by

the “reassign rule” again,q would have to be assigned labelc as well. Put otherwise, it is as if

an infinite overestimation of the distanced(c, b) between labelsc, b takes place by the algorithm

and so those labels are implicitly prevented from being assigned to the “conflicting pair”. The

price for that is that no guarantees about the algorithm’s optimality can be provided. The reason

is that the balance variables may now increase without bound (sincecappq = +∞) and so we

cannot make sure that the generated dual solutions satisfy a “not too far away from feasibility”

condition like (28). This in turn implies that no dual-fitting technique can be applied in this case.

However, PD3b has a nice interpretation in the primal domain due to the following theorem:

5Note that, as in PD3a, we can modify PD3b so that a functionRESOLVE chooses which labels (i.e.(a, c) or (c, b)) are

“excluded” each time. Moreover,RESOLVE could perhaps be defined based on a priori knowledge about each specific problem.
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Theorem VI.1. [10] The solutionx′, selected byPD3b during a c-iteration, has the minimum

primal cost among all solutions that result after ac-expansion of current solutionx, except for

those that assign “excluded labels” to “conflicting pairs”.

This theorem designates the price we pay ford(·, ·) not being a metric: in the metric case

we can choose the best assignment among allc-expansion moves (see theorem V.2), whereas in

the non-metric case we are only able to choose the best one among a certain subset of these

c-expansion moves. Despite this fact, the considered subset contains an exponential number of

c-expansion moves, which makes the algorithm a perfect candidate as a local minimizer.

Algorithm PD3 c: PD3c first adjusts (if needed) the dual solutiony so that, for any 2 neighbors

p, q, it holds:loadpq≤wpq

(
d(a, c)+d(c, b)

)
. After this initial adjustment, which is always easy to

achieve, PD3c proceeds exactly as PD2µ=1, except for the fact that the termd(a, b) in (29) is re-

placed with the distancēd(a, b), which is defined as:̄d(a, b)= loadpq

wpq
. Obviouslyd̄(a, b) ≤ d(a, c)+

d(c, b) and socappq in (29) is valid, i.e.cappq ≥ 0. PD3c, PD2µ=1 have no other differences.

It is now interesting to examine what happens ifp, q is a “conflicting pair” with current labels

a, b (i.e. xp≡a 6=c, xq≡b 6=c). In that case it also holds thatd(a, c) + d(c, b) < d(a, b) and so:

d̄(a, b) =
loadpq

wpq

≤ wpq

(
d(a, c) + d(c, b)

)

wpq

<
wpqd(a, b)

wpq

= d(a, b)

Furthermore, it is easy to show that if none ofp, q is assigned a new label byx′ (i.e. they both

retain their current labelsa, b), then the resulting load will be equal towpqd̄(a, b), i.e. it will

underestimate the actual separation costwpqd(a, b), sinced̄(a, b) < d(a, b) as was shown above

(in all other cases, the load will coincide with the actual separation cost).

Based on these observations, one can then see that the PD3c algorithm works in a complemen-

tary way to the PD3a algorithm: in order to restore the triangle inequality for the “conflicting

label-triplet” (a, b, c), instead of overestimating the distance between either labels(c, b) or (a, c)

(like PD3a did), it chooses to underestimate the distance between labels(a, b). Again, one may

view this as a “dynamic approximation” of the non-metricd by a constantly varying metric̄d,

this time, however, we set̄d(a, b) = loadpq

wpq
< d(a, b), d̄(a, c) = d(a, c) and d̄(c, b) = d(c, b).

It can be shown that the intermediate primal-dual solutions generated by algorithms PD3c and

PD2µ=1 satisfy exactly the same conditions, except for condition (26). In place of that condition,

the intermediate solutions of PD3c satisfy:

loadpq ≥ wpqd̂(xp, xq) , (31)
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where d̂(a, b) = minc∈L
(
d(a, c) + d(c, b)

)
. By applying then the same (as in PD2µ=1) dual

fitting factor to the last dual solution of PD3c, one can easily prove that PD3c leads to an

f ′app-approximate solution where:

f ′app = fapp · c0 with c0 = max
a6=b

d(a, b)

d̂(a, b)
(32)

Finally, we should note that ifdab is a metric, then PD3a, PD3b, PD3c all coincide with PD2µ=1.

VII. E XPERIMENTAL RESULTS

We first describe certain properties of the proposed algorithms that prove to be very useful

in practice (Section VII-A). We then proceed and demonstrate our algorithms’ effectiveness in

MRF optimization. To this end, we apply them to a variety of low level vision tasks, such as

stereo matching (Sections VII-A, VII-B), image restoration (Section VII-C), image completion

(Section VII-C), as well as optical flow estimation (Section VII-D). Finally, to further analyze

their performance, results on synthetic problems are shown in Section VII-E. We note that, in

each experiment, identical settings (i.e. parameters and initial solution) have been used for all

algorithms and, in addition, initialization was chosen randomly.

A. Per-instance suboptimality bounds

An important advantage of any primal-dual algorithm is that, after its execution, it can always

tell (for free) how well it performed with respect to any given instance of Metric Labeling. In

particular, as implied by the Primal-Dual Principle of section III, given any pair(x,y) of integral-

primal, dual-feasible solutions, then the ratior = cTx/bTy of their costs automatically provides

a new suboptimality bound, in the sense thatx is then guaranteed to be anr-approximation to

the optimal integral solution. This leads to the following consequence:

By considering all primal-dual solutions{xk,yk}t
k=1 generated during the primal-dual schema,

the quantitymink rk (whererk ≡ cTxk/bTyk) defines a new per-instance suboptimality bound.

In practice, this per-instance bound turns out to be much tighter (i.e. much closer to 1) than

the worst-case bound predicted in theory and so this allows one to have a much clearer view

about the goodness of the generated solution. This has been verified experimentally by applying

our algorithms to the stereo matching problem. In this case, labels correspond to image pixel

disparities and they can be chosen from a setL = {0, 1, . . . , K} of discretized disparities, where

K denotes the maximum allowed disparity. The vertices of the graphG are the image pixels
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(a) (b) (c) (d)

Fig. 8: (a) Tsukuba image(b) Disparity estimated by PD1(c) and PD2µ=1 algorithm. The Potts distance (a

metric) was used and so PD3a, PD3b, PD3c produced the same result with PD2µ=1. No tuning of parameters took

place in (b) and (c).(d) Our result when using same parameters as in [21] (following the notation of [21], we

have useds = 50, T = 4, P = 2).

and the edges ofG connect each pixel to its 4 immediate neighbors in the image. During our

tests, the label cost for assigning disparitya to the image pixelp has been set equal to:

cp(a) = |Iright(p− a)− Ileft(p)|, (33)

whereIleft, Iright represent the intensities of the left and right images respectively.

We have applied our algorithms to the well-known Tsukuba stereo data set [20], setting the

maximum disparity value equal toK = 14, based on the provided ground truth data. A sample

from the results produced, when using our algorithms, are shown in Fig. 8. We should note

that no special tuning of parameters took place and all edge weightswpq have been set equal

to each other, instead of properly adjusting their values based on image intensity edges (which

would improve the results considerably for this specific example, e.g. see Fig.8(d) for one such

result produced with our method). The reason for this, as well as for using the very simple

label cost presented in (33), is because our main goal was not to produce the best possible

disparity estimation, but to test the tightness of the suboptimality bounds that are provided by our

algorithms, i.e. to test the effectiveness of these algorithms in minimizing the objective function.

To this end, 3 different distancesd(·, ·) have been used during our experiments. These are the

Potts distanced1 (a metric), the truncated linear distanced2 (also a metric) and the truncated

quadratic distanced3 (a non-metric), defined as follows (whereλ denotes some constant):

d1(a, b) = 1 ∀a 6= b, d2(a, b) = min(λ, |a− b|), d3(a, b) = min(λ, |a− b|2)
Each experiment consisted of selecting an approximation algorithm and a distance function, and

then using them for computing disparities for each one of the Tsukuba stereo pairs. The average

values (over all Tsukuba stereo pairs) of the obtained suboptimality bounds are displayed in

table I. The columnsfPD1
app , f

PD2µ=1
app , fPD3a

app , fPD3b
app , fPD3c

app of that table list these averages for the
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Distance fPD1
app f

PD2µ=1
app fPD3a

app f
PD3b
app fPD3c

app fapp

Potts 1.0104 1.0058 1.0058 1.0058 1.0058 2

Trunc. Linearλ=5 1.0226 1.0104 1.0104 1.0104 1.0104 10

Trunc. quad.λ=5 1.0280 - 1.0143 1.0158 1.0183 10

TABLE I: Average suboptimality bounds (colums 2-6) obtained over all Tsukuba stereo pairs. As expected, these

bounds are much closer to 1 than the theoretical suboptimality boundsfapp, listed in the last column, and thus a

nearly optimal solution is obtained in all cases. Note that PD2µ=1 can be applied only if distanced(·, ·) is a metric

and in that case PD2µ=1, PD3a, PD3b and PD3c (as well as their bounds) coincide.

algorithms PD1, PD2µ=1, PD3a, PD3b and PD3c respectively. In addition, the last column lists

the value of the corresponding approximation factorfapp, which, as already proved, makes up a

worst-case suboptimality bound for most of the above algorithms. By observing table I, one can

conclude that the per-instance suboptimality bounds are often much tighter (i.e. much closer to

1) than the worst-case bounds predicted in theory. In our stereo experiments, this was true for all

combinations of algorithms and distances, and so in this particular casethe presented algorithms

were able to extract a nearly optimal solution even when a non-metric distance was used.

Besides the tightness of the per instance suboptimality bounds, another important issue is their

accuracy, i.e. how well these bounds predict the true suboptimality of the generated solutions. To

investigate this issue, we modified our experiments in the following way: we applied our stereo

matching algorithms to one image scanline at a time (instead of the whole image). In this case,

the graphG reduces to a chain and the true optimum can be easily computed using dynamic

programming. This, in turn, implies that we are able to compute the true suboptimality of a

solution. By using this fact, we have thus constructed table II. Its columnsfPD1
true , f

PD2µ=1

true , fPD3a
true ,

fPD3b
true , fPD3c

true contain the true average suboptimality of the solutions of PD1, PD2µ=1, PD3a, PD3b

and PD3c respectively, where the average is taken over all image scanlines. By examining that

table, one may easily conclude that (for this particular experiment) the true suboptimality of an

algorithm’s solution was close to the corresponding estimated suboptimality bound, meaning that

these bounds were relatively accurate and therefore reliable for judging the solution’s goodness.

Furthermore, in this way, we can decide if a bad generated solution is the result of a bad optimiza-

tion procedure, or a bad modeling of the problem at hand. At this point, however, we should also

note that one must be careful in extrapolating results on scanlines to that on grids. One potential

issue is that in the former case the integrality gap is 1, while in the latter it may be greater than

1, which may contribute to the inaccuracy of the suboptimality bound for graphs with loops.
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Fig. 9: These 3 plots show how the primal-dual ratios vary during the first 4 outer iterations (or equivalently the

first 60 = 4 · 15 inner iterations) using the Tsukuba sequence as input.(Left) The Potts function,(Middle) the

trunc. linear function and(Right) the trunc. quad. function have been used respectively as label distanced(·, ·).
Notice how rapidly the ratios drop in all cases (i.e. they get very close to 1 just after a few inner iterations).

For the Tsukuba sequence, on average 4 outer iterations (or equivalently60 = 4 · 15 inner

iterations) are needed for the algorithms to terminate. The corresponding running time is 46

secs (measured on a 2.4GHz CPU). The plots in Figure 9 show how the primal-dual ratios vary

during the execution of our algorithms (for the Tsukuba data set). For the first two plots a metric

distance between labels has been used, whereas for the last one a non-metric distance has been

chosen. It is worth noticing how rapidly the primal-dual ratios drop in all cases. They come

very close to 1 just after a few inner iterations, meaning that the algorithms converge really fast,

while computing an almost optimal solution at the same time. Based on this observation, one

may also use the values of these ratios to control the algorithms’ convergence (e.g. if the ratios

are close to 1 and do not vary too much per iteration, one may decide that convergence has been

reached). This way, one may further reduce the running times.

B. Stereo matching

Besides the Tsukuba dataset, we have also applied our algorithms to image pairs from the SRI

tree image sequence (Fig. 10(a)). The selected pairs had a maximum disparity of 11 pixels. Given

Distance fPD1
app fPD1

true f
PD2µ=1
app f

PD2µ=1
true fPD3a

app fPD3a
true fPD3b

app fPD3b
true fPD3c

app fPD3c
true

Potts 1.0098 1.0036 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004 1.0066 1.0004

Trunc. Linear 1.0202 1.0107 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021 1.0115 1.0021

Trunc. quad. 1.0255 1.0130 - - 1.0135 1.0011 1.0144 1.0020 1.0160 1.0036

TABLE II: The average suboptimality bounds (columns 2-4-6-8-10), obtained when applying our stereo matching

algorithms to one scanline at a time (instead of the whole image). In this case, we are also able to compute the true

average suboptimality (columns 3-5-7-9-11) of the generated solutions, using dynamic programming. As can be

seen, by inspecting the table, the suboptimality bounds approximate the true suboptimality relatively well, meaning

that they can be safely used as a measure for judging the goodness of the generated solution in this case.
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(a) (b) (c)

Fig. 10: (a) One image from the SRI tree image sequence.(b) Computed disparities when using PD3a and the

distanced4 with (κ, λ) = (2, 10). (c) Disparities computed by theα-β-swap algorithm using the same distance.

our algorithms’ ability to handle both metric and non-metric distances equally well, the following

non-metric distance has been used in this case:d4(a, b) = |a − b| if |a − b| <= κ, otherwise

d4(a, b) = λ. We always assumeκ < λ. In this specific example, we have used(κ, λ) = (2, 10).

The rationale behind this distance is that it assigns a low penalty to small (i.e.≤ κ) changes in

disparity (thus allowing surfaces with smoothly varying disparity, like the slanted ground in the

SRI image), but assigns a high penaltyλ to large disparity gaps. Despite the fact thatd4 is not

a metric, our algorithms did not face any problem in efficiently minimizing the corresponding

objective function and thus localizing the trees, as well as the slanted ground in the SRI image.

The resulting disparity is shown in Figure 10(b). The average running time to convergence has

been 33 secs. We have also applied theα-β-swap algorithm [1] to the SRI dataset, using exactly

the same settings. Although this graph-cut based algorithm is applicable even in the case of a

non-metric label distance, its disadvantage is that it may get trapped to a bad local minimum,

i.e. it cannot make any guarantees about the optimality of the solutions it generates. This is

indeed the case here, since, despite the fact that exactly the same objective function has been

minimized by both algorithms, the final energy produced byα-β-swap was 8.3% higher than

the energy estimated by our method. The corresponding disparity is shown in Figure 10(c).

As a further example, we illustrate how one could favor disparities that are not violating the

uniqueness constraint, just by use of an appropriate non-metric distanced(·, ·). This can possibly

lead to a better handling of occlusions as well, in some cases. To this end, an extra label for

occlusions, saŷo, is introduced first, whose label cost is equal tocô for all pixels, i.e.cp(ô) = cô.

Assuming (without loss of generality) that image scanlines coincide with the epipolar lines, we

then introduce additional horizontal edges in the graphG: we connect any pixel(x, y) in the left

image to theK pixels to its right(x + 1, y), . . . ,(x + K, y), whereK is the maximum disparity
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(see Fig. 11(a)). For measuring the separation cost between the labels of(x, y), (x + k, y), we

will use the distance functionhdistk. We will therefore useK different distance functions in

total for all the horizontal edges. On the other hand, no additional vertical edges are introduced

and so any pixel will be connected only to its immediate vertical neighbors, as before, with

vdist1 denoting the common distance function for all these edges.

Distanceshdist1, vdist1 (which are related to edges connecting pixels adjacent in the image)

will be used for enforcing the smoothness of the disparity field, as before. E.g. both can be set

equal to the Potts metric:hdist1 = vdist1 = d1. The rest ofhdistk will be used just for assigning

an extra penaltyM to all pairs of labels violating the uniqueness constraint. For all other pairs

of distinct labels,hdistk then simply assigns a very small distanceε (with ε ¿ M ):

b=a+k ⇒ hdistk(a, b)=M, b 6=a+k & b 6=a⇒hdistk(a, b)=ε, b=a⇒hdistk(a, b)=0

A result of applying this distance (withcô = 23,M = 10, ε = 0.01) to the map stereo pair,

appears in Fig. 11(d). Error statistics are displayed in Fig. 11(b).

C. Image restoration and image completion

In image restoration, we are given as input a corrupted (by noise) image and the objective is to

extract the original (uncorrupted) image. In this case, the labels represent intensities (or colors),

while the label cost for assigning intensitya to pixel p can be set equal to:cp(a) = |I(p)− a|,
whereI represents the array of intensities of the input image. The graphG, that will be used

when solving the Metric Labeling problem, coincides again with the image grid.

The example of Fig. 12 illustrates the importance of using non-metric distancesd(·, ·) on the

task of image restoration as well. The original image (Fig. 12(a)) consists of 2 identical patterns

placed vertically. Each pattern’s intensity is kept constant along the horizontal direction and

increases linearly with step 2 from top to bottom. The input image is then formed by corrupting

the original image with white noise (Fig. 12(b)). Although our algorithms managed to restore

…
(x,y)

(x,y+1)

(x+1,y) (x+2,y) (x+K,y)

hdistK

hdist2

hdist1

vdist1

(a) Additional edges inG

Percentage of pixels with absolute error > 1
in non-occluded regions

1.14%

Percentage of missed occluded pixels
in occluded regions 12.31%

(b) Error statistics for the‘map’ pair (c) Left image (d) Estimated disparity

Fig. 11: Red pixels in (d) indicate occlusions
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(a) (b) (c) (d)

Metric d(.,.) Non-metric d(.,.)
41.4% pixels with error 8.2% pixels with error

1.12 avg. intensity error 0.21 avg. intensity error

(e)

Fig. 12: (a) Original uncorrupted image.(b) Noisy input image.(c) Restored image using non-metric distanced4

with (κ, λ) = (2, 30) (d) Restored image using truncated linear metricd2 with λ=30. (e) Error statistics

the original image with only a few errors, by use of the non-metric distanced4 (Fig. 12(c)),

this wasn’t the case when the truncated linear metricd2 (or the potts metric) has been used,

despite tweaking theλ parameter. The best obtained result with such a metric (after tweakingλ)

is shown in Fig. 12(d). The error statistics for this restoration example are shown in table 12(e).

Another non-metric distance, which is very commonly used in image restoration problems, is

the truncated quadratic distanced3(a, b) = min(|a−b|2, λ). That distance withλ = 200 was used

in the restoration of the contaminated (with Gaussian noise) image of Fig. 13(a). In this case,

the following function (which is more robust against outliers) has been used for the label costs:

cp(a) = λ0 min(|I(p) − a|2, λ1), with λ0 = 0.05, λ1 = 104. Notice that our algorithm managed

not only to remove the noise completely (see Fig. 13(b)), but also to maintain the boundaries

of the objects at the same time.

The same distance (i.e. the truncated quadratic) can be also used for the task of image

completion. Besides containing Gaussian noise, the image in Fig. 13(c) also has a part which

has been masked. The labels costs of masked pixels have been set to zero, while for the rest

of the pixels the costs have been set as before. As can be seen, from Fig. 13(d), our algorithm

(a) Noisy input (b) Restored (c) Noisy input with mask (d) Restored & completed

Fig. 13: Examples of image restoration and image completion
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managed not only to remove the noise again, but also to fill the missing part in a plausible way.

D. Optical flow estimation

Global methods [22], [23] estimate optical flowux, uy by minimizing a functional of the form:

E(ux, uy) =
∫

I
ρD(Ixux + Iyuy + It) + λ · ρS(

√|∇ux|2 + |∇uy|2)dxdy, whereIx, Iy, It denote

spatial and temporal image derivatives, whileρD, ρS denote penalty functions. By discretizing

E(ux, uy), we can easily incorporate all such methods into our framework: the1st term (which

expresses theoptic flow constraint equation) and the2nd term (which is a regularizer) will then

correspond to the label costs and separation costs respectively. Furthermore, due to our weak

assumptions ond(·, ·), our framework allows us to setρS equal to any of the so-calledrobust

penalty functions[22] (e.g. the LorentzianρS(x) = log(1+ 1
2
(x/σ)2)), which are known to better

cope with outliers or flow discontinuities. Due to this fact, our framework can also incorporate the

state-of-the-art combined local-global method (CLG) [23], which just replacesIx, Iy, It (in the

1st term of the above functional) with a structure tensor. This is important, since our algorithms

can always compute a solution near the global minimum and so, by using them as initializers

to CLG (or to any other global method), we can help such methods to avoid a local minimum.

Besides using theoptic flow constraint equationin our label costs, our framework also allows

the use of other label costs. E.g. we can setcp(a) = |I1(p + a) − I0(a)|, whereI0, I1 are the

current and next image. In this case, due to the two-dimensional nature of optical flow, it is

important that, not only the magnitudes, but especially the directions of the optical flow vectors

are estimated correctly as well. To this end, the following non-metric distance between labels can

be used:d(a, b) = dist(a, b) + τ · angledist(a, b). Here,dist(a, b) denotes a truncated euclidean

distance between the optical flow vectorsa, b, i.e. dist(a, b) = min(||a − b||, λ), while the2nd

term is used for giving even more weight to the correct estimation of the vectors’ direction.

In particular, it penalizes (in a robust way) abrupt changes in the direction of the vectorsa, b

and is defined as follows:angledist(a, b) equals1 if the angle (in degrees) betweena and b

is greater than45o, while in all other cases equals 0. We have applied both our algorithm and

theα-β-swap algorithm to the well knownyosemiteimage sequence, using as label distance the

above distance with parametersλ = 5, τ = 5. The results, as well as error statistics, are shown

in Figure 14. Due to the bigger number of labels, the run times of our algorithm for this example

were approximately 6 minutes on average.We note that, although both algorithms are trying
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(a) 4th frame ofyosemite

sequence with clouds

(b) Our flow: 6.97o avg. angular error,

4 iterations

(c) α-β-swap flow: 14.73o avg. angular error,

11 iterations, 19.2% higher energy than (b)

(d) 11th frame ofyosemite

sequence with clouds

(e) Our flow: 6.91o avg. angular error,

4 iterations

(f) α-β-swap flow: 39.29o avg. angular error,

23 iterations, 56.7% higher energy than (e)

Fig. 14: Estimated flow between frames 4, 5 (1st row) and 11, 12 (2nd row) of yosemitesequence. Although more

outer iterations were used byα-β-swap, its optical flow had 19.2% and 56.7% higher energy than our optical flow.

to minimize exactly the same objective function, the resulting solutions ofα-β-swap have much

higher energy.It seems that, contrary to our method,α-β-swap needs to be properly initialized,

or else is not powerful enough to escape from bad local minima in this case.

E. Synthetic problems

To further examine the ability of our algorithms to optimize the energy of an MRF, we also

tested them on a set of synthetic problems. In these problems, the vertices of a30×30 grid were

chosen as the nodes of the graphG, while the total number of labels was set equal toK. The label

costs for all nodes were generated randomly by drawing samples from a uniform distribution in

the [%0 %1] interval, while, for the pairwise potentials, a random non-metric distance has been

used, that was constructed as follows: equal labels were assigned zero distance, whereas the

distance for different labels was generated randomly in the[%0 %1] interval again.

Three experiments have been conducted: in the1st one (Fig. 15(a)), a random spanning tree

of the 30 × 30 grid was used as the graphG and the number of labels wasK = 60, while,

in the 2nd (Fig. 15(b)) and3rd (Fig. 15(c)) experiment, the graphG had inherited the structure

of the underlying grid and the number of labels wasK = 60 and K = 180 respectively. For

each experiment,100 random problems were constructed (all with%0 = 1, %1 = 100) and the
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(a) G is a tree,K = 60 labels
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(b) G is a grid,K = 60 labels
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(c) G is a grid,K = 180 labels

Fig. 15: α-β-swap produces an energy which is higher by(a) 17%, (b) 23% and(c) 28% with respect to our

algorithm’s energy. Notice that as the number of labels increases the gap in performance increases as well.

resulting average energies per outer iteration, for both our algorithm and theα-β-swap algorithm,

are shown in the plots of Figure 15. Notice that, compared toα-β-swap, our algorithm manages

to produce a solution of lower energy in all cases. At the same time, it needs less iterations to

converge. This behavior is a typical one and has been observed in real problems as well. Notice

also that, as the number of labels or the graph complexity increases, the gap in performance

between the 2 algorithms increases as well.

The efficiency of our algorithms in the case whered(·, ·) is not a metric can be also illustrated

by the synthetic example of Figure 16. Although PD3a, PD3b and PD3c are always able to locate

the exact global minimum for this example, thea-b-swap algorithm may get stuck at a local

minimum that can be arbitrarily far from the true minimum.

qp r
T0 T
0T T
22 0

α
b
c

bα c
T/20 T
0T/2 T/2

T/2T 0

α
b
c

Labeling A
(Local minimum)

Labeling B
(Global minimum)

Label costs Label distance

qp r
bα c

qp r
cc c

d(·,·)c(·)

Fig. 16: A synthetic example, where the graphG has 3 vertices{p, q, r} and 2 edges{pq, qr}, while the labelsL
are {a, b, c}. Label costscp(·) and the distanced(·, ·) (not a metric) are shown. Theα-β-swap algorithm can get

stuck in labelingA whose cost isT , i.e. arbitrarily larger than the true minimum cost, which is 4 (labelingB). On

the contrary, PD3a, PD3b and PD3c can always locate the optimal labelingB. Example taken from [1].

VIII. C ONCLUSIONS

A new theoretical framework has been proposed, for both understanding and developing

algorithms that can approximately optimize MRFs with both metric and non-metric energy

functions. This set of MRFs can model a very important class of problems in computer vision.

The above framework includes the state-of-the-artα-expansion algorithm merely as a special

case (for metric energy functions). Moreover, it provides algorithms, which have guaranteed
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optimality properties even for the case of non-metric potentials. In fact, in all cases, our primal-

dual algorithms are capable of providing per-instance suboptimality bounds, which, in practice,

prove to be very tight (i.e. very close to 1), meaning that the resulting solutions are nearly optimal.

The theoretical setting of the proposed framework rests on duality theory of linear programming,

which is entirely different than the setting of the original graph-cut work. This way, an alternative

and more general view of the very successful graph-cut algorithms for approximately optimizing

MRFs is provided, which is an important advance. We strongly believe that this more general

view of graph cut techniques may give rise to new related research, which could lead to even

more powerful MRF optimization algorithms in the future. Moreover, a novel optimization

technique, the primal-dual schema, has been introduced to the field of computer vision and

the resulting algorithms have proved to give excellent experimental results on a variety of low

level vision tasks, such as stereo matching, image restoration, image completion and optical flow

estimation.

For metric MRFs, PD2 withµ = 1 has, in general, given the best results experimentally

(although, in some cases, the results were only slightly better compared, e.g., to PD1 (see tables

I and II)), which is consistent with the good performance ofα-expansion in many problems

up to now. However, we believe that PD2 withµ < 1, as well as PD1 can also be very useful

as initializers, since they are less greedy and can more easily avoid local minima. For non-

metric MRFs, PD3 algorithms exhibit similar performance and gave the best results in practice.

Furthermore, they reduce to PD2µ=1 in the case of a metric potential function. Therefore,

based also on the fact that PD3a and PD3c can in both cases provide worst case guarantees,

we recommend the use of either one of these two algorithms in the general case. Also, as

already mentioned, all of our algorithms apply without change even if each edgepq has its

own distancedpq. The distance giving the worst approximation factor then dominates and so the

new suboptimality bound becomesfapp = maxpq

[
2

maxa 6=b dpq(a,b)

mina6=b dpq(a,b)

]
. Finally, we should note that

for certain special cases of the ML problem, our algorithms’ theoretical approximation factors

coincide with the so-calledintegrality gapof the linear program in (1), which is essentially the

best possible approximation factor a primal-dual algorithm may achieve [18]. E.g., such is the

case with the Generalized Potts model, whose integrality gap is known to be 2 [2], i.e. equal

to fapp. This explains, in yet another way, why graph-cut techniques are so good in optimizing

problems related to the Potts energy. In conclusion, a new powerful optimization tool has been
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added to the arsenal of computer vision, capable of tackling a very wide class of problems.
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