
Surface Reconstruction from 3D Line Segments
— Supplementary Material —

Pierre-Alain Langlois1 Alexandre Boulch2 Renaud Marlet1,3
1LIGM (UMR 8205), ENPC, UPE, France 2ONERA, Université Paris-Saclay, Palaiseau, France 3valeo.ai, Paris, France

Figure 1: Input lines and reconstructed surfaces on 4 datasets (from left to right): TimberFrame, HouseInterior, Barn, Terrains.

This document is the supplementary material of the 3DV
2019 paper Surface Reconstruction from 3D Line Segments.
It provides additional details and a more formal expression
of our method. It explains our parameter setting via both a
formal and an empirical study. It illustrates the noisy nature
of our input data and analyzes its impact using a sensitivity
study. It shows the relevance of the main ingredients of our
approach through an extensive ablation study. More recon-
struction examples are also on Figures 1 and 3.

Contents

1. Line-based plane detection 1

2. Surface reconstruction 3

3. Quantitative evaluation of reconstructions 6

4. Parameter setting and sensitivity study 7

5. Quality of input data and sensitivity study 9

6. Ablation study 11

7. Video, code and data 14

1. Line-based plane detection
Section 3 in the paper describes our line-specific method

based on RANSAC for detecting planes in a line segment
cloud. We provide here a more formal presentation of that
same material, with an explicit algorithm (cf. Figure 2) and

a few more details. The redundancies w.r.t. the paper are
intended for readability, to make the section self-contained.

Candidate plane construction. In RANSAC, a candidate
model is generated by sampling the minimum amount of
data items required to create a model. To define a plane, 2
non-collinear line segments are enough. (A line and a point
actually suffice.)

We define a plane P from two line segments la, lb as fol-
lows. We note ~l a vector from one endpoint of l to the other
(order does not matter), l∞ the infinite line passing through
l, and | l | = ||~l || the length of l. The direction of the nor-
mal to P is given by ~la × ~lb, and a point belonging to P is
given as the closest point to l∞a and l∞b , i.e., the midpoint of
the shortest line segment joining l∞a and l∞b . This formu-
lation give no particular role to the segment endpoints, that
are notoriously noisy.

There are actually two ways for la and lb to be co-planar:
they can be parallel, or the distance between l∞a and l∞b
can be small: d(l∞a , l

∞
b) ≤ ε, for some threshold ε > 0.

(Both criteria can be achieved at the same time.) For the re-
construction of man-made environments such as buildings,
candidate models made from parallel lines are to be avoided
to prevent the generation of many bad planes. Indeed, two
random vertical line segments (e.g., detected on windows)
are parallel but statistically unlikely to support an actual,
physical plane. To address this issue, we threshold the an-
gular measure ||~la×~lb||/(| la || lb |), which also excludes the
degenerate case of two collinear line segments, for which
generating a plane normal is impossible or unstable.

1

Greedy detection and multi-support issues. Then, fol-
lowing RANSAC principle, we sample planes as line pairs
and perform an iterative extraction of the most significant
planes, i.e., with the largest line support after a given num-
ber of sampling trials.

However, contrarily to usual RANSAC, we cannot re-
move supporting segments at once as they may actually
belong to two planes; it would lead to detecting the main
planes only (with a large line support) and tend to miss
smaller planes (with a smaller support). A failure case is
illustrated on Figure 15.

Conversely, we cannot consider all segments as available
at each plane detection iteration: it would statistically lead
to multiple detections of the same large planes and again
would miss detections of planes with small support.

A natural method to allow a datum to be part of sev-
eral detected models in greedy RANSAC approaches is to
remove inliers for succeeding model sampling but not for
data assignment to models [14]. But for sparse data (which
is the case for line segments in practice), it fails to detect
models with little data support, e.g., preventing detecting
all the faces of a cube from its sole edges.

Another way to allow the same datum to seed several
models is to bound their number, i.e., 2 for lines supporting
planes. But it does not work either as it often associates a
line twice to more or less the same plane, which also yield
very bad results.

After a number of meaningful but unfruitful attempts to
fix those issues, we propose below a solution based on this
bounding of the number of detections, but with an addi-
tional condition to prevent shared lines to belong to similar
planes (cf. “inlier selection”).

Candidate plane generation. We note Λ(P) the set of
line segments supporting a plane P , Π(l) the set of planes
supported by a line segment l ∈ L, with |Π(l) | ≤ 2, and
Li the set of segments supporting i plane(s) for i in 0, 1, 2.

We construct these sets iteratively by generating candi-
dates planes P and assigning them segments l ∈ L, some
of which may have already been assigned to another plane
Π(l). Only line segments in L2 are discarded from the pool
of available segments to support a plane, as they already
support two planes. Initially, L0 = L, and L1 = L2 = ∅.

As line segments are not put aside as soon as they are
assigned to a plane, they can be drawn again to generate new
candidate models. However, generating several times the
same plane (with the same supporting line segments) would
not only reduce efficiency, but also make some models little
likely to be drawn, as models with a large support would be
sampled much more often. To prevent it, after drawing a
first line segment la ∈ L0 ∪ L1, there are two cases:

• If la ∈ L0, i.e., if la has not been assigned to any plane
yet, then the second segment lb can be drawn uncondi-
tionally in L0∪L1 as it will always yield a new model.

INPUT: set L of 3D line segments
L0 ← L, L1 ← ∅, L2 ← ∅, Π← ∅
while | L0 ∪ L1 | ≥ 2 and |Π | < Nmax do

Λbest ← ∅ // Current best set of coplanar lines
repeat Niter times

//// Sample a candidate plane by sampling 2 lines
Pick la ∈ L0 ∪ L1 // 1st sample line
//// For 2nd sample, exclude lines of the plane of la if any
Pick lb ∈ L0 ∪ L1\ Λ(Π(la)) // 2nd sample line
//// Make candidate plane and check consistency
P ← plane(la, lb)
next if P degenerate or d(la, P) > ε or d(lb, P) > ε
//// Gather line support for plane P
Λ← {l∈L0 | d(l, P)≤ ε} ∪ {l∈L1 | d(l, P ∩Π(l))≤ ε}
//// Remember best candidate
if |Λ | > |Λbest | then Λbest←Λ, Pbest←P end if

end repeat
//// Update data structures
Π← Π ∪ {Pbest} // Set of detected planes
Λ(Pbest)← Λbest // Support of best plane
∀ l∈Λbest,Π(l)←Π(l) ∪ {Pbest} // Planes supported by l
L2 ← L2 ∪ (Λbest ∩ L1)
L1 ← (L1 \ (Λbest ∩ L1)) ∪ (Λbest ∩ L0)
L0 ← L0 \ (Λbest ∩ L0)

end while
OUTPUT: set of planes Π, with related support Λ(P)P∈Π

Figure 2: RANSAC-based plane detection from 3D lines
segments, differentiating structural lines from textural lines.

• If la ∈ L1, i.e., if la has already been assigned to some
plane P ′, with Π(la) = {P ′}, then lines in Λ(P ′), i.e.,
supporting P ′, are excluded when drawing the second
segment lb. This ensures la, lb cannot participate to the
same already existing model.

As the number of extracted planes is typically less than a
few hundred, this drawing can be optimized by incremen-
tally keeping track of the sets Λ̄(P) = L \ (L2 ∪ Λ(P)),
that have not already been assigned to a detected plane P .

Note that we do not prevent a line pair to be redrawn
when it previously failed to generate an accepted model (for
lack of planarity, parallelism or relatively poor support at a
given iteration). It is not an issue as it does not lead to un-
balanced chances to detect a plane. Yet, when the number
of input line segments is not too large, we can perform a
systematic drawing of all line pairs, possibly exploiting the
above filtering. In this case, all possible models are consid-
ered and at most once.

Inlier selection. After picking a candidate plane P , we
populate the support Λ(P). For this, we go through each
segment l ∈ L0 ∪ L1 and assign it to Λ(P) if close enough
to P , i.e., if d(l, P) ≤ ε. Several distances can be used,
such as the average or the maximum distance to the plane.

2

If l already supports some other plane P ′, i.e., if Π(l) =
{P ′}, then also assigning l to P would make it a structural
segment. As such, we impose that it lies close to the line at
intersection of both planes, i.e., d(l, P ∩ P ′) ≤ ε, that it is
in the cylinder of axis P ∩ P ′ and radius ε. Again, several
distances can be used, e.g., average or maximum distance to
the line. Note that this condition is stronger than imposing
both d(l, P) ≤ ε and d(l, P ′) ≤ ε as the angle between P
and P ′ could be small and l could then be close to both P
and P ′ although far from their intersection. As mentioned
above, Without the d(l, P∩P ′) ≤ ε condition, the algorithm
would tend to associate l to two planes P and P ′ which
are very similar, thus failing to detect crease lines. This
condition is actually a crucial ingredient in our algorithm.

Plane selection. Finally, we repeat model sampling Niter
times and keep the plane with the largest number of inliers,
i.e., we maximize |Λ(P) |. The whole algorithm is summa-
rized in Figure 2.

This plane construction is in contrast with [14], that sam-
ples and populates planes from (2D) line pairs instead of
(3D) lines, making inlier search quadratic, not linear. To
compensate, they heuristically only consider line pairs de-
fined by intersected segment extensions, which is highly un-
stable due to noise in endpoints and induces plane splitting
at occlusions (cf. Fig. 8 of their paper). We have none of
these downsides.

Please also note that structural lines in [14] are found
with heuristics after RANSAC, considering plane pairs and
candidate lines, which only makes sense because they have
few (<10) planes. In contrast, we get them directly in
RANSAC, without heuristics, in greater number, and for a
much larger set of planes.

Plane refitting. After each plane Pbest is found, it is ac-
tually refitted to its inliers Λbest before being stored into
Π. The refitting of a plane P to a set of line segments Λ
is based on the (signed) distance of the segment endpoints,
weighted by the segment length. As it changes the equation
of the plane, we check whether it the slice centered on the
refitted P ′ with thickness ε now contains extra segments. If
so, they are added as inliers and refitting is repeated.

Plane fusion. We observed that modeling a building may
require different levels of details. On the one hand, we can
be interested in small plane differences such as door or win-
dow jambs w.r.t. walls, or even baseboards and switches
w.r.t. walls. This could be controlled by the ε parameter (as-
suming observations are made with this level of accuracy).
On the other hand, setting a small ε may easily break a wall
or a ceiling into several fragments because it is not perfectly
planar due to construction inaccuracies or load deflections.
While it is useful to retain a high degree of accuracy in low-
level 3D capture for some applications, this arbitrary frag-
mentation is not desirable for abstract building modeling:

such large mostly planar surfaces should be modeled as a
single piece. For each country, there are actually standards
(official or not) defining construction tolerances, e.g., 1 cm
error every 2 m for walls. (Tolerances are actually more
specific to the construction part and material.)

To cope with this practical issue, which actually occurs
in real data, we add a plane fusion step with a tolerance
higher than ε, i.e., with a maximal distance threshold εfus >
ε to the plane refitted on the union of inliers. This allows
merging at εfus accuracy several plane fragments detected at
ε. However, to make sure it applies only to cases described
above, we additionally impose a maximum angle θfus when
merging two planes and minimum proportion of common
inliers of at least pfus. Concretely, we consider all pairs of
planes in Π whose angle is less than θfus, sort them, pick
the pair with the smallest angle, and try merging them. If
it succeeds, the two planes are removed, the new refitted
plane is added, and the priority queue based on angles is
updated before the next merging attempt. If it fails, the pair
of planes is discarded and the next pair is considered, until
no merging can apply, yields a set of merged planes Πfus.
This procedure is similar to a heuristics used in Polyfit [9].

Limitation on the number of planes. To make sure not
too many planes are given to the surface reconstruction step,
because of possible limitations (cf. Section 6 of the paper),
the algorithm may be stopped after at most Nmax (best)
greedy detections.

2. Surface reconstruction

Section 4 of the paper presents our method for recon-
structing a surface on detected planes and observations of
3D line segments. We provide here a more formal expres-
sion of the energy we minimize (again with intended redun-
dancies w.r.t. the paper, for self-containedness).

We follow [3, 2] and consider a scene bounding box, par-
tition it into volumic cells constructed from the planes, and
assign each cell with a status ‘full’ or ‘empty’ depending on
observed lines segments, with a regularization prior coping
with sparse or missing data. The reconstructed surface is
then the interface between full and empty cells. By con-
struction, it is guaranteed to be watertight and free from
self-intersections.

The volume partition is given by a cell complex C made
from a arrangement of planes detected in the line cloud.
In our experiments, we use the full-extent plane arrange-
ment, i.e., with planes extending all the way to the scene
bounding box. Although it limits in practice C to a few
hundred planes, as the complexity of building such a full-
extent arrangement is cubic in the number of planes, it is
generally enough to model a single room by focusing on
the most salient planes, i.e., on planes with the largest num-
ber of supporting lines. In any case, while there can be more

3

Figure 3: Dataset Bridge from ETH3D: input image sample, 3D line segments extracted by Line3D++ and reconstruction.

than thousands of planes detected in a dense point cloud, the
number of detected 3D lines in a scene is in general on the
order of a few thousands, leading anyway only to hundreds
of detected planes.

Note however that using a full-extent arrangement is not
intrinsic to our method; it merely provides a baseline, that is
consistent with the sparsity of line detections and has the ad-
vantage of not depending on plane insertion order. Yet more
planes could be fitted into the cell complex C by limiting
their extent to a region around their supporting lines, which
makes sense when there is little missing data, i.e., few un-
observed surfaces or sparsely supported areas. For instance,
a coarse voxel-based partition and heuritics could bound the
extend of planes as in [3]. The 2D kinetic polygonal plane
partitioning from line segments in images [1] could also be
extended to 3D to provide a volume partitioning from planar
regions, allowing a more principled complex, with a much
larger set of planes, while reducing the number of cells and
the complexity of their construction. (Preliminary unpub-
lished results show that relevant complexes with 10k planes
can be built this way.) Besides, defining a notion of ex-
tent for line-detected planes, similar to α-shapes in the case
of points [4] but adapted to lines [12, 13], could also be
used to introduce so-called ‘ghost planes’, corresponding to
unobserved, hidden planes at occluding edges of observed
surfaces [3, 2]. We leave that for future work.

Concretely, for each cell c ∈ C, we represent occupancy
by a discrete variable xc ∈ {0, 1}: 0 for empty and 1 for
full. A surface is uniquely defined by a cell assignment
x : C 7→ {0, 1}, where x(c) = xc. The optimal cell assign-
ment x is defined as the minimum of an energy E(x) which
is the sum of three terms: a primitive term Eprim(x) penal-
izing line segments not lying on the reconstructed surface, a
visibility termEvis(x) penalizing surface reconstructions on
the path between observations and their viewpoints, and a
regularization term Eregul(x) penalizing complex surfaces.

E(x) = Eprim(x) + Evis(x) + Eregul(x) (1)

Dealing with noise. To deal with possible noise in input
data, instead of introducing slack in the choice of cells pe-
nalized for not being at the reconstructed surface and letting
regularization make the right choices [2], which induces a

heavier formulation and resolution, we assume that plane
extraction from 3D line segments did a good-enough job at
detecting planes and assigning them a segment support: al-
though there can be outliers among detected line segments
in L, detected planes in Π and plane supports Λ(P) for
P ∈ Π, the segments supporting a plane P are considered
as noisy inliers, projected on P , and then treated as noise-
less data.

Formally, for any line segment l ∈ L1 (resp. l ∈ L2),
i.e., if l supports a single plane P (resp. two planes P1, P2),
we consider l̂, the orthogonal projection of segment l on
plane P (resp. on the infinite line P1 ∩ P2). A segment
in L0, not supporting any plane, is treated as an outlier for
data fidelity (no penalty for not being on the reconstructed
surface) but not for visibility (penalty for not being seen
from viewpoints if hidden by reconstructed surface).

Dealing with viewpoints. Each 3D line segment l ∈ L is
viewed from a set of viewpoints V(l). However, because of
possible occlusions, not every part of l are seen from every
viewpoint. Given a viewpoint v ∈ V(l), we consider lv ,
the fraction of l that is viewed from v. Note that lv is not
necessarily continuous; it may consists of several discon-
nected sub-segments ` of l due to multiple occlusions when
seen from v:

⋃
`∈lv ` = lv . We note v C lv the visibility

triangle(s) between v and the sub-segments ` of lv .
For technical reasons, we also consider sub-fragments s

of these visible sub-segments ` of lv , corresponding to their
intersection with the cell complex C: we note lv = {c ∩ ` |
c ∈ C, ` ∈ lv, c ∩ lv 6= ∅} and we have

⋃
s∈lv s = lv .

All this is combined with the above “noiseless” approx-
imation: l̂v is the projection on the planes supported by l
of the fractions ` of l seen from v, if any, and l̂v is its sub-
segmentation into sub-fragments s along complex C.

Primitive term. The primitive term penalizes 3D line
segments that support detected planes but do not lie on the
reconstructed surface. More precisely, it actually only pe-
nalizes the absence of matter “behind” a line segment w.r.t.
a viewpoint; it does not penalize the presence of matter just
in front of it, letting the visibility term do it. Segments
that support no plane are ignored here, consistently with the
piecewise-planar approximation, as they would be far from

4

(a) Primitive term, l ∈ L1 (b) Primitive term, l ∈ L2 (c) Visibility term

Figure 4: Energy terms.

any possibly reconstructed surface. They are thus consid-
ered as if outliers regarding data fidelity. (They are however
used below for visibility consistency.)

Concretely, for a textural line l ∈ L1, reprojected on
Π(l) as l̂ and seen from a viewpoint v ∈ V(l) as sub-
segments s ∈ l̂v , we consider each cell c ∈ C which is
behind a sub-segment s w.r.t. v, and penalize it if not full,
i.e., with a cost 1− xc, multiplied by the length | s | to give
more weight to longer detections. To get a dimensionless
cost, we actually normalize it by a scale of interest σ. This
configuration is illustrated on Figure 4(a).

The case of a structural line l ∈ L2, at the intersection of
two planes, is similar. But it cannot be treated as a texture
line on each planes as it would lead to terrible results, as
illustrated on Figure 17. In fact, as l can lie at an occluding
edge w.r.t. the viewpoint, the cells right behind l̂ w.r.t. v do
not necessarily have to be full. What we want to express is
the fact that, apart from the cell in front of a sub-segment
s ∈ l̂v , at least one of the three other cells adjacent to s
should be full. If only one is full, the sub-segment lies at a
salient edge; if all three cells are full, the sub-segment lies
at a reentrant edge; and if two adjacent cells are full, the
structural line lies on a plane and is thus actually consid-
ered as textural. (There is also a degenerate case where the
cells in front and behind s are empty, and the other, “side
cells” are full.) To penalize only the case when all three
cells are empty, i.e., when

∑
c xc = 0, we consider a cost

of max(0, 1−
∑

c xc), which is equal to 1 in this case, and
to 0 in all the other configurations. As for textural lines, we
weight it by | s |, normalized by the scale of interest σ. This
configuration is illustrated on Figure 4(b).

Formally, textural and structural lines can be treated with
this single expression covering both specific cases:

Eprim(x) =
∑

l∈L\L0

∑
v∈V(l)

∑
s∈l̂v

| s |
σ

max(0, 1−
∑
c∈C

c∩ (vCs) = s

xc) (2)

Condition c ∩ (vC s) = s says that the visibility triangle

vC s intersects cell c only at sub-segment s, which is true
only for cells adjacent to s and not in front of s w.r.t. v.
If l is textural, i.e., in L1, then s lies on the interior of a
face of the complex and only two cells are adjacent to s.
The last part of the formula reduces to max(0, 1−xc), i.e.,
to 1−xc, where c is the cell with no intersection with the
visibility triangle but on s, i.e., behind s w.r.t. v.

Visibility term. As in [3, 2], the visibility term penalizes
the number of reconstructed surface boundaries between
viewpoints and segments. This somehow measures (twice)
the number of times a 3D line segment is considered a de-
tection outlier as it should not be visible from a given view-
point. Besides, we consider that the longer the offending
part of the outlier (as only a fraction of the segment might
be “wrongly” visible), the higher the penalty. Our visibil-
ity cost is thus weighted by the reprojection length of er-
roneous segments on occluding surfaces, i.e., on surfaces
encountered by visibility rays between viewpoint and seg-
ment. In contrast, we consider that the thickness of the oc-
cluding surfaces does not matter (nor does the the volume
of reconstructed cells traversed by visibility rays).

More formally, we note c+v
f the cell on the side of a

face f ∈F of C which is on the same side as v w.r.t. the
plane of f , and c−vf the cell on the opposite side. Noting
cell occupancy x+v

f = xc+v
f

and x−vf = xc−v
f

, we define:

Evis(x) = λvis

∑
l∈L

∑
v∈V(l)

∑
f∈F

| (v C l̂v) ∩ f |
σ

|x+v
f −x

−v
f |

(3)
This configuration is illustrated on Figure 4(c).

Regularization term. Eregul is the sum of two terms pe-
nalizing the total length of reconstructed edges and the num-
ber of corners [2]. (Area penalization as in [2] makes little
sense here due to the low density of observations in some
regions.) We assume the optimal (simplest) surface is a bal-
ance of short edge length and few corners (with weights
λedge, λcorner) while being consistent with observations.

5

Energy minimization. Due to the specific treatment of
structural lines, the primitive energy term is not linear: it
involves maximum values (cf. Eq. (2). However, the opti-
mization problem

minimize
x

∑
l∈L\L0

∑
v∈V(l)

∑
s∈l̂v

| s |
σ

max(0, 1−
∑
c∈C

c∩ (vCs) = s

xc)

subject to 0 ≤ xc ≤ 1, c ∈ C.
(4)

can be rewritten as a standard linear program by introducing
for each max term a new slack variable zs ∈ R:

minimize
x,z

∑
l∈L\L0

∑
v∈V(l)

∑
s∈l̂v

| s |
σ
zs

subject to 0 ≤ xc ≤ 1, c ∈ C.

zs ≥ 1−
∑
c∈C

c∩ (vCs) = s

xc

zs ≥ 0

(5)

where z is the vector of all variables zs.
The regularization term also is not linear. Minimizing

the edges length and the number of corner indeed involves
higher-order constraints: the presence of an edge (resp. cor-
ner) depends on the value of 4 (resp. 8) adjacent cells (full
or empty). We reformulate these constraints, that are hard
to solve, using linear terms only as proposed by [2], i.e., us-
ing the absolute value of linear combinations of cell values,
which can also be turned into an equivalent linear program
with extra slack variables.

The resulting energy minimization problem is formu-
lated as mixed-integer programming, with integral values
(0 or 1) for the occupancy of cells xc and continuous val-
ues for slack variables. As solving it is NP-hard, we also
do as in [2]: we relax the problem for optimization, i.e., the
problem is solved for xc ∈ [0, 1] for all c ∈ C. This cor-
responds to a linear program that can be solved efficiently
using off-the-shelf solvers. The obtained fractional values
for variables xc are rounded independently of each other.

3. Quantitative evaluation of reconstructions
We performed quantitative evaluations of the quality of

our reconstructions using our datasets with ground truth. In
this section we describe the metrics we used in our experi-
ments, as well as our setting and principles when varying
a parameter or input data to study the sensitivity of our
method (in following sections).

Metrics to assess the quality of surface reconstruction.
We used 4 metrics derived from the Metro distance.

To compare a reconstructed mesh Mrecons with a ground-
truth mesh Mgt, we first sample 2 millions of points on the

surface of each mesh. We then compute the distances of
each point of Mrecons to their nearest neighbour in Mgt; we
note this set Drecons−→gt. Conversely, we also compute the
set of distances Dgt−→recons.

The 4 metrics we use are the following:

• The max Metro distance measures the worst recon-
struction error:

max(Drecons→gt

⋃
Dgt→recons)

• The mean Metro distance measures the average recon-
struction error:

mean(Drecons→gt

⋃
Dgt→recons)

• The “95%-completeness” is the 95% percentile of
Dgt→recons. It measures the distance under which most
of the ground truth surface has been reconstructed.

• The “95%-precision” is the 95% percentile of
Drecons→gt. It measures the distance under which most
of what has been reconstructed is close enough to the
ground truth.

We use these metrics to assess the quality of reconstructed
surfaces (cf. Figure 4(7) of the paper) as well as to define
the value of our parameters (see following section).

Varying parameters or input data. In the following sec-
tions, starting from the default parameter setting in Table 1,
we vary the value of a chosen parameter (e.g., λvis) or the
quantity of input data (e.g., the number of detected 3D line
segments), and we display a graph representing the impact
on a quantitative assessment of the reconstruction.

For these experiments, we evaluate on the synthetic
dataset HouseInterior, for which we have a ground truth.
Although the results are specific to this dataset, we observed
that the conclusions are relatively general. In particular,
these variation studies on HouseInterior lead our choice of
the best default parameter values (see Section 4), but we
did not observe a strong need to alter this parameter setting
when running on other datasets, although small changes
could sometimes provide slightly better results.

Please note that although we may vary a parameter con-
tinuously, the labeling of the cells in the plane arrangement
as full or empty is discrete and thus can lead to strong
changes on the metrics when the altered cells are large or
when the measure is based on a maximum distance. As a
consequence, curves showing the impact of parameter vari-
ations can display significant discontinuities.

Also, due to the RANSAC stage, our algorithm is not
deterministic. For each set of parameters, we actually ran
our method 5 times, and we report in the graphs both the
average value of the quantity we monitor over these 5 runs
as well as its standard deviation.

6

Figure 5: Impact of the number of planes Nmax on the max/mean Metro distance and on the 95% precision/completeness.

4. Parameter setting and sensitivity study

We strove to reduce as much as possible the number of
parameters of our method. Still, it has a few parameters,
that have to be set. In this section, we study how to assign
a value to these parameters, either using a formal argument
(for the number of RANSAC iterations Niter) or using an
empirical justification (for the other parameters).

The parameter default setting is recalled in Table 1. Be-
sides, the normalizing factor σ is set to 1 m.

ε εfus θfus pfus Niter Nmax λvis λedge λcorner

2 cm 3 ε 10° 20% 50k 160 0.1 0.01 0.01

Table 1: Parameters (all datasets have metric dimensions).

These parameters can be slightly adapted depending on
the model. For instance, increasing λvis will dig more into
the volumes, but will also make the model more sensitive to
outliers. Likewise, increasing λcorner and λedge will lead to
more regularization, which is useful when data are missing,
but can also lead to a loss of details.

In the following, we study the sensitivity of our method
under different parameter settings, to discover ranges of pa-
rameter values leading to a good and relatively stable be-
havior. Table 1 resulted from this sensitivity study.

Number of RANSAC iterations Niter. Our choice for
setting the value of the number of RANSAC iterations Niter
can be justified as follows.

The number of 3D line segments detected in the scenes
of our datasets varies between 1,000 and 10,000, and the
number of detected planes is in practice limited to about 150
(see Table 2 of the paper). After the largest planes (with
the most inliers) have been detected, the inlier rate of the
current best plane can be quite low. Yet we must make sure
that planes with a small line support are eventually detected,
and first of all, sampled.

To defineNiter, we want to make sure at β = 99% chance
that we sample the best plane assuming it is supported by
at least α = 1% of the line segments in the current value
of L0 ∪ L1. If we call X the event “not finding the best
fitting plane after Niter iterations among data which contain
an inlier rate of α”, its probability is:

P (X) = (1− αk)Niter

where k = 2 is the number of line segment samples needed
to generate a plane hypothesis. The criterion P (X) ≤ 1−β
in turn yields:

Niter ≤
log(1− β)

log(1− αk)

The right term evaluates to 46,049 with the given values for
α and β. Given that the number of candidate line segments
actually decreases at each iteration, as structural lines are
detected, this is a worst case analysis.

In practice, in our experiments, we set Niter = 50000.
On a 12-core CPU, the whole RANSAC process (finding
all planes) takes about 10 minutes for an upper bound of
10,000 lines with 50,000 iterations, which represents a mi-
nor fraction of the total reconstruction time.
Maximum number of detected planes Nmax. We intro-
duced a possible limit on the number of planes discovered
by our RANSAC variant. The influence of that maximum
number of detected planes Nmax is shown on Figure 5.

As can naturally be expected, the more planes, the better.
The mean Metro distance plateaus to a small value after 90
planes. So does the maximum Metro distance although with
a small value but slightly larger variance. Both the 95%-
precision and the 95%-completeness also plateau to a small
value after 90 planes.

The only drawback of adding more planes, in the case
of a surface reconstruction based on a full-extent plane ar-
rangement, is the increasing computation time, as adding a
plane has a cubic time complexity.

7

Figure 6: Impact of λvis on the max / mean Metro distance (left), and the 95% precision / completeness (right).

Figure 7: Impact of λedge on the max / mean Metro distance (left), and the 95% precision / completeness (right).

Figure 8: Impact of λcorner on the max / mean Metro distance (left), and the 95% precision / completeness (right).

8

Weight of the visibility term λvis. The impact of varying
the value of parameter λvis is represented on Figure 6. We
observe a plateau starting a bit before 10−1 (our default pa-
rameter), which starts deteriorating after 101 and even more
after 102. As for the regularization parameters below, this
observation qualitatively also applies to the other datasets.

Weight of the edge term λedge. The impact of varying
the value of parameter λedge is represented on Figure 7. The
error remains small when λedge is under 10−1, in particular
around value 10−2 (our default parameter).

Weight of the corner term λcorner. The impact of vary-
ing λcorner is represented on Figure 8. As for λedge, the error
remains small when λcorner is under 10−1, in particular on
the plateau around value 10−2 (our default parameter).

5. Quality of input data and sensitivity study
In this section, we analyze the impact of the level of qual-

ity of the 3D line segments (from Line3D++) that we use as
input to our method. We also study more generally the sen-
sitivity of our method to the number of input images or the
number of input 3D lines.

3D line segments detectors. There has been some recent
approaches to adapt structure-from-motion (SfM) methods
from points to line segments [15, 10]. However, few meth-
ods focus on the actual production of 3D line segments
[7, 6], possibly reconstructing more lines than just what the
SfM algorithms would produces, by leveraging on the cal-
ibration to match or significatively augment matched lines.
To our knowledge, only Line3D++ [5, 6] provides code for
this denser 3D line segment reconstruction.

In our experiments, we thus use Line3D++ to detect 3D
lines segments from a set of images, and to provide as well
sub-segments associated the each viewpoints.

Modest quality of input data from Line3D++. Al-
though quite efficient, Line3D++ produces a somewhat
noisy output on which we have little control:

• It can miss some important lines (see Figure 10), which
may lead to pertinent planes not being detected.

• It also generate many outliers (see Figure 11), which
pressurize the visibility and regularization terms.

• A number of actual, physical 3D lines (including shad-
ows) are given multiple reconstructions (see Fig. 12).

We expect any improvement on these aspects, for a 3D line
segment detector to be used as a preliminary stage to our
method (which is out of the scope of this work), to have a
particularly positive impact on our results.

Impact of Line3D++ parameters. These 3D line seg-
ments were obtained using the default parameter setting of
Line3D++ [5]. We tried playing around with the parameters
but did not get significantly better segments. In particular,

we studied the influence of σp, a major regularization pa-
rameter of Line3D++, on the HouseInterior dataset. It is
represented on Figure 13. The default value of Line3D++
for σp is 2.5, which is in a low plateau area of the graph.

Impact of the number of input images. We made a vari-
ant of the dataset MeetingRoom with 100 images and stud-
ied qualitatively the impact of providing a variable number
of images as input (keeping a calibration based on all 100
images). Results are show on Figure 9 and compared to a
point-based approach, namely Colmap [11] + Poisson [8]
reconstruction. When going down from 100 images to 50
images only, the quality of our reconstruction is progres-
sively reduced, but the general shape of the room as well
as a number of details are preserved. In contrast, the point-
based reconstruction with 100 images is filled with holes
and degrades rapidly when the number of images decreases.

#img Our method Colmap + Poisson

100

90

80

70

60

50

Figure 9: Variable number of input images: comparison of
our method vs Colmap [11] + Poisson [8] reconstruction on
a variant of MeetingRoom with 100 images.

9

Figure 10: Missing detections of 3D lines in the input: visible edge between floor and wall in a view of the MeetingRoom
dataset (left), and extracted lines with Line3D++ where that important edge is missing to recover the floor (right).

Figure 11: Spurious detections of 3D lines in the input: view from the MeetingRoom dataset (left), and reconstructed line
cloud using Line3D++ where vertical outlier lines float above the table (see also the video).

Figure 12: Spurious duplication of 3D lines in the input: view from the Andalusian dataset (left), and the extracted lines with
Line3D++ where some actual 3D lines in the scene are detected many times at slightly different locations (right).

10

Figure 13: Impact of σp on the max / mean Metro distance (left), and the 95% precision / completeness (right).

Figure 14: Impact of the number of input lines on the max/mean Metro distance, and the 95% precision/completeness.
.

Impact of the number of 3D line segments. We ran-
domly sampled 3D line segments produced by Line3D++.
The influence of the number of lines segments as input to
our method is illustrated on Figure 14. As can be expected,
the more lines, the better (in general), as it leads to a larger
diversity of possible reconstructions, with more details. The
mean Metro distance plateaus to a small value around 700
lines. Quite naturally, the max Metro distance remains
sensitive until a few thousands lines are provided. 95%-
precision also plateau a bit after a thousand lines, while
95%-completeness also retains a limited sensitivity. The
computation time of the visibility term however increases,
although mostly linearly in the number of lines.

6. Ablation study
To show that all line specificities in our method are use-

ful if not crucial, we performed an extensive ablation study.

If one line supports at most one plane, as in an ordinary
RANSAC framework, and if all lines supporting a detected

plane are thus put aside before performing the following
plane detection, as is the case in a greedy detection scheme,
then fewer lines are available to detect succeeding planes,
and less planes are detected. Experimentally, on HouseIn-
terior, this detects only 45 planes instead of 120 with our
method. The impact on reconstruction is illustrated on Fig-
ure 15: only the main planes are more or less reconstructed
appropriately.

If inliers are decided only from the distance to the model,
rather than from the distance to the intersection of the plane
model with the plane that already supports the inlier in case
the line is structural, i.e., if we make no difference between
lines inL0 and lines inL1 when gathering inliers for a given
model (see Section 3 of the paper, or Section 1 of this sup-
plementary material, subsection “inlier selection”), then the
algorithm tends to associate a line twice with more or less
the same plane. Experimentally, on HouseInterior, this de-
tects only 92 planes, vs 120 with our algorithm. See Fig-
ure 16 for an illustration of the impact on the reconstruction.

11

Figure 15: Reconstruction with our method where a line may support up to two planes (left, our RANSAC), or at most one
plane (right, standard RANSAC).

Figure 16: Reconstruction with our method where the gathering of inliers for a plane model relies on the distance to the plane
intersection for lines already supporting a plane (left, our approach), and to the plane only (right, standard approach).

Figure 17: Reconstruction with our method where all structural lines are treated specifically (left), and considered as two
textural lines, i.e., one for each supported plane (right).

If structural lines are treated as textural lines, i.e., if a
structural line in L2 is simply treated as two textural lines in
L1 (one for each supported plane), then reconstruction to-
tally fails (see Figure 17). This illustrates the importance of
distinguishing structural lines form textural lines, not only
for plane detection but also for surface reconstruction.

If regularization penalizes only the length of edges,
rather than only the number of corners, the reconstruction is
not as good, as can be seen qualitatively on Figure 18. This
fact has already been observed by [2]: providing a good bal-
ance between λedge and λcorner, the regularization on both
corners and edges is slightly better.

12

Figure 18: Reconstruction with a regularization on corners only (left), vs on edges only (right).

Figure 19: Reconstruction with a regularization on corners and edges (left), vs on corners only (right).

Figure 20: Impact of λarea on the max / mean Metro distance (left), and the 95% precision / completeness (right).

If regularization penalizes only the number of corners,
rather than both corners and edges, the reconstruction also is
not as good (ground floor), although it can be locally better
(armchair), as can be seen qualitatively on Figure 19. This
fact has also already been observed by [2].

If regularization also penalizes the surface area, as a
measure of surface simplicity like in [3, 2], the metrics do

not improve but rather tend to deteriorate, as can be seen
on Figure 20. The fact is this term makes little sense on the
kind of building scenes we are considering because we want
to be able to reconstruct large surfaces with little data, that
mostly lies on their boundaries only.

13

7. Video, code and data
As described in the paper, we experimented on several

datasets. To provide a better qualitative overview of the re-
constructions, we propose along with this document a video
showing through camera motion different viewpoints of the
reconstruction of each scene. The video also offers relevant
views of the 3D line segments we take as input (created with
Line3D++ [5]), with occasional pauses to illustrate typical
issues in the input 3D line cloud, i.e., noise, large number of
outliers, missing segments, and multiply reconstructed 3D
lines when there is only one in reality.

Code and new data (HouseInterior and Andalusian) will
be released upon publication of this work.

References
[1] J. Bauchet and F. Lafarge. KIPPI: kinetic polygonal parti-

tioning of images. In IEEE Conference on Computer Vision
and Pattern Recognitio (CVPR 2018), pages 3146–3154, Salt
Lake City, UT, USA, June 2018. 4

[2] A. Boulch, M. de La Gorce, and R. Marlet. Piecewise-planar
3D reconstruction with edge and corner regularization. Com-
puter Graphics Forum (CGF 2014), 2014. 3, 4, 5, 6, 12, 13

[3] A. L. Chauve, P. Labatut, and J. P. Pons. Robust piecewise-
planar 3D reconstruction and completion from large-scale
unstructured point data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2010), pages 1261–
1268, June 2010. 3, 4, 5, 13

[4] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape
of a set of points in the plane. IEEE Transactions on Infor-
mation Theory, 29(4):551–559, July 1983. 4

[5] M. Hofer. Line3D++, 2016. https://github.com/
manhofer/Line3Dpp. 9, 14

[6] M. Hofer, M. Maurer, and H. Bischof. Efficient 3D scene
abstraction using line segments. Computer Vision and Image
Understanding (CVIU 2016), 3 2016. 9

[7] A. Jain, C. Kurz, T. Thormählen, and H. P. Seidel. Exploiting
global connectivity constraints for reconstruction of 3D line
segments from images. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2010), pages 1586–
1593, June 2010. 9

[8] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface re-
construction. In 4th Eurographics Symposium on Geometry
Processing (SGP 2006), pages 61–70, 2006. 9

[9] L. Nan and P. Wonka. Polyfit: Polygonal surface reconstruc-
tion from point clouds. In IEEE International Conference on
Computer Vision (ICCV 2017), pages 2372–2380, Oct. 2017.
3

[10] Y. Salaün, R. Marlet, and P. Monasse. Robust SfM with little
image overlap. In 5th International Conference on 3D Vision
(3DV 2017), Qingdao, China, Oct. 2017. 9

[11] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion
revisited. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR 2016), 2016. 9

[12] M. van Kreveld, T. van Lankveld, and R. C. Veltkamp. On
the shape of a set of points and lines in the plane. Computer
Graphics Forum (CGF 2011), 30(5):1553–1562, 2011. 4

[13] M. van Kreveld, T. van Lankveld, and R. C. Veltkamp. Wa-
tertight scenes from urban LiDAR and planar surfaces. Com-
puter Graphics Forum (CGF 2013), 32(5):217–228, 2013. 4

[14] A. Zaheer, M. Rashid, and S. Khan. Shape from angle reg-
ularity. In 12th European Conference on Computer Vision
(ECCV 2012), pages 1–14, Florence, Italy, Oct. 2012. 2, 3

[15] L. Zhang and R. Koch. Structure and motion from line cor-
respondences: Representation, projection, initialization and
sparse bundle adjustment. Journal of Visual Communica-
tion and Image Representation (JVCIR 2014), 25(5):904–
915, 2014. 9

14

https://github.com/manhofer/Line3Dpp
https://github.com/manhofer/Line3Dpp

