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Why learn ?

1. Get rid of hand crafted priors - Manhattan world assumption [Furukawa2009]

Oriented points Dominant axes T Plane hypotheses Reconstruction by labeling
reconstructed by MVS  extracted from points ty generated from peaks  hypotheses to pixels (MRF)
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a) Initial drawing b) 3D prediction ¢) New drawing d) 3D printed objects
seen from another viewpoint and updated prediction



Data types What kind of data/sensor is relevant as input for 3d reconstruction ?

RGB Image(s) RGBD Image(s) PointCloud




Typical learning framework based on synthetic data

' Partial DataX

Loss

- Shape predictor

3D ObjectY




Training setup for 3D reconstruction

| Partial Data X

RGB Image(s)
RGBD Image(s) :
PointCloud - Shape predictor

PointCloud (Voxelized)é

Loss

3D ObjectY




Training setup for 3D reconstruction
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Training setup for 3D reconstruction

Partial Data X Choice of representation ?
RGB Image(s) .
RGBD Image(s)
PointCloud
PointCloud (Voxelized)é

h

Loss

3D ObjectY
&
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Representations

Obvious in 2D...

Not so obvious in 3D !




Training setup for 3D reconstruction

Partial Data X Choice of representation
RGB Image(s) .
RGBD Image(s)
PointCloud
PointCloud (Voxelized)é

h

Loss

3D ObjectY
&
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Training setup for 3D reconstruction

/ Partial Data X
RGB Image(s)

RGBD Image(s)
PointCloud

PointCloud (Voxelized)é

-

3D ObjectY

Choice of representation

Loss
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Training setup for 3D reconstruction

Partial Data X Choice of representation
. RGB Image(s)
. RGBD Image(s)

Loss
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Encoders for RGB & RGBD images

Error Rate in ILSVRC 2015 (%)
Do not reinvent the wheel :

5
Use state-of-the-art 2D :
networks 2
1
0
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ResNet Inception-v3

By Microsoft By Google
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Encoders for RGB & RGBD images

y

t layer

relu
y

X

Do not reinvent the wheel : <

Use state-of-the-art 2D —

networks F(x) :
- Resnet [He2015] -> Skip ‘

weight layer

connections
- BatchNorm [loffe2015] F(x) +x

identity
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Resnet 34 [He2015]
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Training setup for 3D reconstruction

Partial Data X

RGB Image(s)

RGBD Image(s)
PointCloud

PointCloud (Voxelized)

he

3D ObjectY
&

Choice of representation

Loss
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—3

Permutation

—»

Invariance

PointNet [Qi2017]
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O PointNet [Qi2017]
O . Permutation
® pommhoon >
Invariance
( X X J
Input
pointcloud
X=(x1, %3 .y xy)
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Invariance

PointNet [Qi2017]
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x; =(1,2,3) — mLP

| Input Xy = (1 1 ,1) — MLP
'\ pointcloud
;:\ 5 X= (x11x2, '"lxn)

X =(2,3,2) —> MLP /

x, =(2,3,4) — wmLp

E((x,x,....,x )= h(x,), ..., h(x )

PointNet [Qi2017]
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O PointNet [Qi2017]
O O Permutation
n
’ Inﬁgnce
X X
h

x; =(1,2,3) — MmLP

Input xz = (1 51 y1) —» MLP
|\ pointcloud
U X=(xq,xp, e, xy)
: " X, =(2’3,2) —> MLP

g

x, =(2,3,4) — wmLP

E((x,x,....,x )= g(h(x,), ..., h(x ))
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O PointNet [Qi2017]
O O Permutation
n
’ Inﬁgnce
X X
h

x; =(1,2,3) — MmLP

) Input Xy = (1 1 ,1) — MLP

-/ V| pointcloud

U X=(xq,xp, e, xy)

: " X =(2’3,2) —> MLP

5 Y

— MLP —>I E(X)

x, =(2,3,4) — wmLP

E((x,,x,....x )=v(g(h(x,), ..., h(x )))
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O PointNet [Qi2017]
O O Permutation
e—
Invariance

x; =(1,2,3)

- | Input X2 =(1,1,1)
./ \ pointcloud

f X=(x1, %3 .y xy) X =(2,3,2)

x, =(2,3,4)

E((x,,x,....x )=v(g(h(x,), ..., h(x )))
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Results : Unified framework for various tasks

'»_, ,d table?
car?

Classification

Credit [Qi2017]

PointNet

v
By
ey

Part Segmentation

Semantic Segmentation
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PointNet Limitations credit iaizo17

 Hierarchical Feature Learning
* Increasing receptive field

2
A -
512 filters of R /-‘
stride 1 21 |
K /
160 filtersof 7% 1
stride 2 fiiy
s£1 | e
A
48 filters of il
stride 2 i
7
30

3D voxel input

3D CNN (Wu et al.)

V.S.

Global Feature Learning
Receptive field:
one point OR all points

(1,2,3) —= MLP \

2.34) —=

(2,3,4) MLP
l—<—>

™ g

(1,3,1) MLP

PointNet (vanilla) (Qi et al.) -



Key idea : Global information is computed in 1 stage : the max function.

Q = PointNet Module

0000
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Key idea : Global information is computed in 1 stage : the max function.

Q = PointNet Module

= — | EX)
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?

@ @ o
X X ) OI0X X X J

Key considerations :

Define a receptive field : Ball Query(PointNet++ [qi2017b, simonovsky2017]) ? Nearest Neighbors ? Nearest
Neighbors in 8 quadrant (pointSIFT [iang2018]) ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?

@ @ o
X X ) OI0X X X J

Key considerations :

Choose a metric : Euclidean ? Geodesic ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?

@ @ o
X X ) OI0X X X J

Key considerations :

Choose the features : 3D input space features ? Current Layer features (Dynamic Graph CNN [wang201s]) ?
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Key idea : Global information is computed in 1 stage : the max function.
Inspired by their success in images, can we build hierarchical filters ?

@ @ o
X X ) OI0X X X J

Key considerations :

Global coordinates ? Local coordinates [qi2017b, wang2018]?
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A number of (good) alternatives exists

KD-Trees : [Klokov2017]
PCPNet [Guerrero2017]
Large-scale PointClouds : SuperPointGraph [Landrieu2018]

Build a graph on your pointcloud and apply Graph Neural Networks : SyncSpecNet [Yi2016]

A 22 20 2

Projection on enclosing sphere and equivariant convolutions from SO(3) [Esteves2018, Cohen2018]
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Training setup for 3D reconstruction

Partial Data X

RGB Image(s)

RGBD Image(s)
PointCloud

PointCloud (Voxelized)é

he

3D ObjectY
&

Choice of representation

Loss
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oxels si.n [Choy2016], Voxnet [Maturana2015], [Qi2016], [Wu2015]

Decoder
D

-> A 3D regular grid which subdivides a bounding
box in the 3D space

->  Allows direct generalization of the 2D methods
(convolutions, pooling)

-  Subject to the curse of dimensionality : memory
inefficient

46
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olumetric representations

Decoder

D

100x100x100 50x50x50

20x20x20
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Hybrid Grid-Octree Data Structure

Octnet [Riegler2017], OGN [Tatarchenko2017]

- Grid of octrees with fixed small depth :
typically 3

-> Computationally more effective

- Good compression rate
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OctNet input

=> |f a cell contains data from the mesh,
it takes value 1 and it is subdivided

=> Otherwise, it takes the value 0

- Easy to compare with the L2 distance
over voxels

Ve

O&v v

" SPY v

" SP YV

Bathtub Dresser N. Stand

Figure 8: Voxelized 3D Shapes from ModelNet10.
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Convolutions on Grid-Octree Data Structure

-> Improvement : Inside a given
cell the convolution result is
the same. We can compute it
once.

-  Convolution is computed on
the boundaries

(a) Standard Convolution (b) Efficient Convolution
R ) " '
(a) Constant (b) Corners (c) Edges (d) Faces

Figure 14: Efficient Convolution. 50



Pooling on Grid-Octree Data Structure

o

2D
example
-> Voxels at maximum resolution are
pulled
->  Voxels at higher resolutions are
halved in size
3D

R
LY P

NN

NS ,f;;i,~

| vl
Y |-

(b) Output
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Training setup for 3D reconstruction

Partial Data X Choice of representation

RGB Image(s) Volumetric (OctNet) I_oss
RGBD Image(s)

PointCloud | Feature

PointCloud (Voxelized) y___veotor |

3D ObjectY
&




Decoding towards an octree

Objective : Predicting the occupancy value of each cell in the octree
Issue : Contrarily to voxels, the octree structure is specific to each sample

->  We need to predict the octree structure
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Unpooling on Grid-Octree Data Structure

2D

-  All nodes double their sizes example

3D
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Unpooling on Grid-Octree Data Structure

2D
-  All nodes double their sizes example
What about capturing details at finer
resolution ?

3D
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Unpooling on Grid-Octree Data Structure

=> All nodes double their sizes

What about capturing details at finer
resolution ?

- If autoencoder, we can subdivide
according to the input octree’s structure.

-> In the case of single image
reconstruction, there is a need to know
whether terminal voxels can be splitted in
8 to capture finer details
[Tatarchenko2017]

2D
example

3D
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Octree generating networks - results

Subdivision is predicted as a classification task. [Tatarchenko2017]

=> This can be supervised at each
layer of the network because we
know whether a subdivision
occurs or not in the ground truth.

Full Empty Mixed
(any other configuration)

The red cell can either be

e full or empty: we don’t subdivide
e mixed: we subdivide
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Octree generating networks - results

OGN [Tatarchenko2017]

Input 1283 2563 GT 2563

s as
Bl i i A AR A

Bl e o e o ot

Figure 8. Single-image 3D reconstruction on the ShapeNet-cars
dataset using OGN in different resolutions.

58



Octree-based reconstruction

-> Gives insights regarding the extension of network operations to 3D data structures
- Important improvement in the fight against the curse of dimensionality

-  Gives quantitative results regarding the need for higher resolutions
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Training setup for 3D reconstruction

Partial Data X Choice of representation

RGB Image(s) | I_OSS
RGBD Image(s) PointClouds (PointSetGen)

PointCloud | Feature

PointCloud (Voxelized) y___veotor |

3D ObjectY
&




Generating POINES rointsetgenianzo]

Latent shape
representation

MLP

—

Generated
3D points
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Training setup for 3D reconstruction

Partial Data X Choice of representation
RGB Image(s) ' PothIou(ﬁ (:omtSetGen) l >
RGBD Image(s) 5 o %% 0SS ¢
PointCloud - o ... ° L
'Y X ) ®e

o ©

[ 4

]
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Loss on pointclouds

Complexity
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Loss on pointclouds

Complexity
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Loss on pointclouds

Find the optimal assignement and compute
Earth Mover Distance (EMD)

- Hungarian Algorithm [Kuhn1955] ~0(n3)

-> Simplex based solver through LP
formulation ~O(Hungarian)

-  Sinkhorn regularization [Cuturi2013] in
near linear time [Altschuler2017]

- (1+€) approximation [Bertsekas1988] in
~0(n3)

Complexity
EMD n3

otiq

: I->=L<E =

= - (E+di+di+d}+dY)

P
°f

65



Loss on pointclouds

Find the nearest neighbours and compute
Chamfer Distance (CD) = L(@, @ ) +

Complexity

EMD n Q/.

Chamfer 1%

)

)

§4£+£+ﬁ+ﬁ+@)
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Loss on pointclouds

Find the nearest neighbours and compute
Chamfer Distance (CD) = L(@, @ ) +

o Ce

: )

- %~(d§+d§+d§+di+d§)

Complexity

EMD n3 O/. d ?
Chamfer 1% &7




Loss on pointclouds

Find the nearest neighbours and compute

Chamfer Distance (CD)=L(@, @) +L(®, @)
= L( E E

il 1)
= - (E+di+di+d}+dY)

ds
Complexity

EMD n3 O/. d ?
Chamfer n2 68




Loss on pointclouds : the mean shape carries
characteristics of the distance metric

Distribution 'S of O / f ) )
pointclouds of varying \_
radius
= argmin E,.s[d(z, s)] O
' -’
EMD Chamfer

= &

Credit : [Fan2016]
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Training setup for 3D reconstruction

Partial Data X Choice of representation
: PointClouds (PointSetGen)

RGB Image(s)
RGBD Image(s)
PointCloud

Loss :
Chamfer
Distance
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ienerating points

Encoder
E

Decoder

)

Test Shape
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ienerating points

Encoder
E

Latent shape
representation

_>|_>

Test Shape

MLP

Decoder
D

Generated
3D points

— .:o.:
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En
E

coder

Test Shape

ienerating points

Latent shape
representation

- I |

MLP

Decoder
D

Generated
3D points

— .:o.:
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
-> Generated points are not correlated enough to belong to an implicit surface

Latent shape Generated

representation 3D points
e -

o %o n
— MLP —> e 0%
%2ee®e
o ©

[ ]
L (€]
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
=» Generated points are not correlated enough to belong to an implicit surface
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
=» Generated points are not correlated enough to belong to an implicit surface

3\

R S
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
=» Generated points are not correlated enough to belong to an implicit surface
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
=» Generated points are not correlated enough to belong to an implicit surface

)

@ \O @ C/)\/J‘
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Limitation of PointSetGen [Fan201/]

-> Generate a fixed number of points
=> Points connectivity is missing
=> (Generated points are not correlated enough to belong to an implicit surface

R R R T .

Reconstructing the mesh from a pointcloud :
Poisson Surface Reconstruction [Kazhdan2013]
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Training setup for 3D reconstruction

Partial Data X Choice of representation

RGB Image(s) ' I.

RGBD Image(s) 0SS
PointCloud | . Feature Decoder Surfaces (AtlasNet)

PointCloud (Voxelized) y___vector D

3D ObjectY
&




Deform a surface [croueix2018]

Generated
3D point
Latent shape
representation

E—> wr
Sampled

2D point i ° /



Deform a surface : space mapping trick (roveix2018)

Generated
3D point
Latent shape
representation

— MLP ey

Sampled

2D point i ° /
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Deform a surface [croueix2018]

Generated
3D point
Latent shape
representation

B wr | .

Sampled

2D point i. ° /



Deform a surface [croueix2018]

Generated
3D point
Latent shape
representation

B —> wr | .,

Sampled
2D point o0 o
o 0o o
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Deform a surface [croueix2018]

Latent shape
representation

B — MLP

Sampled

2D point o0 o

Generated
3D point

&
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Deform a surface [croueix2018]

Latent shape
representation

B —

MLP

Sampled

2D point
==

Generated
3D point

@&
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Deform a surface [croueix2018]

Latent shape
representation

B —

MLP

Sampled

2D point
==

Generated
3D point

~@
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Jeform a surface [Groueix2018]

Encoder
E

Decoder

)

Generated
3D point

Latent shape
representation

— § =—»| wmr2

Sampled

2D point
==

Test Shape
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Jeform a surface [Groueix2018]

Encoder
E

Decoder

D

Generated
3D point

Latent shape
representation

— § =—»| wmr2

Sampled

2D point
==

Test Shape 5
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Encoder
E

—>

Sampled

Test Shape

Jeform a surface [Groueix2018]

representation

Latent shape I

Decoder

)

Generated
3D point

MLP 1

—

I

2D point
==
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Jeform a surface [Groueix2018]

Encoder
E

—

—s
—s

Test Shape

—> MLP 1
Latent shape
representation I MLP 2
— 1
—» MLP 3
Sampled
2D point
==y [
|

Generated
3D point

Decoder

)
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En
E

Jeform a surface [Groueix2018]

coder

Decoder

)

Generated
3D point

—

—s
—s

Test Shape

—> MLP 1
Latent shape
representation I MLP 2
— 1
—» MLP 3
Sampled
2D point
==y [
|
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Results : Single View Reconstruction
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(d) PSG

(e) Ours
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Direct application : mesh parametrization
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State-of-the-art correspondences of FAUST [Groueix2018b]

{F R
A
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Training setup for 3D reconstruction

Partial Data X Choice of representation

RGB Image(s) :

RGBD Image(s) I'oss
PointCloud ' Feature

PointCloud (Voxelized) y___veotor |

Signed Distance Function

3D ObjectY
&




Can the space mapping trick be applied to volumetric representations ?

-> yes, through the Signed Distance Function (SDF) ! [Mescheder2018],
[Park2019], [Chen2019]

e @ .
@ SDF <0

e N
— —
Credit:[Mescheder2018] a) Voxels b) Points c) Meshes d) Signed Distance

Function



Deform a surface : space mapping trick (roveix2018)

Generated
3D point on the

Latent shape surface MLP(P)

representation

"l—b = mr e

y
Sampled Supervise with the

2D point P i o / Chamfer Distance
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Deform a volume Mescheder2018;

Latent shape
representation

e o

Sampled
3D point P

MLP

Predict Signed
Distance Function :
SDF(P)

e SDF(P)

Supervise with ?

Thibault G

Decoder
D
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Deform a volume Mescheder2018;

Predict Signed

Latent shape Distance Function :

representation SDF(P)
)y — MLP =)  SDF(P)
Sampled Supervise with :
3D point P ~—¢ - Classification: cross-entropy

- Regression: L1 Loss
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From the SDF to a mesh : marching cubes [Liao2018, Lorensen1987]

Core idea : the surface of the object corresponds to the 0-level set of the
SDF.

Credit:[Park2019] 101



Can the space mapping trick be applied on volumes ?

-> yes, through the Signed Distance Function (SDF) ! [Mescheder2018],
[Park2019], [Chen2019]

++ (et a voxel based representation at infinite granularity

++ (et analytic normals : dSDF(x)/dx

++ Topology is no longer an issue

-- need only one assumption : there is an interior and an exterior
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Input 3D-R2N2 [8] PSGN [14] Pix2Mesh [54] Our

Single View Reconstruction Results [Mescheder2018]

‘;s%‘“w '3\\:\
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Test on Real Images [Mescheder2018]

Input  Reconstruction Input  Reconstruction

@v fr
S 6 Vi
@e |1
= M

(a) KITTI (b) Online Products
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Interpolation Results [Park2013] Decoder

LERLRET

/
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Limitations so far - SDF

Input  Reconstruction Input  Reconstruction

Reconstructed models are too smooth

(a) KITTI (b) Online Products

106



Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdf r:

e Ifr>0, the circle (p, r) is full
e |Ifr<Q0,the circle (p, -r) is empty
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Number of samples :
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdf r:

e Ifr>0, the circle (p, r) is full
e Ifr<0,thecircle (p, -r) is empty

Number of samples :
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdf r:

e Ifr>0, the circle (p, r) is full
e Ifr<0,thecircle (p, -r) is empty

Number of samples : 10
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdf r:

e Ifr>0, the circle (p, r) is full
e |Ifr<Q0,the circle (p, -r) is empty

Number of samples : 20
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Number ©f samples : 50
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We

draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Number of samples : 100
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We

draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Number of samples : 200
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We

draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Number of samples : 500
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We

draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Number of samples : 1000
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We

draw a point p uniformly and compute its
sdf r:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty

Little information at the interior of sharp

areas -> no supervision -> bad predictions O O

Number of samples : 1000
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Limitations so far - SDF

Reconstructed models are too smooth - Possible explanation : Monte-Carlo sampling

We want to approximate the orange
square’s SDF through Monte-Carlo. We
draw a point p uniformly and compute its
sdfr:

e |Ifr>0, the circle (p, r) is full
e Ifr<0, the circle (p, -r) is empty
Little information at the interior of sharp

areas -> no supervision -> bad predictions

Potential fix : non uniform sampling

O O

Number of samples

1000
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Training setup for 3D reconstruction

Partial Data X Choice of representation

RGB Image(s) :

RGBD Image(s) I'oss
PointCloud ' Feature

PointCloud (Voxelized) y___veotor |

Geometric Primitives

3D ObjectY
&
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Fitting geometric primitives to a 3D shape

Motivations :
e Parsimony of description

e Helps finding structures in images for abstraction or
animation

e In the case of geometric object, helps capturing details
(sharp angles)
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Learn 3D reconstruction with cuboids usianizon,

Unsupervised method for fitting cuboid primitives

DI:><—> —

Latent LOSS {
representation = ‘
Primitive
parameters
(position, scale, existence)
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Learn 3D reconstruction with cuboids usianizon,

Unsupervised method for fitting cuboid primitives

=] —

Latent
representation = ‘
Primitive
parameters
(position, scale, existence)

Challenges :

1. Position the cuboids
2.  [Estimating the amount of cuboids to predict
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Fitting cuboids to a 3D shape (rusianizom

Designing a loss : Chamfer ? LOE, O) - DOD EDOD

Problem !

124



Fitting cuboids to a 3D shape (rusianizom

Designing a loss : Chamfer ? LOE, O) - DOD EDOD

Problem !

- Points sampled on —— increase the Chamfer distance
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Fitting cuboids to a 3D shape (rusianizom

Designing a loss : Chamfer ? LOE, O) :IDOD EDQD |

Problem ! . y y \4
7 |

- Points sampled on —— increase the Chamfer distance

-  Solution:
€ Among points sampledon () , we discard points which are inside 1]
4 Among points sampled on 11, we discard points which are inside 126



Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).

How to efficiently learn it ?
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Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).
How to efficiently learn it ?

For each predicted primitive, we define a Bernoulli random variable z_with parameter 6 _
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Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).
How to efficiently learn it ?
For each predicted primitive, we define a Bernoulli random variable z_with parameter 6 _

L(Up, (Pyy, 2m ), O)is a version of the loss which just ignores the m-th primitive when z_=0
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Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).
How to efficiently learn it ?
For each predicted primitive, we define a Bernoulli random variable z_with parameter 6 _

L(Up, (Pyy, 2m ), O)is a version of the loss which just ignores the m-th primitive when z_=0

Final IOSS : Lj"in({(Pm.apm): Vm} O) = E‘v’m,zmNBeTn(pm)L(Um(Pm: Zm)z O)
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Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).
How to efficiently learn it ?
For each predicted primitive, we define a Bernoulli random variable z_with parameter 6 _

L(Up (P, 2 ), O) s a version of the loss which just ignores the m-th primitive when z.=0

Final IOSS . Lj"in({(Pm.;p'rrl)7 Vm} O) = E‘v’m,zmNBeTn(pm)L(Um(sz Zm)7 O)

* Average loss that we get when choosing the primitive existence w.r.t the parameters ©_"
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Estimating the amount of cuboids to predict rusinizen

We don’t know whether a predicted primitive exists or not (unsupervised setting).
How to efficiently learn it ?
For each predicted primitive, we define a Bernoulli random variable z_with parameter 6 _

L(Up (P, 2 ), O) s a version of the loss which just ignores the m-th primitive when z.=0

Final loss : Lfin({(Pm.:pm): Vm} O) = EVm,zmNBefrn(pm)L(Um(P'm: Zm)7 O)
* Average loss that we get when choosing the primitive existence w.r.t the parameters ©_"

How to back-propagate through an expectation ?
132



Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X =R
We want to evaluate
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X — R
We want to evaluate

%E“(X)] =2 162; f(x)pe(z)
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X >R
We want to evaluate

9 o ,
90 [f(X)] = )()J:EX;’,]((I)])(;(I)
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X — R
We want to evaluate

=" f(.r)(% log(pe(x))pe(z)  “log-likelihood trick”

reEX
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X — R
We want to evaluate

= 3 @) 2 os(a()pot) - “log-likelihood trick”

reX

=K {f‘(X)a% log(z)e(X))]
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]
Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.

Let f: X — R
We want to evaluate

0 .
2™ = 00 Z F(@)po(:

rzeEX

ﬁzf ()0

—Zf —log po(x))ps(z)  “log-likelihood trick”

_E {f(X)Tﬁ, logo)e(X))]

The expectation can be estimated thanks to Monte Carlo with (X,),e 1,8y ~ Do
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X — R
We want to evaluate

0 .
2™ 20 Z F(@)po(:

zeX

—Zf ()0

—Zi —log po(x))ps(z)  “log-likelihood trick”

_E [f‘<X>)—; logo)e(xn}

The expectation can be estimated thanks to Monte Carlo with (X,,)e 1,8y ~ Po

N )
2 % Z {f(Xn)%log(pg(X"))]

n=1
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Estimating the amount of cuboids to predict rusinizen

Back-propagate through an expectation [williams1992]

Let X : Q — X be a discrete random variable with p.d.f py parametrized by 6.
Let f: X — R

N ,
(7(; E[f(X Z[ )—010g (Po(Xn)) Monte-Carlo sampling

This approximation is good when the dimension of v is not too high.
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Learn 3D reconstruction with cuboids usianizon,

“h bk b o % °v 06 w®
Ph o Bh BR ST PR @ 2F€
WK nm NN by o wdy
W NN YK wep oaap Dy
AR TN VL VR A
SCMM NN AW S 3 X

Notice that different shapes are reconstructed with different sets of cuboids 141



Learn 3D reconstruction with superquadrics paschariaouzots;

Everything in nature takes its form from the sphere, the cone and the cylinder.

P e e e e
T € € &€ ¢

- Paul Cezanne.
€1

16—

0.9

0.1+

I
0.1

T T T T >
0.5 0.9 1.3 1.7 €2

Superquadric Shape Space
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Learn 3D reconstruction with superquadrics paschariaouzots;

Results

w B2 NN R
[Tulsiani2017] - r, &I % = X, €
[Paschalidou2019] "ﬂ‘ %l & ? }{ 5‘\ :.'



Learn 3D reconstruction with superquadrics paschariaouzots;

w B2 NN
[Tulsiani2017] - r, Hci % ¢ 2, €
[Paschalidou201] WP %l R ? }{ S‘\ =

+ Generality = Data fidelity

+ Parsimony of description = Training Stability

#+ Inter-object coherence for signal transfer 144



Learn 3D reconstruction with superquadrics paschariaouzots;

w B2 NN
[Tulsiani2017] - r, &i % = X, €

[Paschalidou2019] "ﬂ‘ %l R ? }{ S‘\ S"

+ Generality = Data fidelity

+ Parsimony of description ‘ = Training Stability ‘

#+ Inter-object coherence for signal transfer 145



Learn 3D reconstruction with superquadrics paschariaouzots;

(‘:) ; 4 (‘:) ¥ » )1 .
%EU(A )] = 20 Z f(x)pe(x)

— Tulsiani et al.

—
3
V]

Training loss : animals
jumy
i
w

0 10000 20000 30000 40000
Number of iterations

(b) Evolution of Training Loss. 146



Learn 3D reconstruction with superquadrics paschariaouzots;

animals

Training loss :

00

E[f 2 Zf v)po (.

—

3
V]
1

—

I
w
1

— Tulsiani et al.

0

10000 20000 30000 40000
Number of iterations

(b) Evolution of Training Loss.

Are there alternatives to
REINFORCE ?

-  The Reparameterization trick
: cf [MohamedSlides]

- Direct analytical computation
in the particular case of the
Chamfer Distance
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Learn 3D reconstruction with superquadrics paschariaouzots;

) e D
SE(X)] = 2 > f(2)po(a)

Are there alternatives to
- Tulsiani et al. REINFORCE ?

—— Qurs

animals
[
S
\V]
1

-  The Reparameterization trick

- | Direct analytical computation
in the particular case of the

Chamfer Distance

Training loss :
p—
i
w
1

0 10000 20000 30000 40000
Number of iterations

(b) Evolution of Training Loss. 148



s, 0
SEFO1 = 25 3 f(@)po(o) LA,B) =} A(x,B)

X
xT€ x€A

A(x,B) = min ||z — y||

E[f(X)] =Ep) yeB

M
(Z L(Pm, X)) +L(X,P)

m=1
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0

SR = 50 3 f@m(a)

TEX

E[f(X)] =Epq)

M

= Z omﬁ(Pma X) + ]Ep(e)

3
[

e

3
[

1

1

Om

(Z L(Pm,X) > + L(X,P)

min A(x;,P
m|z,m=1
_xiGX

LPm,X)+Eyq)

m|z,=1

LX; GX

min A", P,)

m)

LA,B)=) Ax,B
xEA
A(x, B) = min ||z — y]

2"M configurations
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SEFO] = 53 f(@)pola)

TEX

E[f(X p(9)

(Z L(Pm,X) ) + L(X,P)

M
= Ol P, X) + Eypq) min A(x;, Prn)
m=1

m=1
_Xiexm|z

M
= 0L Pm,X) +E,yp) min A7, P,)
m=1

m=1
_Xiexm|z

Al <A?2<...<AM

ile=1
if2120,22=1

AM  if 2, =0,...,2m =1

2"M configurations

Reordering trick
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0

SR = 50 3 f@m(a)

TEX

E[f(X)] =Ep)

M
(Z L(Pm, X)) +L(X,P)

m=1

M _
— Z OmL(Pm,X) + E, ) Ilnln . A(x;,Pm)
m=1 | x;, €X MEm=
M _
— Z 0L Pm,X) +Ep ) Tnin X AT P.)
m=1 | x;, €X MEm=

AfSAF<- < AY

min A" = ¢
m|zm,=1

.

\

Al if21=1
Azz, ifZ1=0,212=1

AM if 2, =0,...,2p =1

2"M configurations

E[f(X)] Zo LPm,X)+ > ZAmem H (1 - Om)

x; X m=1

Reordering trick

Complexity: 2*M -> M"2
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Learn 3D reconstruction with superquadrics paschariaouzots;

) e D
SE(X)] = 2 > f(2)po(a)

Are there alternatives to
-  Tulsiani et al. REINFORCE ?

—— Qurs

animals
p—
S
N
1

-  The Reparameterization trick

- | Direct analytical computation
in the particular case of the

Chamfer Distance

Training loss :
P
i
w
1

0 10000 20000 30000 40000
Number of iterations

(b) Evolution of Training Loss. 153



Training setup for 3D reconstruction

Partial Data X Choice of representation
. RGB Image(s) ' I.
- RGBD Image(s) _ 0SS
. PointCloud 5 T eatre
: ' Feature
- ___vector |

PointCloud (Voxelized)é

Geometric Primitives

3D ObjectY
&

154




Training setup for 3D reconstruction

Partial Data X
. RGB Image(s)

Choice of representation

Volumetric (OctNet) I_oss
RG_BD Image(s) PointClouds (PointSetGen)
PointCloud | Surfaces (AtlasNet)
PointCloud (Voxelized)g

R

Signed Distance Function
Geometric Primitives

3D ObjectY
V.
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Training setup for 3D reconstruction

Partial Data X
. RGB Image(s)

Choice of representation

Volumetric (OctNet) I_oss
RG-BD Image(s) N v PointClouds (PointSetGen)
PointCloud - ' Feature | Surfaces (AtlasNet)

vector

____________

PointCloud (Voxelized)

R

Signed Distance Function
Geometric Primitives

- Many image dataset, but scarcity of 3D models
-  3D-based losses fail to capture sharp angles
->  Hybrid approaches between learning and optimization

156



Training setup for 3D reconstruction

Partial Data X
. RGB Image(s)
RGBD Image(s)
PointCloud
PointCloud (Voxelized)

=

- Many image dataset, but scarcity of 3D models
-  3D-based losses fail to capture sharp angles
->  Hybrid approaches between learning and optimization

Choice of representation

Volumetric (OctNet)
PointClouds (PointSetGen)
Surfaces (AtlasNet)
Signed Distance Function
Geometric Primitives

Loss
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Training setup for 3D reconstruction

Partial Data X
. RGB Image(s)
RGBD Image(s)
PointCloud
PointCloud (Voxelized)

=

- Many image dataset, but scarcity of 3D models
-  3D-based losses fail to capture sharp angles
->  Hybrid approaches between learning and optimization

Choice of representation

Volumetric (OctNet)
PointClouds (PointSetGen)
Surfaces (AtlasNet)
Signed Distance Function
Geometric Primitives

Loss
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Inverse Rendering - Issues

-> Rasterization is not differentiable

/A y\
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/ N JEEE N
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\ \
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Inverse Rendering - Issues

->  Z-buffering is not differentiable

160



Differentiating the rasterization process - silhouette case

[Kato2018]

->  Avoid the z-buffering process by just rendering sillouhettes

Mesh Neural
Generator Renderer

Image 3D Mesh Silhouette  Ground-truth

Loss
Backprop
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Differentiating the rasterization process - silhouette case

[Kato2018]

- (et a differentiable process through blurring

(a) Example of mesh & pixels k —
‘ . e
[
v = (X4, Yi)
(b) Standard rasterization L
Forward pass of / I
proposed method x;
(c) Derivative of (b) I
No gradient flow
Xi
(d) Modification of (b) I
Blurred image f
Xi
(e) Derivative of (d) L
Backward pass of < —
proposed method Xo Xy X

Figure 2. Illustration of our method. v; = {mi, yl} is one vertex
of the face. I; is the color of pixel P;. The current position of x;
is xo. x1 is the location of x; where an edge of the face collides
with the center of P; when z; moves to the right. I; becomes I;;
when z; = z1.

(a) Example of mesh & pixels K ~|
v B L) g
e ' lij
vy = (X0, Y1)

(b) Standard rasterization L

I

Forward pass of

proposed method X;
(c) Derivative of (b) J
No gradient flow
Xi
(d) Modification of (b) I
Blurred image N
Xi
(e) Derivative of (d) I
Backward pass of d m—'—
proposed method X8 " ) X

Figure 3. Illustration of our method in the case where P; is inside
the face. I; changes when x; moves to the right or left.
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Differentiating the rasterization process - silhouette case

[Kato2018]

->  Direct application, render a sphere and optimize its rendering to the silhouette of an input image

o
} ’
~ ~ W
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Differentiating the rasterization process - silhouette case

[Kato2018]

- Direct application, render a sphere and optimize its rendering to the silhouette of an input image

Problem:

->  Requires strong regularization to work !

Figure 5. Generation of the back side of a CRT monitor
with/without smoothness regularizer. Left: input image. Center:
prediction without regularizer. Right: prediction with regularizer.
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Differentiating the rasterization process - silhouette case

[Kato2018]

Problem:

->  Requires strong regularization to work !
|deas:

- Use multiple views [petersen2019]

->  |mprove the rendering process
[Nguyen-Phuoc2018], [Petersen2019], [Yang2018]
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Training setup for 3D reconstruction

Partial Data X
. RGB Image(s)
RGBD Image(s)
PointCloud
PointCloud (Voxelized)

R

Choice of representation

Volumetric (OctNet) I_oss
PointClouds (PointSetGen)
Surfaces (AtlasNet)
Signed Distance Function
Geometric Primitives

3D ObjectY
&
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Very Modular Framework ! risianizom

Partial Data X Choice of representation
. RGB Image(s) :
RGBD Image(s)

PointCloud :
PointCloud (Voxelized) 7

Loss

Geometric Primitives

3D ObjectY

167
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Very Modular Framework ! croueixzots;

Partial Data X
. RGB Image(s)
RGBD Image(s)
PointCloud :
PointCloud (Voxelized):

Choice of representation

Loss

Surfaces (AtlasNet)

3D ObjectY

168

Thibault Groueix, Pierre-Alain Langlois, 2019




Very Modular Framework ! ichoy201s, tatarchenkozo1

Partial Data X
. RGB Image(s)
RGBD Image(s)
PointCloud :
PointCloud (Voxelized):

Choice of representation

Volumetric (OctNet) I_oss

3D ObjectY

169

Thibault Groueix, Pierre-Alain Langlois, 2019




Limitations of learned approaches

27

Hard to add geometric constraints in
the design of a neural net architecture

e.g. Watertight reconstruction. cf
http.//imagine.enpc.fr/~groueixt/atlasnet/viewer-

Svr/

Hard to scale to large scenes and/or
very high level of details.

Biased by data

170


http://imagine.enpc.fr/~groueixt/atlasnet/viewer-svr/
http://imagine.enpc.fr/~groueixt/atlasnet/viewer-svr/

What was not covered today

Traditional methods : Shape from X

Graph Based methods : Spectral and spatial methods

Equivariant methods : Spherical CNNs

Other Point Based Methods : PCPNet, Kd-Trees

Differential rendering for inverse graphics : Neural renderer, rendernet
2.5D and Layer-Structured Inference : [Tulsiani2018]

Making it work on real sensor data : domain adaptation, data augmentation
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Take Home Message

The choice of representation of 3D data is critical

We journeyed from Volumes...,
... through Pointclouds...,

to Surfaces.

Thank you
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