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Abstract

An adaptive component is a component that is able to adapt its behavior to different
execution contexts. Building an adaptive application is difficult because of component de-
pendencies and the lack of language support. As a result, code that implements adaptation
is often tangled, hindering maintenance and evolution.

To overcome this problem, we propose a declarative approach to program adaptation.
This approach makes the specific issues of adaptation explicit. The programmer can focus
on the basic features of the application, and separately provide clear and concise adaptation
information. Concretely, we propose adaptation classes, which enrich Java classes with adap-
tive behaviors. A dedicated compiler automatically generates Java code that implements the
adaptive features. Moreover, these adaptation declarations can be checked for consistency to
provide additional safety guarantees.

As a working example throughout this paper, we use an adaptive sound encoder in an
audio-conferencing application. We show the problems associated with a traditional imple-
mentation using design patterns, and how these problems are elegantly solved using adaptation
classes.

1 Introduction

A complex system is typically made up from separate components sharing common resources.
The behavior of these components and the quality of service that they each provide is interde-
pendent. So, the system must adapt when the available resources are limited. For this reason,
adaptation technologies, such as feedback control mechanisms, are used to implement systems
that dynamically react to resource variations. As an example, consider distributed multime-
dia applications that share network resources. These applications must adapt their behavior
according to the network bandwidth to improve performance and to guarantee Quality of
Service [3, 4, 6, 13].

Building adaptive software is difficult, code that implements adaptation is often tangled
due to the resource and component dependencies. Furthermore, there is no convenient support
in programming languages to easily associate given execution contexts with corresponding
behaviors. Current adaptation mechanisms are ad hoc, which impedes maintenance and
extensibility.

In this paper, we present a declarative approach for the design and development of adap-
tive components in an object-oriented language like Java. This approach makes explicit two
specific issues: adaptation conditions and adaptation actions. Adaptation conditions express
when adaptation should occur, depending on the program state and the execution context.
Adaptation actions determine appropriate component behaviors. We declare both conditions
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and corresponding actions in a concise and precise way using adaptation classes, which enrich
existing Java classes with adaptive behavior.

These adaptation declarations are processed by a dedicated adaptation class compiler.
This compiler generates Java code that implements the adaptive features declared in the
adaptation classes. In particular, it automatically instruments the code with introspection
mechanisms that capture state changes. These state changes trigger behavior switches ac-
cording to the adaptation declarations, seamlessly integrating adaptation into programs.

Using the adaptation class approach, the programmer can focus on the basic features of
the application, and separately provide adaptation information. The separation of concerns
and the conciseness of adaptation classes improve development, maintenance and extensibil-
ity. Safety is also improved as the adaptation class compiler performs consistency checking.
In addition, as opposed to manual, ad hoc approaches that are inevitably error-prone, the
compiler systematically instruments the code whenever introspection is needed. Finally, there
is no price performance price to pay compared to a manual approach, because the compiler
generates efficient introspection and context switching mechanisms.

The rest of this paper is organized as follows. Section 2 presents a working example of
an adaptive program in the multimedia domain. Section 3 introduces some terms and issues
related to adaptation. Section 4 then describes two ways of designing an adaptive component:
an ad hoc manner and using adaptation classes. In Section 5, we present the problems that
arise when extending the adaptive component and how we handle them. Section 6 then gives
an overview of adaptation classes and provides an informal semantics. Section 7 surveys
related work, and Section 8 presents our concluding remarks and future work.

2 Working example: an adaptive sound encoder

Adaptation is crucial for multimedia [6]. Consider a live audio application for audio-con-
ferencing. The quality of the audio depends primarily on the number of lost packets and
the delay variations between successive packets. Furthermore, the average end-to-end delay
must be small to allow interactions between participants. Therefore, the application must
adapt to the available network bandwidth to respect the temporal constraints, and provide
performance guarantees regarding loss rate or maximum delay [3, 13]. Bandwidth control
mechanisms can adjust to network congestion by adapting the size of the packets to the load
of the network [1, 18].

Figure 1 illustrates the general structure of the sending part of the adaptive audio-
conference application freephone [2]. Before transmitting sound samples to the subscribers
of the audio-conference, specific treatments reduce the amount of information sent over the
network. First, the sound is compressed in the SoundEncoder component. To increase the tol-
erance to packet loss redundant information is added which is used to reconstruct lost packets
(the RedundancyInformation component). The RtpSend component broadcasts the packet.
The protocol used by audio-conferencing applications such as freephone is RTP (Real-time
Transport Protocol) [3, 15], which provides feedback on the transmitted data as RTCP (Real-
time Transport Control Protocol) control frames. The RtcpController component receives
these frames and computes feedback information to approximate the network bandwidth avail-
able. This estimate is used by the SoundEncoder and RedundancyInformation components
to adapt the compression rate and the amount of redundancy information.

To vary the compression rate, we can choose among different encoding algorithms [2], as




shown in Table 1. Choosing among these algorithms makes it possible to vary an 8 kHz sound
speech sample from 5.6 kbits/s to 48 kbits/s. ADPCM [12, 17] is a differential encoder which
can be parameterized from 16 kbits/s to 48 kbits/s with a precision parameter (between 2 and
6). LPC [8] and GSM [5, 16] are fixed low bit-rate encoders. Using these encoding algorithms,
the application is able to adequately react to bandwidth variations.

Encoding | bit rates (kbits/s)
ADPCM(6) 18
ADPCM(2) 16

GSM 13.3
LPC 5.6

Table 1: Bit rates of the encoding algorithms

3 Adaptation basics

An adaptive component is a component that is able to adapt its behavior to different ex-
ecution contexts. Adaptation can be static or dynamic. Static adaptation corresponds to
configuration, i.e., performing adaptation before execution depending on fixed parameters.
Dynamic adaptations are run-time changes depending on the execution context.

There are two ways to implement dynamic adaptation: adaptation on change and adap-
tation on action. Adaptation on change installs new behaviors each time that the execution
context changes. When adaptive functionality is used, the execution context does not need to
be checked; installed behaviors are blindly performed. On the contrary, adaptation on action
inspects the execution context each time that an adaptive functionality is called, to determine
which behavior should be performed.

The choice of which strategy is best (on change or on action) depends on both the frequency
of change in the execution context and the number of calls of adaptive actions. In the
following, we focus on adaptation on change. This strategy is usually the most appropriate for
multimedia components because the same set of actions are often repeatedly called, whereas
context changes require updating behaviors only when given thresholds are reached. Given
that the rate change of the execution contexts is often lower than the frequency of action
calls, adaptation on change requires less run-time management compared to adaptation on
action.

Adaptation on change can be decomposed into three stages:

Introspection. Collecting information about the execution context. This introspection can
be implemented by inserting guards that monitor given program states and notify the
adaptation controller (the second stage) in case of changes. In our working example,
the introspection stage is implemented by the RtcpController component which sends
a notification to the SoundEncoder and RedundancyInformation components when the
bandwidth changes.

Control. Adaptation conditions are expressed over the guarded program states. These pred-
icates, often represented by threshold tests, determine which behavior is the most ap-
propriate. In the example, the SoundEncoder component implements this control mech-
anism. Each time the RtcpController signals a bandwidth change, the SoundEncoder
evaluates adaptation conditions based on the new bandwidth value, to choose the ap-
propriate encoding algorithm.

Installation. Depending on the adaptation conditions, new behaviors are installed, replacing
previous ones. In our example, the SoundEncoder installs one of the different encoding
algorithms, balancing quality and packet sizes.

In this paper, we focus on the RtcpController and SoundEncoder components, and their
relationship. We show that the traditional implementation of a simple adaptive system raises
several problems in terms of construction and evolution.



4 Building an adaptive component

In this section, we study the implementation of the SoundEncoder component for a wireless
network. Typically, a wireless network is characterized by low bandwidth, for which reason
we use the two low bit-rate encoders, LPC and GSM.

The choice between these two algorithms depends on the available network bandwidth.
For this reason, we need to create a relation between the RtcpController component, which
estimates the network bandwidth, and the SoundEncoder component, which selects the ap-
propriate encoding algorithm.

We build this adaptive component in two ways: first, we use an ad hoc technique based
on design patterns and study its advantages and disadvantages. Then, we present the design
of the same component using our declarative approach and examine its benefits.

4.1 Making an adaptive component “by hand”

Because adaptation is difficult to apprehend in a complex system, implementing an adaptive
component requires a structured approach. A natural way to organize component implemen-
tation in an object-oriented language is to use design patterns [9]. Design patterns capture
common structures that arise when designing and implementing programs, providing a good
framework for conveying program design expertise. Over the last few years, they have become
a standard tool in the design of object-oriented programs.

A selection of well-known design patterns can be used to express the three stages of our
adaptive SoundEncoder. To build this adaptive component, we rely on:

e a subscription mechanism to the network observer (RtcpController) that can notify all
the subscribers of guarded state changes (Introspection and Control stages)

e a mechanism to modify a behavior (Installation stage)

We use three design patterns to implement these features: Observer, Strategy and Facade.
The Observer pattern allows the notification of a set of subscribers any of states change. The
Strategy pattern describes the implementation of an object that can dynamically change its
behavior. The Facade pattern provides an interface to encapsulate a set of objects. The
composition of these design patterns is shown in Figure 2.

Introspection. The RtcpController must notify the SoundEncoder when the network
bandwidth changes. To model this dependency, we use the Observer pattern. This pattern
allows a set of objects, the observers, to be automatically notified when a state changes
in an observed object, the subject. In our example, the Observer pattern describes how to
establish the relation between the RtcpController (the subject) and the EncoderStrategy
(an observer). Implementation details are presented in the appendix.

Control. When the bandwidth value changes, the appropriate conditions must be checked
to determine which encoding algorithm is the most appropriate. To model this dependency,
we could use a mediator pattern. In practice, this level of indirection is not needed here. It
is easier to just extend the observer so that it notifies the subscribers only when an update is
required, specifying explicitly which algorithm must be installed.

Installation. Update requests specify which encoding algorithm is to be used as the cur-
rent behavior. To model this, we use the Strategy pattern, which allows dynamic changes in
object behavior by letting complementary behaviors vary independently from the clients who
use it. It is implemented by defining classes that encapsulate the different algorithms. These
algorithms are implemented with Gsm and Lpc classes which provide an encode method that
transforms sampled sound into compressed packets. The EncoderStrategy class defines the
interface to the adaptive behavior (see the appendix for details).

Last, we have to provide an appropriate interface for the sound encoder component. To
this end, we use the Facade pattern. A Facade defines a higher-level interface that makes the
subsystem easier to use. We encapsulate the classes implementing the Observer and Strategy
functionality to create the SoundEncoder component, using the Facade design pattern to
provide a unified interface.
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Figure 2: UML diagram of the cooperation between Encoder and RtcpController

Usage. At instantiation time, the SoundEncoder component is connected to the RtcpController
component in order to be informed of network bandwidth changes. When the bandwidth
changes, the update method of the EncoderObserver object is invoked by the RtcpController.

The EncoderObserver object queries the transmitter for its new state with the get_bandwidth
method. Given the bandwidth, the EncoderObserver object then determines the best encod-

ing strategy given this bandwidth. It invokes the change method of the EncoderStrategy
object to switch the encoding algorithm.

The SoundEncoder must create an instance of each behavior, which can be done either
lazily (when needed) or strictly (at instantiation time). Strict creation initially consumes more
resources than lazy creation, but ensures responsiveness after initialization has completed,
which makes it preferable for our component. Thus, the system first creates all adaptive
behaviors, after which the SoundEncoder component is synchronized with the RtcpController
component by invoking the update method, in order to acquire the actual bandwidth.

Assessment. Design patterns describe solutions to specific problems in object-oriented
software design. For example, the structure of the Strategy pattern provides different im-
plementations of the same behavior offering a way to support a variety of algorithms and
facilitating future extensions. The use of design patterns isolates different functionality (cre-
ational, structural and behavioral) and splits up behaviors (Strategy, Mediator, Observer...).
However, in the case of adaptation, using design patterns has some drawbacks.

The design of the adaptive SoundEncoder component is complex (see Figure 2 and the code
in the appendix). The use of the Strategy and Observer design patterns for the SoundEncoder
component introduces communication overhead and increases the number of classes. In our
example, it is necessary to declare 9 classes bound together by 5 references. In addition,
the object interaction protocol is computationally expensive. It requires 2 indirections for
each call of the encode method and 3 calls for each modification of the bandwidth field (4
if the current encoder has to be changed). Furthermore, the decomposition into different
subcomponents makes code modification difficult. The dependencies between objects requires
propagation of all modifications to all the classes in order to keep the code coherent, as will




adaptclass SoundEncoder adapts Encoder {
RtcpController rtpControl;
SoundEncoder (RtcpController _rtpControl) { rtpControl=_rtpControl; }
when (rtpControl.bandwidth < 13.3) Lpc();
when (rtpControl.bandwidth >= 13.3) Gsm();

Figure 3: Declaration of adaptive behaviors on Encoder class

be apparent in Section 5.

4.2 Declaration of an adaptive encoder

To simplify the design and development of adaptive components, we propose to declare adap-
tive behaviors and automatically generate code from these declarations. The principle of
our approach is to separate the adaptation declaration from the basic implementation of the
main program. We use adaption classes to declare which encoding algorithm to use depend-
ing on the bandwidth computed by the RtcpController component. The adaptation class
compiler evaluates the declarations, creates the SoundEncoder component, and modifies the
RtcpController to plug in the introspection mechanism.

We reuse the Encoder class hierarchy and the RtcpController class as presented in Sec-
tion 4.1. The Encoder class defines an abstraction of a sound encoder and an interface to the
encoding method. This abstract class is refined by concrete sub-classes (Gsm and Lpc) which
each implement an encoding algorithm. The RtcpController class is the network interface for
receiving control packets. These are our starting point for designing the adaptive component.

We define an adaptation class SoundEncoder (shown in Figure 3) to adapt the abstract
class Encoder. The fields and the interface of the Encoder class are used as information to
define when and how to substitute behaviors. The adaptation class introduces a reference
rtpControl to an RtcpController object to access the value of the current bandwidth. It
defines a constructor to initialize this reference, linking the adaptive component with the
RtcpController object. Two adaptation conditions (when statements) are introduced, which
express condtions over the value of the bandwidth field of the rtpControl object. If this value
is less than 13.3 kbits/s, then the current behavior is defined by the class Lpc, otherwise it is
defined by the class Gsm. To access the value of the private bandwidth field, the adaptation
class compiler introduces an accessor method into the RtcpController class.

The adaptation class compiler can use the information defined in adaptation classes to
generate the implementation of the adaptation mechanisms. We know at compile time which
observers are needed and we have a precise description of the information required to switch
behaviors. Thus, we can generate an implementation specific to the adaptation needs:

e We can simplify the connection mechanism by replacing the management of the set of
observers by a reference to each observer.

e It is possible to make observer-specific update protocols, since we know exactly what
information is needed about each change. The subject can send observers detailed
information as an argument to the update method. This optimization reduces the cost
of each state change.

e One of the indirections otherwise needed for calling the encode method can be elimi-
nated. The compiler automatically produces a complete component with all necessary
mechanisms. It is not necessary to use a design pattern like Facade to provide a concise
interface.

The compilation of this adaptation class modifies the RtcpController class creates the
SoundEncoder class as shown in the appendix. The RtcpController class is modified by
adding a subscription mechanism and analyzing the code to insert guards to detect mod-
ifications of the bandwidth field. These modifications do not affect the behavior of the
RtcpController; they are transparent for any other objects that may use RtcpController.
The resulting SoundEncoder class is composed of references to adaptive behaviors and methods
for implementing adaptive mechanisms.




Usage. We insert the generated SoundEncoder component into the program. The use
of this class is similar to the use of the SoundEncoder component defined by hand in the
Section 4.1. First, we create an rtcpSession object to receive and handle RTCP control
frames. Second, we create an instance of the SoundEncoder and pass it a reference to the
rtcpSession object. Then, the soundEncoder object connects to the rtcpSession object in
order to be notified of each modification to its state, and it initializes all possible behaviors
defined in the adaptation class (strict creation). To synchronize with the initial rtcpSession
bandwidth, the soundEncoder object calls the acUpdate method and determines an initial
behavior.

When the value of the bandwidth field is modified, the rtcpSession object notifies the
soundEncoder object by calling the update method with the bandwidth value. The sound-
Encoder object re-computes its adaptation state and applies the appropriate encoding algo-
rithm, as specified in the adaptation class (cf. Figure 3).

Assessment. Our approach separates adaptation aspects from the code. First, it reduces
the complexity of the adaptive SoundEncoder component design. The implementation only
needs the Encoder and RtcpController classes and one adaptation class; our approach sepa-
rates adaptation mechanisms from the code. Second, performance is improved. The generated
code requires one indirection for each call of the encode method, and one call for each mod-
ification of the bandwidth field (or two if it is necessary to change the current behavior).
Last, evolution is easier. The evolution of an adaptive component is done by redefining the
adaptation classes. The compiler automatically propagates all modifications into the code
(such evolution is explored in the next section).

5 Evolution of an adaptive component

In the previous section, we defined an adaptive component with the ability to change be-
havior depending on network bandwidth variations. Suppose that this component needs to
be used in another environment, namely for audio-conferencing on the web. The available
bandwidth is higher than for a wireless network, so we can raise the audio quality by increas-
ing the bandwidth adaptation domain of our audio-conferencing application. This section
presents the repercussions of this extension of the SoundEncoder component, namely adding
a new encoding algorithm, Adpcm, which extends the adaptive encoder up to 48 kbits/s (cf.
Figure 1).

The addition of a new encoding algorithm in the Encoder hierarchy must be propagated
to all components that are using these classes. Conceptually, the modifications are minor.
We just have to extend the adaptation domain of the Gsm behavior and add new adaptation
conditions to the object Adpcm:

e when the bandwidth is between 16 and 48 kbits/s, use Adpcm(2),
e when bandwidth is greater than 48 kbits/s, use Adpcm(6).

In the rest of this section, we show how this extension can be implemented, first using the ad
hoc method, and then our declarative approach.

Ad hoc extension. To add these behaviors into the adaptive component defined in Sec-
tion 4.1, we need to modify the EncoderStrategy and EncoderObserver classes in order to
propagate state modifications to all the components as illustrated in Figure 4. First, we must
add references to the new behaviors (1) and modify the EncoderStrategy constructor to cre-
ate and initialize them (2). Second, we have to add the assignments to the CurrentEncoder
variable in the change method (3). Last, we extend the control mechanism in the update
method (4). This example illustrates that a simple change like the addition of new behaviors
in an adaptive component is a non-trivial task. It implies modifications throughout the entire
program.

Extension by declaration. With adaptation classes, the generation of an adaptive com-
ponent is automatic. The addition of a new algorithm in the SoundEncoder components re-
quires only the modification of the SoundEncoder adaptation class as shown in Figure 5 and
a re-compilation.



class EncoderStrategy {

Encoder currentEncoder,
gsmEncoder,
IpcEncoder,
adpcm2Encoder,
adpcm6Encoder;
public void change(String newStrategy) {

if (newStrategy=="Gsm") { currentEncoder=gsmEncoder; }

elselif (newStrategy=="Lpc") { currentEncoder=IpcEncoder; }

else if (newStrategy=="Adpcm?2") { currentEncoder=adpcm2Encoder; }

else currentEncoder=adpcm6Encoder;

}

public EncoderStrategy() {
gsmEncoder=new GsmJ();

IpcEncoder=new Lpc(); @
adpcm2Encoder= new Adpcm(2); |
adpcm6Encoder= new Adpcm(6);

b
¥

class EncoderObserver extends Observer {

EncoderStrategy strategy;

void update(Subject s) {
float bandwidth=((RtpSession) s).getBandwidth();
if (bandwidth<13.3) strategy.change("Lpc");
elsel(if (bandwidth<16) strategy.change("Gsm");
else if (bandwidth<48) strategy.change(" Adpcm?2");
else strategy.change("Adpcm6");

¥

}

Figure 4: Evolution of SoundEncoder component

adaptclass SoundEncoder adapts Encoder {

RtcpController rtpControl;

SoundEncoder (RtcpController _rtpControl) { rtpControl=_rtpControl; }
when (rtpControl.bandwidth < 13.3) Lpc();

M(l&?) <= rtpControl.bandwidth && rtpControl.bandwidth < 16)|Gsm;() @
when (16 <= rtpControl.bandwidth && rtpControl.bandwidth < 48) Adpcm(2);
when (48 <= rtpControl.bandwidth ) Adpcm(6);

Figure 5: Adding a new adaptive behavior




adaptclass ExtendedSoundEncoder extends SoundEncoder {
when (16 <= rtpControl.bandwidth && rtpControl.bandwidth < 48) Adpcm(2);
when (48 <= rtpControl.bandwidth) Adpcm(6);

¥

Figure 6: Inheritance extension of the adaptation class SoundEncoder
AcDecl = adaptclass Identifier (adapts | extends) Identifier AcBody
AcBody = { (FieldDeclaration)* (ConstructorDeclaration)* (AcCond)* }
AcCond = (when AcPred)t AcBehavior;
AcBehavior = Identifier ((ArgumentList)”)
AcPred = LinearEzxpression

Figure 7: Adaptation classes syntax

Alternatively, adaptation class inheritance (explained in detail in the next section) could
be used. Figure 6 shows the ExtendedSoundEncoder adaptation class which is a sub-class
of SoundEncoder, that inherits all of the SoundEncoder definitions. It defines two levels of

predicate evaluation:

e if the bandwidth is greater than 16, then the ExtendedSoundEncoder behaviors are

applied,

e otherwise, it relies on the conditions defined in SoundEncoder to find an appropriate

behavior.

This use of adaptation class inheritance necessitates the modification of the program using
the encoder: the newly generated ExtendedSoundEncoder class must be substituted for the

SoundEncoder class.

6 Adaptation classes

The evolution of an adaptive component is problematic since its dependencies are scattered
throughout the program code. Our declarative approach exposes all adaptation capabilities,
and new code can easily be generated by recompiling the modified declarations. This section

defines the syntax of adaptation classes and explains the semantics of the language.

The syntax of the adaptation class language is given in Figure 7. The definition of non-
terminals Identifier, FieldDeclaration, ArgumentList and ConstructorDeclaration are given in
the Java syntax [10]. The definition of non-terminal LinearEzpression is similar to a Java
expression, but slightly is constrained as explained later. Adaptation classes are similar to
Java classes in their use and syntax. An adaptation class declares adaptation over an abstract
Java class. It has a name (both used to build the resulting Java class and to define the inher-
itance relation), the name of the adapted abstract Java class, and a set of members. These
members include fields, constructor declarations, and adaptation conditions which describe

the conditions under which adaptive behaviors are applied.

6.1 Adaptation class members

All adaptation declarations are described by the AcCond rule. This rule can be divided into

two parts: the condition part <when AcPred>, and the action part, AcBehavior.

Introspection and condition stages. Adaptation conditions express when adaptation
should occur, by expressing a condition over the state of the adapted object or its execution
context. Conditions are declared with the statement when AcPred, where the predicate AcPred
may reference class fields. An adaptation is applicable when the predicate evaluates to true.
In our example (cf. Figure 3), the adaptation condition consists of testing the bandwidth value
of an RtcpController object. For this object to be known by SoundEncoder, we declared the

reference rtpControl in the adaptation class.



The compiler gathers the variables used in the predicates and systematically inserts guards
to watch these variables and to notify the adapted component in case of changes (introspec-
tion stage). To ensure that all changes to these variables are captured, it is necessary to
protect them from being directly written by external objects. The variables must be written
through an accessor method which is automatically inserted by the compiler. Consequently,
the adaptation context may only contain private fields, such as the bandwidth field in the
RtcpController class.

An incorrect declaration of predicates can cause errors or inconsistencies: if two predicates
overlap, the choice of a behavior becomes nondeterministic. An adaptation class must respect
completeness and uniqueness. Completeness guarantees that for every possible situation,
there exists an adaptation action. Uniqueness guarantees that for each situation, there is
only one adaptation action which is applicable. To enforce these two properties we use the
logic language CLP(R) [11]. With this language, we can solve linear arithmetic constraints
and perform computations over real numbers (non linear constraints are not allowed). As
a consequence, when a condition is expressed as a set of linear constraints, it is possible to
verify completeness and uniqueness.

Declaration of actions. An action is the substitution of one behavior (i.e., object) by
another one. Each adaptive behavior is represented by an object. To enable substitution
of objects, they must have a similar interface and must inherit from the same abstract Java
class. In our example, all encoding algorithms inherit from the Encoder class, and they all
implement a version of the encode method.

For the program to run, it is necessary to instantiate all classes which represent an adaptive
behavior. The creation and the initialization of these objects are declared by their construc-
tors. For example, in Figure 5, the instantiation of the Adpcm encoder was declared with a
prediction value of 6 (for an available bandwidth superior to 48 kbits).

6.2 Adaptation Classes

Adaptation actions are encapsulated in an adaptation class, which represents the unity of
adaptation of our approach. An adaptation class is applied to a Java class or extends some
other adaptation class by inheritance.

Class structure changes. An adaptation class declares adaptive aspects of an existing
Java class. The adaptation class compiler takes as input a Java program and a set of adap-
tation classes which controls how adaptation features are added to the program code. An
adaptation class is applied to an abstract Java class; this abstract class corresponds to a set
of behaviors in the form of sub-classes, each sub-class implements a concrete behavior. The
adaptation class compiler creates a sub-class of the abstract super class which can switch
between concrete behaviors depending on an execution context. Furthermore, the compiler
inserts guards throughout the program code to notify the adaptive object of any context
modification.

Figure 6.2a shows a diagram of the classes used in Section 4.2 to build the adaptive
SoundEncoder component. The Encoder class is the abstract class to be adapted; the Gsm and
Lpc classes define concrete encoding algorithms; and, the RtcpController class contains the
execution context to be monitored. Figure 6.2b shows the result of compilation. The compiler
creates the SoundEncoder class as a sub-class of the Encoder class, and references are created
to access the concrete behaviors and to notify of any state changes in the RtcpController.

Method mapping. Each abstract method defined in the abstract super class (Encoder)
is implemented in the adaptive class (SoundEncoder) as a wrapper to a concrete method. This
mapping is trivial since the methods have the same parameters.

State mapping. It may be necessary to share a variable between all adaptive behaviors.
In our framework, we share a variable when it is defined in the abstract Java class or any
of its super classes. The sharing of these variables is implemented by copying shared state
when a behavior is switched, using the acCopyEnv method which is added by the adaptation
class compiler (see the appendix for details). As an example of shared variable, assume that

10



RtcpController

Encod:
Encoder neoder

RtepController

Lpc Gsm Lpe Gsm Sound Encoder

T L9 ¢

Figure 8: (a) before compilation
Figure 9: (b) after compilation

one wants to count each call of the encode method of each encoder instance, one could add
a variable counter to the class Encoder. This variable would be incremented each time an
encode method is called. But when the encoding algorithm changes to adapt to the network
bandwidth, if the compiler did not handle shared variables, one would have to copy the value
of the variable from the current behavior to the new one.

Inheritance relation. Rather than directly adapting an existing Java class, an adap-
tation class can extend another adaptation class by inheritance. The inheritance relation is
similar to that of an object-oriented language, enabling the definition of a hierarchy of in-
creasingly refined adaptation classes. The use of inheritance in adaptation classes allows us
to define a partial order between adaptive behaviors, which again makes it possible to define
a decision tree on the adaptation conditions for selecting which behavior to use. Thus, we
can add new behaviors in an incremental way, as was illustrated in Figure 6.

When an adaptation class is extended, our compiler generates a sub-class which extends
the adaptive Java class. This new sub-class overloads the condition adaptation. As an ex-
ample, recall how the SoundEncoder adaptation class was extended with the declaration of
an adaptation sub-class ExtendedSoundEncoder in Section 5. This declaration caused the
compiler to create a sub-class ExtendedSoundEncoder of the class SoundEncoder.

7 Related work

Predicate classes. Predicate classes [7] are a syntactic and semantic extension of the Cecil
language. They allow the applicability of a method to be declared via a predicate expression,
which is a logical formula over class tests (i.e., test that an object is a particular class or one
of its subclasses) and boolean-valued expressions. Compared with our approach, predicate
classes are intrusive. Declaration must be included directly in the code, and each method call
requires the evaluation of its associate predicate, which is an on change adaptation and thus
not appropriate in all cases (multimedia for example).

Specialization classes. Specialization classes [19] are an extension of the Java language.
They declare adaptation program by specialization on the methods of a class. The conditions
of adaptation depend on predicates parameterized by object fields. Using these declarations, a
program specializer produces specialized methods, and the specialization class compiler mod-
ifies the existing classes to integrate a customized execution support the specialized methods.
Our approach treats a more general form of adaptation since behavior can be substituted as
opposed to only adding more specific behavior. Adaptation classes do not automatically pro-
duce a specialized behavior, but adaptation classes could be used with specialization classes
to provide adaptive components with specialized actions.

Aspect-Oriented Programming. Kiczales et al [14] describe many programming prob-
lems for which neither procedural nor object-oriented programming techniques are sufficient
to clearly capture some important features in program implementation. This forces the imple-
mentation of these features to be scattered throughout the code, resulting in “tangled” code
that is excessively difficult to develop and maintain. These features are refered to as Aspects.
Kiczales et al present a new programming technique called Aspect-Oriented Programming,
which makes it possible to clearly express programs involving such aspects, including appro-
priate isolation, composition and re-use of the aspect code. A specific compiler, a weaver,

11




injects the declared aspect in the program code. Our approach is a special case of Aspect-
Oriented Programming which expresses adaptation concerns. Using adaptation classes, we
enrich the capacity of an object to dynamically change its behavior depending on an execution
context.

8 Conclusion

In this paper, we have shown that for designing adaptive components, ad hoc techniques can
be complex and introduce communication overhead. Decomposition into different subcompo-
nents makes code modification difficult because implementation of the adaptation is tangled
due to resource and component dependencies.

To overcome this software engineering challenge, we have developed a declarative ap-
proach for the design and implementation of adaptive components. This approach separates
adaptation declarations from the program code. A compiler generates Java code that fully
implements adaptation in the program and automatically instruments the code with an in-
trospection mechanism that captures state changes. With adaptive declaration, the compiler
generates optimized mechanisms for introspection and context switching mechanisms. Adap-
tation classes are integrated with the object oriented paradigm in the sense that they extend
existing classes with adaptive behavior, and declare adaptation without disturbing the source
program.

We are currently studying how to extend the expressiveness of adaptation classes to use
them for static adaptation, i.e., adaptation before execution. By providing constraints on the
values guarded by an adaptation class, the compiler can evaluate adaptation conditions and
generate specific code which only includes the needed behavior. As a result, static and dy-
namic adaptation classes offer an abstraction to define the adaptation time with respect to the
context usage of adaptive components. For example, if we wanted to use the SoundEncoder
component with a network protocol which can guarantee a specific bandwidth (for example
ATM), we would not need dynamic adaptation. The adaptation class compiler could gener-
ate a specific SoundEncoder component without any dynamic adaptation mechanisms. Static
adaptation can eliminate dead code and further simplify the adaptation mechanisms, improv-
ing overall performance. Taking this idea even further, adaptation classes can be mixed with
specialization classes, allowing each behavior to be specialized to given static constraints.

As for applications, we are studying the Java SWING library [20] to re-design the pluggable
look-and-feel mechanism to allow the user to choose between a dynamically pluggable look-
and-feel or a statically fixed look-and-feel. We believe that statically configuring this feature
can improve the performance of applications written using this library.
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A Implementation details

This appendix provides implementation details about the ad hoc SoundEncoder component
and the automatically generated SoundEncoder component.

A.1 Ad hoc SoundEncoder implementation

The ad hoc SoundEncoder implementation source code is shown in Figure 10.

Implementation of the Observer design pattern

The Observer pattern describes how to establish the relationships between the Observer
EncoderStrategy and the subject RtcpController (cf. Figure 2). The set of observers
(ObserverSet) is modified by a subscription mechanism (methods addObserver and delObserver).
When the subject state changes, it invokes the notify method. This method propagates the
notification to all observers and invokes the update method. This method is invoked for each
observer with the reference to the subject as an argument. Thus, observers can know the
identity of the subject, and obtain information about the observed object.

Implementation of the Strategy design pattern

We have implemented the Strategy pattern in the definitions of the classes Encoder, Gsm,
Lpc and EncoderStrategy (cf. Figure 2). The abstract class Encoder unifies the concept of
encoder and encapsulates the behavior associated with each strategy of encoding. This class
provides a method Packet encode(Sample data). This method transforms sampled sound
into a package of bytes of compressed sound. Each sub-class Gsm and Lpc implements a specific
encoding strategy. The class EncoderStrategy defines the interface of the adaptive object
and manages a reference CurrentEncoder to an object Encoder. Each request is redirected
towards an object sub-class of the Encoder class: when the encode method is invoked, the
call is redirected towards the encoding method of the current algorithm.

A.2 Automatic generation of the adaptive component SoundEn-
coder

The compilation of the adaptation class modifies the class RtcpController as shown in Fig-
ure 11, and creates the class SoundEncoder which is shown in Figure 12.

The modifications to the RtcpController class consists in the addition of a subscription
mechanism (insertion of a reference to SoundEncoder (1) and of a method acAttachSoundEncoder
(3)), and of analyzing the code to insert guards that detect modifications to the bandwidth field
(2). It should be noted that these modifications do not affect the behavior of RtcpController.
It is transparent for other objects that may use RtcpController.

The SoundEncoder class is composed of a field rtpControl (which has a reference to
the RtcpController object), a number of Encoder variables required for adaptive behavior
(acEncoder, acLpc and acGsm), and a number of methods implementing adaptive behavior
(acCopyEnv, acUpdate, SoundEncoder and encode). The acCopyEnv method is used to copy
shared variables between two behaviors (see Section 6.1 for details). The goal of the acUpdate
method is to notify SoundEncoder when the network bandwidth changes and to pass the
bandwidth as an argument.

The SoundEncoder constructor has the same interface as defined in the adaptation class.
The adaptation class compiler inserts in it some code to initialize the adaptive component
(creation of all required adaptive behaviors, connection with the subject RtpController, and
setting a current behavior).
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class SoundEncoder {
EncoderStrategy strategy;
Encoder(Observer observer;
public void encode(int[] sample) {
strategy.encode(sample) ;

public SoundEncoder (Subject subject) {
strategy=new EncoderStrategy();
observer=new Encoder(bserver(subject,strategy) ;
observer.update (subject) ;
}
}
abstract class Encoder {
public abstract void encode(int[] sample);
}
class Gsm extends Encoder {
public void encode(int [] sample) { ... }
}
class Lpc extends Encoder {
public void encode(int[] sample) { ... }
}
class EncoderStrategy {
Encoder currentEncoder,
gsmEncoder,
1lpcEncoder;
public void change(String newStrategy) {
if (newStrategy=="Gsm")
currentEncoder=gsmEncoder;
else if (newStrategy=="Lpc")
currentEncoder=1pcEncoder;
}
public void encode(int[] sample) {
currentEncoder.encode(sample) ;
}
public EncoderStrategy() {
gsmEncoder=new Gsm();
lpcEncoder=new Lpc();
}
}

class Subject {
private Set observerSet;
public void addObserver(Observer o) { ... }
public void deleteObserver(Observer o) { ... }
public void onotify() { ... }
Subject() { ... }

}

class RtpSession extends Subject {
private float bandwidth;
public float getBandwidth() { return bandwidth; }
public void recFeedBack(float value) {
bandwidth=value;
notify();
}
}
abstract class Observer {
abstract void update(Subject s);
}
class EncoderObserver extends Observer {
EncoderStrategy strategy;
void update(Subject s) {
float bandwidth=((RtpSession) s).getBandwidth();
if (bandwidth<13.3) strategy.change("Lpc");
else strategy.change("Gsm");
}
EncoderObserver(Subject subject,
EncoderStrategy _strategy) {
subject.addObserver(this);
strategy=_strategy;

Figure 10: Design patterns implementation
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class RtcpController { @

private SoundEncoder soundEncoder;
private float acOldbandwidth;

private float bandwidth;

public float getBandwidth() { return bandwidth; }
public void recFeedBack(RtcpPackets packet) {

bandwidth=...; @

if (acOldbandwidth!=bandwidth) {
soundEncoder.acUpdate(bandwidth);
acOldbandwidth=bandwidth;
} @

)

‘ public void acAttachSoundEncoder(SoundEncoder _soundEncoder) { soundEncoder=_soundEncoder; }

}

Figure 11: Modifications of the RtcpController class

class SoundEncoder extends Encoder {
private RtcpController rtpControl;
private Encoder acEncoder, /* Current Encoder */
acLpc,
acGsm;
private void acCopyEnv(Encoder src, Encoder dest) {...}
public void acUpdate (float bandwidth) {
if (bandwidth<13.3) { acCopyEnv(acEncoder,acLpc);
acEncoder=acLpc; }
else if (bandwidth>=13.3) { acCopyEnv(acEncoder,acLpc);
acEncoder=acGsm; }
else throw AdaptiveError;
}
public SoundEncoder (RtcpController _rtpControl) {
rtpControl=_rtpControl;
/* strict creation of adaptation behaviors */
acGsm=new Gsm() ;
acLpc=new Lpc();
rtpControl.acAttachSoundEncoder (this) ;
/* compute the adaptation state */
acUpdate (rtpControl.getBandwidth()) ;
}

public void encode(int[] sample) { acEncoder.encode(sample); }

Figure 12: Result of compiling of adaptation classes
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