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Abstract

Flexibility is recognized as a key feature in structuring
software, and many architectures have been designed to
that effect. However, they often come with performance and
code size overhead, resulting in a flexibility vs. efficiency
dilemma. The source of inefficiency in software architec-
tures can be identified in the data and control integration
of components, because flexibility is present not only at the
design level but also in the implementation.

We propose the use of program specialization in soft-
ware engineering as a systematic way to improve perfor-
mance and, in some cases, to reduce program size. In par-
ticular, we advocate the use of partial evaluation, which is
an automatic technique to produce efficient, specialized in-
stances of generic programs. We study several representa-
tive, flexible mechanisms found in software architectures:
selective broadcast, pattern matching, interpreters, layers,
and generic libraries. We show how partial evaluation can
systematically be applied in order to optimize those mecha-
nisms.

1. Introduction

Software architectures express how systems should be
built from various components and how those components
should interact. It is widely accepted that as the size and
complexity of software systems increase, the choice of soft-
ware architectures becomes a major issue. This choice has
a great impact on software engineering aspects such as the
cost of development, validation and maintenance. Because
it also affects the extensibility and interoperability of sys-
tems, it can have large impacts on the time from conception
to product release, providing the competitive advantage or
disadvantage. Typical concerns of software architectures in-
clude reuse and safety.
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Additionally, a modern software system is characterized
by its changing nature: computation may be distributed
over a network of heterogeneous machines and components,
where tasks can migrate at runtime; connections between
software components can evolve in time and space; hard-
ware platforms offer vastly different functionalities and per-
formance; software environments provide applications with
changing services; etc. This calls for programs that are able
to adapt to changing parameters.

Therefore, flexibility can be identified as a key feature of
software architectures. Instances of flexibility include re-
usability, extensibility, genericity and adaptability. Many
approaches aimed at achieving software flexibility have
been proposed and put into practice, including pipes and
filters [2], layered systems [23], data abstraction and object-
oriented organization, event-based communication [32], co-
ordination [7] and domain-specific languages [42], and soft-
ware buses [28].

However, flexibility causes non-negligible overhead. In
practice, it requires having lots of components, or that the
components should be generic. Therefore, computation
often traverses software connectors, and some amount of
code and execution time is devoted to gluing components
together rather than spent in the components themselves.
Similarly, using a generic component, in which many cases
have been anticipated, is less efficient than using a specific
component that only provides the required service for the
given context. Whereas efficiency requires a tighter integra-
tion of components, flexibility calls for a greater separation.
The reason why flexibility usually impairs efficiency is that
flexibility is not only present at the design level but also in
the implementation.

Efficiency is a fierce rival to flexibility in the concerns of
software engineers. Manual optimizations have been pro-
posed and used [21, 31]. But they are ad hoc (as opposed
to systematically applicable), tedious, error prone and un-
predictable; they do not scale up. In addition, they conflict



with other software engineering concerns like maintenance
and extensibility. In order to get the best of both worlds,
there has been a major research effort aimed at achieving
efficient generation and composition of building blocks [3].
However, these approaches are also specific to the architec-
tures and the domains of components. Moreover, they do
not fully exploit all integration opportunities.

We propose a systematic method to improve the effi-
ciency of software architectures known as program special-
ization. Program specialization is a general program trans-
formation that exploits the gluing information and the pa-
rameterization of components in order to better integrate
them. Thus, it is not specific to a peculiar software architec-
ture style. Partial evaluation is a technique that automates
program specialization. It does not conflict with the pur-
poses of software engineering, as opposed to manual opti-
mizations.

In order to show that program specialization actually ap-
plies to many architecture styles, and that it indeed im-
proves efficiency, we have studied several typical integra-
tion mechanisms used in software architectures, including
selective broadcast, pattern matching, interpreters, layers,
and generic libraries. We have applied partial evaluation to
representative instances of those mechanisms, leading to a
gain in efficiency. Our contributions are the following.

e We identify the fundamental reasons why mapping
flexible software architectures into implementations
leads to efficiency problems.

e We propose a systematic and automatic technique (par-
tial evaluation) to turn software architectures into effi-
cient implementations.

e We study five representative instances of mechanisms
used in software architectures (selective broadcast,
pattern matching, interpreters, layers, and generic li-
braries) and show how partial evaluation does indeed
improve efficiency while retaining flexibility. Due to
lack of space, the pattern matching and interpreter ex-
amples are only briefly described here; an extended
version of this paper is also available [22] !.

The rest of paper is organized as follows. Section 2 identi-
fies the general sources of inefficiency in software architec-
tures. Section 3 discusses program specialization and par-
tial evaluation. Section 4 considers in turn several mecha-
nisms used in software architectures and the applicability of
partial evaluation. In the conclusion, we give some research
directions for further improvements.

2. The flexibility vs. efficiency dilemma

Many approaches have addressed the need for flexibil-
ity in software engineering, with various trade-offs with
efficiency. They may be characterized by the way soft-
ware components interact, i.e. what data they exchange and
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how they communicate. After examining these issues in
turn, this section elaborates on the flexibility vs. efficiency
dilemma.

Data integration. Software systems are made of compo-
nents that exchange or share data. The components may not
use the same data representation. Such a situation occurs
for example when an existing software component is be-
ing reused in a different context, when components are pro-
grammed using different languages, when components run
on different systems or hardware platforms, or when the ex-
ecution environment is distributed (network encapsulation
of data). Data integration addresses the problems caused
by data heterogeneity.

When a system is heterogeneous, data communication
between components requires conversions. Two main ap-
proaches have been proposed. One is to systematically
convert local data into a universal format that is used in
all inter-component communications. The universal format
may be provided by an intermediate data description lan-
guages such as ASN.1 [17]. As a consequence, each data
communication necessitates two conversions. On the other
hand, data converters are small because each component
only needs a conversion between its own internal represen-
tation and the universal one.

Another solution is to push all conversions onto the
callee. The called component examines a tag included in
the received data to determine whether these data need to
be converted; at most one conversion is needed. However,
the number of converters is not linear but quadratic in the
number platforms. Flexibility is reduced because adding a
new data format requires more work.

Control integration. Besides unifying data formats,
composing software components also involves strategies to
make these components communicate. This process is of-
ten referred to as control integration. Numerous styles have
been proposed and put into practice, including pipes and fil-
ters [2], layered systems [23], data abstraction and object-
oriented organization, event-based communication [32], co-
ordination [7] and domain-specific languages [42], and soft-
ware buses [28].

There exist basically two main ways to achieve commu-
nication between software components: states and events.
A state consists of some information available at any time.
Access to a state may be explicit (e.g., reference to a global
variable) or implicit (e.g. with blackboard techniques [26]).
On the other hand, an event is a transfer of information that
occurs at a discrete time, for example via a procedure call
or sending a message. Event mechanisms may further be
categorized into implicit and explicit invocation. For exam-
ple, broadcasting a message is only an implicit invocation
of procedures in other components. This is in contrast with
systems in which the interface of components only consist
of a collection of routines; communication is then based on



direct, explicit invocation of those routines (e.g., as in a sys-
tem organized around a main program calling subroutines).
In an object-oriented system, invocation of methods is func-
tionally explicit but actually involves an implicit object dis-
patch indirection. Generic components can also contain as-
pects of implicit invocation at a finer-grain, where parame-
ters of the component are used to select various behaviors
of the component.

Typically explicit procedure invocation and direct state
referencing is faster than the implicit mechanisms. How-
ever, implicit mechanisms often offer more flexibility. Like-
wise for generic components, parameters provide a flexible
mechanism of controlling control flow within a component
in a black-box manner. Here efficiency is lost because ex-
ecution time is spent in testing options and checking asser-
tions about the arguments, as opposed to actually providing
the required service. Manually building specific compo-
nents reduces this overhead but also lessens flexibility and
conflicts with many software engineering goals.

Control integration also has a significant impact on code
size. In fact, adaptability calls for the anticipation of many
use contexts. Given a specific usage context, only a few
cases are needed, the other cases can be viewed as dead
code. If this dead code cannot be eliminated, the code size
of the whole system is unnecessarily large. This issue is
very important for embedded and mobile code.

Improving efficiency while retaining flexibility. As seen
above, the reason why flexibility introduces overhead is that
genericity and adaptability are usually present not only in
structuring a system (i.e., at the design level) but also in its
implementation. Therefore, a natural approach to remove
this overhead is on one hand, to keep flexibility in the de-
sign but on the other hand, to obtain somehow an efficient
implementation that is not necessarily flexible.

In practice, the integration of data and control that is ex-
pressed in the architecture should be made tighter in the im-
plementation: the number of conversions must be reduced;
implicit control must be turned into explicit control; generic
components must be adapted to specific uses. Also, flexibil-
ity might actually be used at different stages of the assembly
of a whole software system. Therefore, efficient implemen-
tations are needed at different times: configuration time,
compile time, link time, opening-session/initialization time,
and run time. In practice, the later adaptation is needed, the
more difficult it is to implement it efficiently.

Currently, some software engineering environments can
generate code from a flexible specification, especially in the
domain of libraries [3]. However, the generated code may
still contain aspects of the software architecture in the spec-
ification. These techniques are also ad hoc in that they are
specific to a given architecture. Furthermore, they only ad-
dress compile-time code generation.

The central idea in optimizing component integration is

specialization. It ranges from the specialization of the con-
nection between components to the complete merging of the
components’ functionalities. This is precisely the goal of
a technique known as program specialization (or program
adaptation). Program specialization is detailed in the next
section.

3. Specialization and partial evaluation

Specialization is a program transformation that adapts
programs with respect to known information about their in-
puts. We first give a short overview of specialization and
present how it has been put into practice. In particular, we
focus on partial evaluation, a process that automates spe-
cialization.

3.1. Specialization in a nut shell

Principles. Let us consider a program p, taking some ar-
gument data d and producing a result r, which may be writ-
ten as p(d) = r. If d can be split into d = (dy, d2) where
dy is a known (i.e., it does not vary) subset of the input and
dy is yet unknown, we may form a new program (p, d;)
that waits until dy is available and then calls the original
p program on (dy,ds) to produce the same result r. In
other words, (p,d;)(d2) = p(dy,ds) = r. However, since
dy is known to p, computations relying on d; can be per-
formed before d, is actually available. Therefore, we can
form a new program pg, , equivalent to (p, d; ), where com-
putations depending on d; have been eliminated. We thus
have pg, (d2) = p(di,d2) = r. The program pg, is called
a specialization of p with respect to the invariant d;. More
generally, specialization exploits any invariant present in the
code, not only input values. The idea is to factor out com-
putations from the specialized program.

Example. Let us consider the simple example shown
in Figure 1. In the top of the figure is a definition
of mini printf (), a simplified version of the Unix
printf () text formatting function. In the bottom of the
figure is a specialized version of mini printf () with
respect to the string format fmt = "n = %d". Note that
all computations depending on fmt (i.e., interpretation of
the format string) have been removed. Bold face font is
used here (and in the rest of the paper) to highlight parts
of the original program that rely only on the known values
(here £mt). All these computations are eliminated and do
not appear in the specialized program.

Advantages. Program specialization may reduce both ex-
ecution time and code size. Indeed, running pg4, (dz) is usu-
ally faster than running p(d; , d2) because computations in-
volving d; are already performed. In addition, cases writ-
ten to treat other inputs than d; can be removed from pg, ;
they are dead code. Program pg, is thus smaller. However,
specialization can also involve loop unrolling, which may



mini_ printf(char fmt[], int val[])
{
int i = 0;
while( *fmt != '\0’ ) {
if( *fmt != '3’ )
putchar(*fmt);
else
switch(*++£fmt) {
case ‘d’ : putint(val[i++]); break;

case '%’ : putchar(’'%’); break;
default : abort(); /* error */
}
fmt++;

}
}

mini_ printf fmt(int vall])
{
putchar(’'n’);
putchar(’:");
putchar(’ ’);
putint(val[0]);

Figure 1. Specialization w.r.t. fmt = "n: 34"

increase code size. For example, in Figure 1, the whole
loop has been unrolled; if the format string had been longer,
many calls to putchar () would have appeared in the spe-
cialized program. Besides, if building the specialized pro-
gram pg, comes at a certain price, it is only worth it if
pd, (d2) is run enough times to amortize the cost of building
Pd, -

Concerning software engineering issues, specialization
produces monolithic, specialized code from a modular,
generic system. Most software engineering qualities of the
original code are lost in this process. Thus, the specialized
code should be considered as an opaque pre-compilation
rather than the starting point of further manual develop-
ments.

3.2. Manual, ad hoc approaches to specialization

Various studies have demonstrated that significant op-
timizations could be obtained via program specialization.
Examples of such experiments can be found in different
areas such as graphics [21] and operating systems [31].
However, these studies have been limited to manual code
transformation. Because it is tedious and error prone, man-
ual specialization is generally local, i.e. restricted to a
small “window” of code (as opposed to inter-procedural
optimizations); it does not scale up to large systems. In
addition, because it is not automatic, manual specializa-
tion trades safety, maintainability and extensibility for ef-
ficiency, which defeats software engineering purposes. Fi-
nally, techniques proposed are ad hoc (i.e., not systematic);
it is not clear how they could be extended and applied in
general.

There already exists tools that provide some primitive

support for specialization. For example, some software and
hardware particularities may be expressed at configuration
time using tools like configure. Others particularities
can be handled at compilation time using macro facilities,
in addition to simple compiler optimization.

In addition, some advanced compilers can achieve intra-
procedural propagation and folding of scalar constants, as
well as inlining. While this is enough to optimize sim-
ple parameterization, it does not scale up for the full pro-
gram adaptation needed for software component integra-
tion. Moreover, it is not easy to predict the effect of such
optimizations.

3.3. Partial evaluation

Partial evaluation is “the” technique that automates the
specialization process [19]. Partial evaluation is also sys-
tematic, as opposed to ad hoc specializations that are re-
stricted to specific cases. Using the same notations as
above, a specializer (or partial evaluator) is a tool that au-
tomatically produces the specialized program pg,, given a
program p and a known input subset d;. Therefore, it im-
proves speed and, in some circumstances, may reduce code
size. Roughly speaking, standard partial evaluation can be
thought of as a combination of aggressive inter-procedural
constant propagation (applied to all data types instead of
just scalars), constant folding, inlining and loop unrolling.

In contrast with manual specialization, partial evaluation
is safe and preserves code genericity. It does not conflict
with the purposes of software engineering. On the contrary,
because it automatically takes care of efficiency issues, it
encourages programmers to write generic code. In addi-
tion, optimizing code using partial evaluation is much less
tedious than doing manual specialization. It is intrinsically
made to scale up, as opposed to manual specialization. Op-
timizations are also more predictable.

For a long time confined to functional or logic program-
ming, partial evaluation has now been put into practice for
imperative languages. It is reaching a level of maturity that
makes it applicable to real-sized systems. In fact, not only
are there now partial evaluation systems for languages like
C, but the program specialization approach is at the basis
of the development of adaptable system in a number of ma-
jor research projects and in different areas such as network-
ing [24, 38], graphics [20], and operating systems [14, 30].
What we are interested in is to use partial evaluation to gen-
erate context-specific efficient instances of generic compo-
nents. As will be demonstrated in the following case stud-
ies, partial evaluation systematically and automatically im-
proves implementations of software architectures.

Our claim concerning the applicability of partial evalua-
tion to software engineering is not specific to a language or
a partial evaluator. However, we had to use a real tool in our
case studies. In the following, we actually use Tempo, a par-



tial evaluator for C programs [8] developed in our group. To
make sure that Tempo performs optimizations that address
realistic cases, it has initially been targeted towards a very
demanding application area: system software. There exists
another partial evaluator for C named C-Mix [1]. (See [25]
for a comparison.)

Partial evaluation is often split into two phases. First,
a preprocessing phase performs an abstract propagation of
known information throughout the code. The output of this
analysis can be visualized in a form which is very similar to
the font decoration in Figure 1. The user can thus assess the
benefits of applying partial evaluation. Second, a process-
ing phase actually performs code generation, given some
partial input values. Tempo may exploit values when they
are known, at compile time and/or at run time [11]. Whereas
compile-time specialization is a source-to-source program
transformation, run time specialization relies on binary tem-
plate assembly for fast code generation. Dynamic selection
of specialized routines is presented in [37]. In this frame-
work, specializations with respect to values that can vary
during program execution (i.e., quasi-invariants) may be
triggered at run time.

4. Case studies

In order to support our assessment, we consider in turn
five mechanisms that are common in software architectures.
For each one, (i) we give a short description of the mecha-
nism, taking as an example an architecture and a real sys-
tem that actually relies on it, (ii) we point out efficiency
problems inherent in the mechanism, and (iii) we show how
partial evaluation can automatically improve performance
and, in some cases, reduce code size.

Specialized code listed in this section has been automat-
ically produced by Tempo, apart from the following man-
ual simplifications aimed at clarity: some transformations,
like copy propagation performed by optimizing compilers,
were done by hand on the specialized source; code has also
been manually pretty-printed; some initializations, as well
as type and variable definitions have been omitted. In ad-
dition, some comments have been added to the original and
specialized code.

All partial evaluation examples displayed in this sec-
tion are presented as compile-time source-to-source pro-
gram transformations for readability reasons. When spe-
cialization values are known at run time, and even vary dur-
ing program execution, run time partial evaluation can gen-
erate binary specialized routines (that we cannot display)
on the fly. Consequently, partial evaluation does not gen-
erally limit the use of flexibility in software architectures.
However, partial evaluation techniques cannot be applied to
code which is dynamically loaded because all the program
(not values) must be known at analysis time.

4.1. Optimizing selective broadcast

The mechanism. Our first case study deals with selec-
tive broadcast, also called reactive integration [33]. In such
a context, components are independent agents that inter-
act with each other by sending broadcast events. Compo-
nents in the system that are interested in particular messages
register “callback” procedures to be called each time such
messages are broadcast. This mechanism is also called im-
plicit invocation because broadcasting events “implicitly”
invokes procedures in other components. Blackboard tech-
niques may also be based on similar indirect access mecha-
nisms [16].

The Field programming environment is a typical, rep-
resentative example of such an architecture [32]. It is an
open system that integrates many programming tools. Let
us consider a system containing an editor, a debugger and a
viewer of control flow graphs. The example in Figure 2 (top
and middle) models a typical communication between those
tools. The editor and the flow-graph viewer register their in-
terest in the DEBUG_ AT event, which is emitted by the de-
bugger when an execution is stepped or when a breakpoint
is reached. When the DEBUG_ AT event is received, the ed-
itor wants to set the cursor on the line where the debugger
stopped, and the flow-graph viewer wants to highlight the
name of the current function in the graph. In order to prop-
erly separate concepts, events are identified here using an
integer, and data associated to events is a structure pointer
(manipulated as a “dummy” character pointer). Hence, this
section only models the bare broadcast mechanism. The
next section considers the real selection and communica-
tion mechanism of Field that relies on string messages and
pattern matching for tool integration.

Efficiency problems. Such a broadcast mechanism suf-
fers from a performance problem related to control integra-
tion. Since invocation is implicit, broadcasting a message
is clearly slower than explicitly calling the callback proce-
dures. Worse, the complexity of a broadcast is linear in the
total number of registered events because the whole regis-
tration table must be scanned in order to find, among all
registrations, the callbacks that are registered for the given
event. This could be optimized with an array or a hash-table
for simple event identifiers, but not for a pattern-matching-
based selection mechanism (see section 4.2), which would
require a much more complex automaton encoding.

Application of partial evaluation. The lower portion of
Figure 2 shows the optimization of registration and broad-
cast using partial evaluation. All indirect, implicit invo-
cations of callback procedures have been turned into di-
rect, explicit calls. Note that broadcasting an event like
BUS_ERROR, for which no component has registered any
interest, is turned into a “no-operation”. Whereas the com-
plexity of a broadcast in the original program is linear in



my execution_context() { /*** original **%*/
register_for_event( DEBUG_AT, editor_goto );
register_for_event( DEBUG_AT, cfg_highlight );

broadcast( BUS_ERROR, (char *)NULL );

dbg_info->line = line;

dbg_info->fname = fname;

broadcast( DEBUG_AT, (char *)dbg info );
}

register_for_event (int event,void (*fun) (char*))

{
handler[nb_handlers].fun = fun;
handler[nb_handlers].event = event;
nb_handlers++;

}

broadcast(int event, char *arg)

{
for (i = 0; i < nb_handlers; it++)

if (handler[i].event == event)
(*handler[i].fun) (arg);
}

my_execution_context() {

/*%*%* specialized **%*/

dbg_info->line = line;
dbg_info->fname = fname;

editor goto((char*)dbg_info);
cfg highlight((char*)dbg info);

Figure 2. Registration and broadcast

the total number of registered events (nb_handlers), the
specialized program achieves broadcast in constant time: all
functions registered for the given event are known and hard-
coded; at run time, it is no longer necessary to lookup the
handler table.

The applicability of this optimization requires that the
registered and broadcast events be known at specialization
time. The example in Figure 2 illustrates compile-time spe-
cialization but a similar specialization can be done at run
time, using a run-time specializer. Ad hoc user-aided spe-
cialization has already been considered for run-time com-
pilation of event dispatch in extensible systems [6] but the
approach is less automatic and less systematic.

As a by-product, if there is an application-dependent pol-
icy such that all broadcast messages should be received by
at least one component (i.e., no uncaught event), then incon-
sistencies between event registrations and broadcasts can be
detected at specialization time. Assuming a warning func-
tion is called in broadcast ( ) whenever there is no regis-
tered receiver for a message, then partial evaluation replaces
all occurrences of such void broadcasts by calls to the warn-
ing function. Testing the above policy then only amounts to
looking for calls to the warning function in the specialized
program, which can easily be checked. In particular, this
process allows the detection of typos in registrations and
broadcasts.

4.2. Optimizing pattern matching

The mechanism. Selection of broadcast events may in-
volve pattern matching rather than just comparison of event
identifiers. In this case, when a message is broadcast, the
system invokes all the procedures that are associated with
registered patterns matching the message. In an environ-
ment like Field [32], a pattern identifies not only the type
of the message but also the parts of the message that cor-
respond to the arguments of the callback routine, and the
format of those arguments. Pattern matching thus serves
two purposes: selection of a message (string comparison)
and, if there is a match, invocation of the callback routine
with arguments decoded into the proper internal format.

Efficiency problems. As stated by Reiss [32, p. 64], “All
Field messages are passed as strings. While this introduces
some inefficiencies, it greatly simplifies pattern matching
and message decoding and eliminates machine dependen-
cies like byte order and floating point representation.” As
patterns and messages are more complex, selection (i.e.,
pattern matching) may become the bottleneck of broadcast.
The phenomenon can be amplified if the complexity of the
broadcast stays linear (see section 4.1). The efficiency prob-
lem here is a mixture of data integration (converting data
back and forth to and from strings according to the given
formats) and control integration (broadcast selection using
pattern matching).

Application of partial evaluation. We have extracted
the pattern matching routines from the Field implementa-
tion and run our partial evaluator on various pattern sam-
ples. Detailed results may be found in the extended ver-
sion of this paper [22]. In summary, the results are that
all pattern information has been inter-procedurally propa-
gated and exploited so that the specialized program only
performs the basic literal comparison and conversion oper-
ations. In terms of integration overhead, the optimization
can be understood as follows. Because the type formats
have been fused into control flow in the specialized pattern
matcher, the data integration overhead now only reduces to
string conversions. Moreover, control integration overhead
is now restricted to raw pattern matching. Partial evaluation
of pattern matching has been well studied. Although the
performance gain will vary according the pattern, results
presented by Andersen, for example, indicate performance
gains of a factor of 1.6 [1].

This can be combined with the optimization of selective
broadcast (see section 4.1). Assuming patterns and event
strings are known at specialization time, then all pattern
matching results (success or failure) can be computed by
partial evaluation. Broadcasts then directly translates into
explicit callback invocations, with no lookup; some of their
arguments are just calls for explicit string conversions.



4.3. Tight integration of software layers

The mechanism. A layered system is a hierarchical orga-
nization of a program where each layer provides services to
the layer above it and acts as a client to the layer below. The
most widely known examples of this kind of architecture are
layered communication protocols [23].

As an example of such an architecture, we have con-
sidered the Sun implementation of the remote procedure
call (RPC) that makes a remote procedure look like a lo-
cal one: the client transparently calls a function that is
executed on a distant server. This protocol has become
a de facto standard in the design and implementation of
distributed services (NFS, NIS, etc.). It manages the en-
coding/decoding of data to a network-independent format,
standardized by the eXternal Data Representation protocol
(XDR). The user specifies the interface of the function, and
“stub” routines are automatically generated for the client
(encoding of arguments, emission, reception, and decoding
of result) and the server (reception and decoding of argu-
ments, computation, encoding, and emission of result), us-
ing generic RPC functions.

The Sun implementation is divided into many micro-
layers, each one being devoted to a small task: generic
client procedure call, selection of transport protocol (UDP,
TCP, etc.), cases depending on scalars data size, choice be-
tween encoding and decoding, generic encoding/decoding
(to/from memory, stream, etc.), reading/writing in the net-
work, input/output buffers with overflow checks, selection
between big and little endian. The middle section of Fig-
ure 3 shows the bottom of the stack of layers. As may be
seen, the implementation is highly parameterized. For ex-
ample, a function like xdr_ long( ) can achieve both en-
coding and decoding, depending on a flag provided in the
arguments. A typical execution context for client encod-
ing is displayed in the top section of the figure. The stub
function xdr pair () has been generated automatically;
it encodes or decodes a pair of integers.

Efficiency problems. Layered systems have several good
properties: their design follows incremental abstraction
steps, they favor extensibility and reuse, and different im-
plementations of the same layer can be interchanged. How-
ever, as noted Shaw and Garlan, “considerations of perfor-
mance may require closer coupling between logically high-
level functions and their low-level implementation™ [33,
p- 25]. This is precisely what partial evaluation achieves
automatically.

More precisely, in our example, data integration is fixed
by the protocol. On the other hand, control integration
seems relatively important: invocations are all explicit,
apart from the indirect call (through a function pointer) in
XDR_PUTLONG( ). However, invocations are numerous
and exit statuses are propagated (and sometimes checked)
through each micro-layers. Moreover, a dispatch function

my execution_context() /*** original **%*/
{
xargs = xdr_pair; // arguments encoding
xdrs->x_ops->x_putlong = xdrmem_putlong;
xdrs->x_op = XDR_ENCODE;
if (! (*xargs) (xdrs,argsp))
return cu->cu_error.re_status;
sendto(...);

}

xdr_pair(xdrs,objp) [/ ======= User generated
{
if (!xdr_int(xdrs,&objp->intl)) {
return (FALSE);
}
if (!xdr_int(xdrs,&objp->int2)) {
return (FALSE);

}
return (TRUE);

}
xdr_int(xdrs,ip) //---Read/write integer
{
if (sizeof(int) == sizeof(long)) {
return xdr_long(xdrs, (long *)ip);
else
return xdr_short(xdrs, (short *)ip);
}
xdr_long(xdrs,lp) //=-===== Read/write long
{
if( xdrs->x_op == XDR_ENCODE )
return XDR_PUTLONG(xdrs,lp);
if( xdrs->x_op == XDR_DECODE )
return XDR_GETLONG(xdrs,lp);
if( xdrs->x_op == XDR_FREE )
return TRUE;
return FALSE;
}

#define XDR_PUTLONG(xdrs, longp) \
(*(xdrs)->x_ops->x_putlong) (xdrs, longp)

xdrmem putlong(xdrs,lp) //-Write long to memory
{
if ((xdrs->x_handy -= sizeof(long)) < 0)
return FALSE;
* (xdrs->x_private) = htonl(*1lp); // buff copy
xdrs->x_private += sizeof(long); // ptr incr
return TRUE;
}
#define htonl(x) x

my execution_context() /*** specialized **x/
{
*(xdrs->x_private
xdrs->x_private +
*(xdrs->x_private
xdrs->x_private +
sendto(...);

objp->intl;

) =
= 4;
) = objp->int2;
= 4;

Figure 3. Tight integration of micro-layers




like xdr_long() does not actually produce any result;
it merely acts as a switch. In addition, an output buffer
is checked for overflow for each single integer encoding,
rather than once and for all. All this introduces significant
overhead.

Application of partial evaluation. Yet, the information
driving the dispatch in xdr long( ) and the number of in-
tegers written in the output buffer can be known from the ex-
ecution context. Consequently, the exit status of the inner-
most layer can be known prior to run time (buffer overflow
or not). Propagating this information to each layers makes
the tests unnecessary.

The bottom portion of Figure 3 shows what partial evalu-
ation does automatically on such an architecture. Note that
the dispatches, the propagation of exit status, and the buffer
overflow checking have all been removed. As a matter of
fact, benchmarks have shown that the specialized code of
RPC encoding routines is up to 3.75 times faster [25].

4.4. Compiling language interpretation

The mechanism. Scripting languages [29] are intended
to glue together a set of powerful components (building
blocks) written in traditional system programming lan-
guages. Scripting languages simplify connections between
components and provide rapid application development.
Coordination [7] and domain specific languages [42] exploit
the same idea. The Toolbus coordination architecture [4]
uses this concept. It consists of independent tools (seen as
processes) communicating via messages. However, com-
munication of messages is not performed by the tools; it is
carried out by a script that coordinates the processes. The
scripts, called T scripts, are written in a language specific to
the Toolbus architecture. Toolbus also relies on the selective
broadcast mechanism (see section 4.1) and pattern matching
(see section 4.2); messages are tree-like terms and patterns
are terms with variables.

Efficiency problems. Most often, scripts are interpreted
and type-less. These features provide more flexibility to
the gluing language. However, they also introduce perfor-
mance overhead that becomes significant when the building
blocks are small. As stated by Bergstra and Klint, “There
are many methods for implementing the interpretation of T
scripts, ranging from purely interpretative methods to fully
compilational methods that first transform the T script into a
transition table. The former are easier to implement, the lat-
ter are more efficient. For ease of experimentation we have
opted for the former approach” [4, p. 82]. The interpreta-
tion overhead is actually due to a poor control integration.
Interpreting the script leads to a significant latency in com-
munications.

Application of partial evaluation. The T script
interpreter has a similar structure to that of the

mini printf() (figure 1, section 3.1). Like
mini_ printf(), partial evaluation successfully
eliminates the interpretation of T scripts, producing a
program similar to what one would write by hand to
implement the script. More detailed results are presented in
the extended version of this paper [22].

Partial evaluation has already been advocated as a gen-
eral tool to help building domain specific languages [36].
Typically cited performance gains range from 10 to 100 de-
pending on the static semantics of the language being inter-
preted [12]. Its application to interpreters has also been ex-
tensively studied [18]. In fact, constructing compilers from
interpreters in one of the standard use of partial evaluation.

4.5. Efficient instances of generic libraries

The mechanism. General libraries like libg++, NIHCL,
COOL, or the Booch C++ Components [5] have had a large
success in achieving reuse. However, for performance rea-
sons, they implement a large number of hand-written spe-
cific components that represent a unique combination of
features (e.g. concurrency, data structures, memory alloca-
tion algorithms). As a consequence, the library implemen-
tation itself achieves little reuse. It has been argued that this
way of building data structure component libraries is inher-
ently unscalable. Another approach is to provide only prim-
itive building blocks and have a generator combine these
blocks to yield complex custom components [3]. However,
the techniques and the generator are not general purpose.
In some cases, computer algebras may also automatically
generate parts of libraries from given mathematical models.
However, this is very restricted and specific to a model and
a computer algebra system.

We have taken as an example the Meschach Library [35]
developed at the Australian National University, which pro-
vides a wide range of matrix computation facilities. It it
very general in its design and implementation. For exam-
ple, many functionalities in Meschach are implemented us-
ing two routines. The first one provides a clean interface;
it controls the validity of arguments and performs bounds
checking. The second one does the actual computation on
raw data. Such an example is shown in the middle section
of Figure 4: function _in prod() provides the safe en-
capsulation to function __ip (). The top section gives
an example use of the library: two three-dimension vectors
are allocated and used for a inner-product operation.

Efficiency problems. It is clear that the software protec-
tion provided by the _in prod() interface function is
achieved at the expense of performance loss. Moreover,
because the function may apply to vectors of any size, the
inner-product computation involves loop management over-
head. In terms of control integration, the communication
between the caller and the library function seems explicit.
However, only the invocationof __ip (), that performs



my execution_context() /*** original **%*/

{

norm = v_get(3);

light = v_get(3);

n _dot_1 = _in_prod(norm,light,0);
}

double _in prod(VEC *a, VEC *b, u_int i0) {
if ( a==(VEC *)NULL || b==(VEC *)NULL )
error(E_NULL, "_in prod");
limit = min(a->dim, b->dim);
if ( i0 > limit )
error(E_BOUNDS, "_in_prod");

return __ip (a->ve+i0, b->ve+ioO,
(int) (1imit-i0));
}
double _ ip (Real *dpl, Real *dp2, int len) {
sum = 0;
for( i = 0; i < len; i++ )
sum += dpl[i]*dp2[i];
return sum;
}
my execution_context() /*** specialized **x/
{
n_dot_1 = norm->ve[0] * light->ve[0] +
norm->ve[l] * light->ve[l] +
norm->ve[2] * light->ve[2];
}

Figure 4. Call to a math library function

the actual computation, is significant. Communication must
then be considered as implicit. The components need tighter
integration.

Application of partial evaluation. As may be seen in the
bottom section of Figure 4, partial evaluation uses avail-
able information (i.e., the size of the vectors) to eliminate all
verifications concerning the validity of the arguments: the
safety interface layer is compiled away. That is analogous to
the elimination of buffer overflow checking in the RPC ex-
periment. In addition, the raw computation itself is slightly
improved using loop unrolling. When an application heav-
ily relies on a general library, such optimizations become
crucial. A previous study of the partial evaluation of nu-
meric functions, like the inner product here, reports perfor-
mance gains from a factor of 1.4 to a factor of 12.17 [27].

5. Conclusion

As discussed in this paper, the literature of software ar-
chitectures presents many approaches which, according to
their authors, trade efficiency for flexibility. The reason why
flexibility introduces overhead is that genericity and adapt-
ability are not only present at the design level but also in the
implementation.

We have identified the fundamental efficiency problems
in flexible architectures as being related to data and con-
trol integration of software components. We have proposed

to use a systematic and automatic program transformation
(i.e., partial evaluation) to turn flexible implementations
into efficient ones while retaining flexibility at the structur-
ing level. In order to assess our claim, we have studied five
common mechanisms used in software architectures (selec-
tive broadcast, pattern matching, interpreters, layers, and
generic libraries) and successfully applied partial evaluation
to them, yielding efficient implementations. All our exam-
ples have one aspect in common: some states are encoded
in data rather than the program. We may expect partial eval-
uation to be successful each time this situation arises — it is
actually (one of) the essence of partial evaluation. Besides,
because this optimization can also be performed at run time,
depending on run-time values, flexibility is not constrained
to compile-time structuring.

While standard partial evaluation suits control integra-
tion very well, it does little concerning data integration. A
more complex partial evaluation technique, known as defor-
estation [40], can be used to treat certain combinations of
successive data conversions. However, to our knowledge,
it has not been applied yet to imperative programming.
Semi-automatic approaches to copy elimination in inter-
layer communications have been considered [39] but not yet
put into practice. Because specialization needs actual val-
ues, there is also a limit to the type of control and software
protection overhead that partial evaluation can eliminate. In
particular, traditional partial evaluation cannot exploit prop-
erties about values, such as interval ranges. Several exten-
sions to partial evaluation exploiting properties have been
proposed: parameterized partial evaluation [10] and gen-
eralized partial computation [15]. However, they have not
been yet put into practice on realistic applications.
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