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Abstract

Domain�speci�c languages �DSL� have many po�
tential advantages in terms of software engineering
ranging from increased productivity to the applica�
tion of formal methods� Although they have been
used in practice for decades� there has been little
study of methodology or implementation tools for the
DSL approach� In this paper we present our DSL ap�
proach and its application to a realistic application�
video display device drivers�
The presentation focuses on the validation of our

proposed framework for domain�speci�c languages�
which provides automatic generation of e�cient im�
plementations of DSL programs� Additionally� we
describe an example of a complete DSL for video dis�
play adaptors and the bene�ts of the DSL approach
in this application� This demonstrates some of the
generally claimed bene�ts of using DSLs� increased
productivity� higher�level abstraction� and easier ver�
i�cation� The DSL has been fully implemented with
our approach and is available ��

� Introduction

In contrast to a general purpose language �GPL��
a domain�speci�c language �DSL� is a language that
is expressive uniquely over the speci�c features of
programs in a given problem domain� It is often
small and declarative� it may be textual or graphic�
DSLs have also been called application domain lan�
guages ���� little or micro�languages �	�� and are re

lated to coordination languages ��� and scripting lan

guages ��
�� DSLs have been used in various domains

�This work has been partly supported by FRANCETELE�

COM� CNET ����B�����
�http���www�irisa�fr�compose�dsl�genprog�html

such as �nancial products ��� 		�� telephone switch

ing systems ��	� ���� operating systems �	��� proto

cols ���� and robot languages ���� Languages such as
SQL� TEX and shells may also be considered DSLs�
Software architectures based on DSLs primarily

aim at achieving faster development of safer appli

cations� Because constructs in a DSL abstract key
concepts of the domain� the developer �that does not
have to be a skilled programmer� can write more
concise and higher level programs in less time� Pro

gramming with a DSL also contributes to safety be

cause it is less error
prone than with a GPL� Addi

tionally� high
level constructs translate� in practice�
into the reuse of validated components� Moreover�
when the language is small and speci�c� it is possi

ble and easier to build automatic validation and test
generation tools� For example� termination proper

ties may be considered if the language is not Turing

complete�
A DSL may also be seen as a way to parameter


ize a generic application or to designate a member
of a program family� A program family is a set of
programs that share enough characteristics that it
is worthwhile to study them as a whole� In fact�
designing a DSL actually involves the same com�
monality analysis ��	� that is used in the study of
a program family� assumptions that are true for all
members of the family and variations among mem

bers� This process should be performed both by do

main experts and software engineers�
Though actual uses of DSLs record bene�ts such

as productivity� reliability and �exibility ����� imple

menting DSLs is often di�cult and costly �
�� There
are two main approaches to language implementa

tion� each with signi�cant disadvantages� those that
are based on compilers �translation from the DSL to
a target machine or GPL� are not easy to write or
to extend� and extensions require skills in compiler



technology that cannot be expected from �domain
developers�� those that are based on interpreters are
easier to write or to extend but are less e�cient ����
This issue also impacts maintainability �	�� because
complexity in the compiler defeats the software en

gineering goals of using a DSL� Depending on objec

tives� either one or the other style of implementation
is thus chosen� application generator or interpreter�
We have proposed a framework for the devel


opment of application generators that reconciles
both alternatives �	��� It relies on partial evalua�
tion ���� ���� a program transformation technique
that is well suited to automatically transform inter

preters into compilers ����� Partial evaluation ex

ploits known information about a program�s input
to be able to evaluate parts of a program in advance�
Given a program and the known portion of its input�
a partial evaluator produces a specialized program�
In this new semantically equivalent program� com

putations depending on known values have already
been performed�
Our framework is structured into two levels� The

�rst level consists of the de�nition of an abstract
machine� whose operations can be viewed as generic
components that capture important operations of
the domain� The second level is the de�nition of
a micro
language in terms of the abstract machine
operations� thus providing a high level interface to
the abstract machine� The use of partial evaluation
in our framework is twofold� corresponding to each
level� it maps an abstract machine into an e�cient
implementation� and a micro
program into an ab

stract machine program� The development of this
framework is supported by industry partners for re

alistic applications�
This paper describes a realistic application of our

framework for the automatic generation of video
card drivers� This domain naturally forms a pro

gram family� for which DSLs are well suited� We
present the design and de�nition of a complete DSL
for video display adaptors� Concerning performance�
we show how partial evaluation can yield e�cient
drivers� Concerning safety� we insure that all gener

ated drivers can be proven to terminate and de�ne
some analyses that can greatly improve their relia

bility�
Our contributions can be summarized as follows�

� We validate our framework of application gen

erator design on a realistic example� video card
device drivers�

� We de�ne a DSL for generating such drivers�
This restricted language allows program veri�

cations�
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Figure �� Generic program instantiation�

� We provide a �exible implementation of this
language that generates e�cient video drivers�

� We illustrate the bene�ts of DSLs as a software
architecture�

The rest of the paper is organized as follows� Sec

tion 	 describes our framework for application gener

ator design in further detail� Section � presents the
domain of video card drivers� Section � describes
the two
level design� abstract machine and graph

ics adaptor language� Section � discusses the results
of applying this approach to the domain of video
drivers� Section � summarizes the results of this
experiment and identi�es future work� both for the
language and the framework�

� A Framework for the DSL Ap�

proach

In a previous paper �	�� we presented an approach
to generic software design� In this approach� we con

sider the implementation of a program family as



a generic program� The parameterization of this
generic program corresponds to variations within
the program family and can be represented using
a micro
language� A micro�language is a small re

stricted DSL which formally de�nes the program
family �an instance of the program family is spec

i�ed by a micro
program� and is restricted to allow
analysis� The generic program implementing a pro

gram family is constructed in two layers� and au

tomatic instantiation is performed by program spe

cialization �i�e�� partial evaluation�� as illustrated in
Figure �� Together� the two applications of program
specialization provide a complete path from a micro

program to an e�cient implementation�

The abstract machine is the de�nition of the fun

damental operations of the domain that are used to
implement members of the program family� The ab

stract machine is implemented as a highly param

eterized library� whose parameters represent opera�
tional variations within the domain� Any given ab

stract machine program provides values for opera

tion parameters that indicate the desired functional

ity� A partial evaluator can eliminate the genericity
from the library functions using these known values
to produce an e�cient implementation� as shown in
the bottom section of Figure ��

The micro
language captures the variations within
the program family in terms of what family mem

bers do� as opposed to how family members operate�
which is captured by the abstract machine� The
micro
language is implemented by an interpreter�
which invokes abstract machine operations by calling
the corresponding library subprograms� The micro

language provides an interface to the abstract ma

chine� and the interpreter implements a mapping
from a micro
program to the abstract machine� This
mapping depends only on the micro
program such
that� given a micro
program� a partial evaluator�
with the micro
program as known input� eliminates
all operations in the interpreter leaving only the re

maining calls to the abstract machine� Thus� a par

tial evaluator can produce an abstract machine pro

gram from a given micro
program� as shown in the
top section of Figure ��

For the application of this approach we use a par

tial evaluation system named Tempo ����� Tempo is
a fully automatic partial evaluator for C� Users of
Tempo specify inputs to the entry point and global
variables as either known or unknown� In our ap

proach� we insure the successful application of par

tial evaluation via the separation of the abstract ma

chine and the interpreter� each having its on state
represented in C by global variables� The interpreter
state is speci�ed as known and the abstract machine

state is speci�ed as unknown� The following simple
rules guarantee correct separation and thus success

ful automatic partial evaluation�

�� Interpreter subprograms may only use variables
of the abstract machine state as actual param

eters of a subprogram call�

	� Abstract machine subprograms may not contain
any references to the interpreter state�

� Video Driver Domain

This section introduces the domain of the experi

ment� video adaptor device drivers� A video adaptor
�or video card� is a hardware component of a com

puter system which stores and produces images on
the display� Video cards consist of a frame bu�er�
and a graphics controller� The frame bu�er is a bank
of high speed memory used to store the display data�
including the currently visible image� The graphics
controller consists of two main functionalities� pro

ducing the video signal for the display� and provid

ing access to the frame bu�er to create the display
image� Graphics controllers all provide similar sets
of functionalities �e�g�� changing the display resolu

tion��

Although all adaptors provide similar functional

ities� their programming interface is di�erent from
vendor to vendor� and often between successive mod

els of the same adaptor� This is true of most de

vices� and is resolved by the use of device drivers�
Device drivers generally consist of a library of func

tions that implement a standard API that is �xed
for all devices� Thus the driver�s purpose is to trans

late the standard API operations into the operations
required by a speci�c device� providing a uniform in

terface to the operating system and applications�

Video device drivers provide two main services to
the operating system and applications� The �rst
is to put the graphics display into di�erent video
modes� A video mode �or graphics mode� is de�ned
by the horizontal and vertical resolution� the num

ber of colors per pixel and screen refresh rates� The
second service provided by the driver is to provide
access to hardware drawing operations� For exam

ple� most modern video cards provide line drawing
hardware� which draws lines on the display at a much
faster rate than would be possible in software�



� Application of the Approach

We have applied the approach described in sec

tion 	 to a family of device drivers for video adap

tors� We considered an already existing set of device
drivers from the XFree�� X Window server created
by The XFree�� Project� Inc� �	��� The XFree��
SVGA server is a generic X Window server� written
in C� supporting several di�erent cards using a de

vice driver architecture� This server contains drivers
for cards from about 	� di�erent vendors� Addi

tionally� each driver supports as many as 	� di�er

ent models from the same company� This structure
alone indicates that there is enough similarities be

tween models of the same vendor to implement them
as a generic program� but that it is not reasonable
to do so for multiple vendors� This may be due to
e�ciency� but more likely is due to the lack of a
methodology to handle larger scales of variation�
The remainder of this section details the applica


tion of our approach to the construction of an appli

cation generator of video drivers �for di�erent ven

dors� for the X Window server� We �rst discuss the
de�nition of an abstract machine for the domain�
identi�ed by studying the existing device drivers�
Then we describe a DSL for generating video drivers
and related design issues�

��� The Abstract Machine

The abstract machine for the video driver domain
was designed primarily by studying the implemen

tation of existing drivers� The abstract machine was
also iteratively re�ned during the development of a
DSL� We identi�ed three patterns which appeared
in the existing drivers that could be used to guide
the de�nition of abstract machine operations�

Operation pattern� The �rst of these patterns
corresponds to simple atomic operations in the ab

stract machine� There are two forms in which this
pattern appears� as repeated fragments of code that
di�er only by data� and as fragments which perform
the same treatment but have a small number of vari

ations on how it is performed� In the �rst case� the
fragments are often already identi�ed and placed in
a library or de�ned as a macro� These fragments
directly correspond to abstract machine operations�
As an example of the second case� the device

drivers are dominated by occurrences of code frag

ments which read or write data from or to the video
card� Communication with hardware devices can be
handled in a small number of di�erent ways� and the
scheme chosen varies from vendor to vendor� There

were several occurrences of three of these di�erent
schemes of I�O� di�ering only in certain data �e�g��
the I�O address�� These fragments were captured in
a single abstract machine operation de�ned as fol

lows�

write�port�port�number� integer�

index� integer�

indexed� boolean�

pair� boolean�

pci� boolean�

This instruction is parameterized by �ags to specify
which scheme to use �indexed� paired� or PCI�� and
the data used by the scheme to perform the I�O
�port number� index��

Combination of operations pattern� The sec

ond type of pattern recognized can be identi�ed as
expressions or combinations of operations� This pat

tern is characterized by expressions or combinations
of operations that have no commonalities between
members of the family� For example� in the device
drivers there are sequences of shifts and logical ex

pressions which are di�erent for every driver� Al

though there are no commonalities in those expres

sions from one driver to the next� we can identify a
su�cient set of operations to construct any instance�
The selection of these operations depends not only
on the existing samples� but on an understanding
of the domain� and speculation on the future of the
domain�
The following code fragment shows an example of

this pattern from one of the existing drivers�

outb��x�C�� � inb��x�CC� � �xF�� 	

��no 

 �� � �x�C���

outb�OTI�INDEX� OTI�MISC��

outw�OTI�INDEX� OTI�MISC 	

��� inb�OTI�R�W� � �xDF � 	

�� no � �� 

 ��� 

 
���

This portion of the driver maps the value of no

onto the appropriate registers in order to select the
clock� For a given driver� there may be any num

ber of reads� writes� shifts and logic operations� but
no other operations� Thus� we can implement any
given driver with a sequential composition of a small
number of abstract machine operations�

Control pattern� The last pattern consists of
code fragments that share a common control struc

ture� but contain code fragments matching the com

bination of operations pattern previously discussed�
For example� consider a function of the device driver



which is used to save� restore� and set the clock value
on the video card�� This function has the following
form�
Bool ClockSelect�int no�

�

switch �no� �

�� Save the clock value� ��

case CLK REG SAVE�

Series of I	Os and logic operations�
break�

�� Restore the saved clock value� ��

case CLK REG RESTORE�

A second series of I	Os and logic operations�
break�

�� Set the clock value to no� ��

default�

A third series of I	Os and logic operations�
�

�

The series of I�Os and logic operations in this ex

ample follow the combination of operations pattern�
and can be constructed by sequences of abstract ma

chine operations�

For this pattern� we introduce higher
order ab

stract machine operations� That is� abstract ma

chine operations which take sequences of abstract
machine operations as parameters� These parame

ters correspond to the contained fragments that fol

low the combination of operations pattern� The ex

ample above is captured by the following abstract
machine operation�

change�clock�save�clk� instructions�

restore�clk� instructions�

set�clk� instructions�

Conclusion� Using these patterns with existing
examples� we were able to de�ne an abstract ma

chine that could express the behavior of any par

ticular device driver� Although they were typically
easy to recognize� it is important to realize that it
was necessary to abstract from certain details in or

der to see the di�erent patterns� E�g�� in our exper

iment� the examples were mostly written by di�er

ent people� who had di�erent styles of programming�
and sometimes took di�erent approaches to the same
problem� In this situation� it was necessary to deter

mine if the same functionality could be implemented

�Video cards have programmable clocks which can be set

to di	erent frequencies to control the video refresh rate�

with a common structure� which happened to always
be the case�

��� The GAL Language

In this section we present the Graphics Adaptor
Language �GAL� for video device driver speci�ca

tion� In order to understand where the language
comes from� it is important to know what the es

sential variations are among video adaptors� The
remainder of the section describes the variations
that exist between cards and the corresponding con

structs in GAL that capture them� A complete ex

ample of a GAL speci�cation is described in Ap

pendix A�

����� Ports� Registers� Fields and Parame�

ters

A video adaptor is controlled by setting certain pa

rameters stored in hardware registers of the card�
These registers have addresses� A single parameter
may be stored in multiple registers and only certain
bits of the registers may be used� Thus the layout
of the parameters on the register space is the �rst
major variation between cards�
Access to the registers are provided through var


ious communication schemes� As mentioned in the
previous section� there is a small number of di�er

ent schemes that can be used to communicate with
a hardware device from a program� The choice of
communication scheme is the second major varia

tion between cards� We de�ne several concepts to
describe these notions of communication and regis

ter layout�

Ports� The �rst concept is the port which is used
to de�ne a point of communication� For example�
the declaration

port svga indexed���x�d��

de�nes a port named svga� which uses an indexed
communication scheme at the I�O address �x�d��
This is a standard port used by many video cards�

Registers� A second concept is provided by the
register declaration� which de�nes how to access reg

isters on the card using the de�ned ports� For ex

ample� the declaration

register ChipID��svga��x����

de�nes a register ChipID� which is accessed through
port svga� at index �x���



Standard �eld Purpose

HTotal� Horizontal resolution
HEndDisplay� settings�
HStartBlank�
HEndBlank
VTotal� Vertical resolution
VEndDisplay� settings�
VStartBlank�
VEndBlank
LogicalWidth Width of virtual screen�
StartAddress Display start address

within virtual screen�
ClockSelect Clock selection�
Standard param Purpose

RamSize Frame bu�er memory size�
LinearBase Address of linear space�
LinearAperture Size of linear space�
NoClocks Number of �xed clocks�

Table �� Prede�ned �elds and params�

Fields� The next concept is speci�ed with a �eld
declaration� The �eld declaration de�nes where a
logical value is stored �in which bits of what regis

ters� and a mapping from logical values to actual
stored values� For example� the declaration

field LogicalWidth��

Control������� � Offset scaled 
�

de�nes a �eld LogicalWidth� which is stored in bits
� and � of the Control� register and the entire
Offset register� Additionally� the mapping clause
�scaled 
� speci�es that the value stored in the reg


ister is �

�

th
the actual value� The mapping is needed

because cards often store a value which is some func

tion of the �eld�s actual value�

Parameters� Related to the �eld declaration� the
parameter declaration is the de�nition of a constant
value that is either explicit in the speci�cation or
read from the card during con�guration� An exam

ple of the former case would be

param NoClocks����

The majority of a GAL speci�cation consists of
the de�nition of �elds for standard values that are
used to control the video adaptors and parameters
which determine certain features of the card �e�g��
size of the frame bu�er�� Table � lists some of these
prede�ned �eld and parameter names that can be
de�ned in GAL speci�cations�

����� Clocks

A third major variation between di�erent adaptors
is the use of clocks� All adaptors have a clock which
controls the frequency at which data is sent to the
display� This frequency needs to be changed for dif

ferent resolutions� and there are two approaches to
doing this� One is to have a �xed number of fre

quencies to choose from� and the other is to have a
programmable chip that can generate many frequen

cies by changing its parameters� The cards with a
�xed number of clocks vary in the number of clocks
and the frequencies provided� while the cards with
a programmable clock vary in how the clock is pro

grammed and its range of frequencies�
A card that has �xed clocks can be speci�ed

in GAL by de�ning a parameter NoClocks and a
�eld ClockSelect� The NoClocks constant de�nes
the number of clocks which are available� and the
ClockSelect �eld de�nes the �eld which selects the
clock�
For cards that have programmable clocks� a spe


cial construct is de�ned to specify how to program
the clock� For example�

clock f� is ����
�f�M � �f�N��f�N���

de�nes a clock named f�� which is programmable
according to the equation on the right� The equa

tion de�nes the frequency generated based on pro

grammable values� which are de�ned elsewhere by
the three �elds f�M� f�N�� and f�N�� Given the
desired clock frequency� the device driver uses the
speci�ed equation to �nd values of f�M� f�N�� and
f�N� which approximate this frequency as closely as
possible�

����� Identi�cation

The fourth major variation observed among video
cards is how the card is identi�ed� This information
is required for systems which dynamically con�gure
themselves to use whatever card is available at that
time� Card identi�cation uses a small number of
predicates which test the card and follows a decision
tree to decide if the card is supported by the driver
and which one�� Thus� we de�ne an appropriate
construct for specifying this type of decision tree in
GAL�
The following is an example of this identi�cation

construct�

identification begin

�� writable�Segment� �� �true��step ���

�One device driver often supports multiple cards from the

same vendor�



�� Chip�id������oti�
��others��step ���

�� Chip�id�������oti���c� ���oti����

���oti�����

end identification�

This example identi�es one of four models �oti���c�
oti���� oti���� oti���� of cards that use an OTI
graphics controller� The construct de�nes a series
of steps numbered �
� to the left� At each step� the
expression to the left of the arrow is evaluated and
the result is compared to the list of decisions on the
right� If no decision is matched on the right� then
identi�cation fails and indicates that the driver does
not support the card� Possible decisions are to iden

tify the card or proceed to another step� Step 	�
for example� reads the value of the Chip id regis

ter� and if the result is �� identi�es that an oti���
is present� otherwise proceeds to step � for further
tests� The stepwise syntax re�ects the way diagnos

tic procedures are commonly described in manuals�

����� Modes

The �nal major variation between cards is that many
adaptors require some �ags be set under certain op

erating conditions� These are referred to as modes
of operation in GAL� and are de�ned with the mode
construct� The mode construct is used to specify a
predicate and a sequence of assignments to �elds�
which enable or disable the corresponding mode of
operation for the video card� For example�

mode HighRes��HTotal�
���

enable HighRes sequence is Control���
���

This mode declaration de�nes a mode� HighRes�
which indicates that a ��� must be stored in bit �
of Control in order to use a video mode in which
the horizontal resolution is greater than ��� pixels�
In our implementation� the predicate HTotal�
�� is
tested after changing the video mode� if it is true�
the sequence Control���
�� is executed�

In addition to user de�ned modes� there are also
a few built
in modes� The built
in modes have �xed
predicates� but allow the speci�cation of enabling
and disabling sequences� For example� the built
in
mode SVGAMode is true for all graphics modes and
thus the user
de�ned enabling sequence is executed
each time the mode is changed�

����� Run�time variations

In addition to the variations that exist between
cards� there are variations within a single driver that
depend on conditions not known until run
time �of

the driver�� For example� some video adaptors op

erate di�erently depending on the hardware bus uti

lized �AT� PCI� or VLB�� Additionally� if one wants
to build a single device driver for a number of models
from the same vendor� the variation between those
models has to be chosen at run
time� In GAL� the
cases construct is used to describe this type of vari

ation�
As an example� the following cases construct is

used to de�ne the clocks for di�erent models of S�
cards�

cases

for S��TRIO���S��TRIO��

param NoClocks����

field ClockSelect��Miscr�������

for others

param NoClocks�����

field ClockSelect��Control�������

end�

This example speci�es that if the card identi�ed at
run
time is a S� TRIO�	 or S� TRIO��� then the
card has four �xed clocks selected by bits � and 	 of
the Miscr �eld� All other cards have sixteen clocks
selected by bits � down to � of the Control �eld�

��� Design of GAL

This section discuses some of the many forces that
in�uenced the design of GAL� The �rst two subsec

tions describe two main inputs to the design pro

cess� a de�nition of variations in the family and
knowledge about the domain� In our case� the do

main knowledge came from existing documentation
used by domain engineers� Other important issues
are the level of abstraction� the level of restriction�
readability� maintainability� etc� While the level of
abstraction and the level of restriction are of partic

ular importance for DSLs� issues like readability and
maintainability apply to both DSLs and GPLs

����� De�ning Variations

One of the main inputs to the design of a DSL is
a description of the variations that exist among the
target set of applications� The de�ned variations
imply requirements on the DSL in order to distin

guish among instances of the program family� In
our case� these variations came from a study of the
documentation of existing video cards� In addition
to studying di�erent cards� inspection of the exist

ing device drivers provided a more detailed source
of variations at the implementation level� For exam

ple� given that there were a small number of ways



to communicate� which varied among cards� there
must be some construct in GAL speci�cations� which
would allow the selection of the correct communica

tion scheme� Some of this information can also be
extracted from the parameters of the abstract ma

chine operations�

����� Domain knowledge

The other main input to the DSL design process is
knowledge of the domain in terms of the abstract
objects or concepts and terminology used in the do

main� This knowledge may come from a domain
expert or from existing natural language speci�ca

tions� as in our experiment� This is an important
input because it leads to a more abstract user
level
DSL� An appropriate terminology provides a DSL
that is familiar to people of the domain� The identi

�ed abstract objects that are a�ected by variations
in the program family provide starting points for
declarative constructs�
In this experiment� we looked at several English

speci�cations of video cards to identify the con

cepts and terminology used within the domain� The
clocks� ports and registers are examples of concepts
in the domain that we identi�ed� After identify

ing them� we considered what attributes of the ob

jects were related to variations within the program
family� Declarative statements were then de�ned
to specify the values for the attributes that varied�
Thus� the abstract objects identi�ed in our exper

iment directly translated to declarative constructs
in the DSL� Additionally� the relationship between
the objects translated into a reference relationship
in the DSL� For example� registers are de�ned by
references to port de�nitions� This may suggest the
use of an object
oriented analysis for DSL design�

����� Level of Abstraction

One of the most important goals guiding the DSL is
to provide a high
level of abstraction� In particular�
we wish to intentionally focus on raising the level
of abstraction from the abstract machine level� In
fact� it may be desirable to include information in
the DSL� which is not even used for implementation�
but may be used in analyses or for documentation�
As an example of abstraction� the abstract ma


chine developed for the video device drivers includes
operations for doing bitwise shifts and logical opera

tions� However� these types of expressions do not ap

pear in GAL because we intentionally introduced the
idea of �elds and parameters to eliminate the low

level procedural nature of these expressions� This
also eliminates a common source of errors�

After a preliminary design of the language� the
language and abstract machine are revised in an it

erative way� The revision process must satisfy the
correspondence constraint between the language and
abstract machine� it must be feasible to provide a
mapping from the language to the operations of the
abstract machine as an interpreter� During this re

vision process the level of abstraction must also be
considered� Although it is possible to move all of
the functionality of the language into the abstract
machine� making the mapping essentially one
to

one� there must be conscious decisions made about
where to draw the line between the interpreter and
the abstract machine� The primary consideration
here is the separation of functionality from speci�

cation� The abstract machine should specify how
applications in the family are implemented� The in

terpreter� on the other hand� should specify how to
make the design decisions required to map a design
speci�cation �i�e�� DSL program� into an implemen

tation �i�e�� abstract machine operators��

����� Level of Restriction

Another major concern is restricting the language�
It is important to consider what types of analyses
might be performed on speci�cations in the DSL
in order to insure that the language is restricted
enough to make the analyses feasible� For example�
in the GAL language we have intentionally not in

troduced loops� which insures that all device drivers
can be proven to terminate� Additionally� we per

form other analyses to detect common errors in the
speci�cation by providing explicit information that
is di�cult or impossible to extract from general pur

pose languages� An example of this is checking that
the bits of each register belong at most to one �eld�
This information would not be possible to retrieve�
in general� from a driver implemented in a language
such as C�

����� GPL principles

In addition to the design goals that are speci�c to
DSLs� there are several principles of general purpose
language design that also apply to DSL design� Gen

eral purpose languages can also help DSL design by
providing a standard set of common constructs that
may be restricted for use in the DSL� but would still
be recognized as a common construct�
On the other hand� the cases construct intro


duced in GAL is an interesting example of a con

struct which possibly has applications in DSLs in
general �when a prede�ned abstraction may� condi

tionally� have one of several de�nitions�� but is not



useful for GPLs� since the behavior is totally de

scribed by the program itself and abstractions are
explicitly invoked� One of the main purposes of in

troducing a DSL and an application generator is to
embed knowledge about how to implement certain
operations of the domain into the application gen

erator� As a result� there are often declarative con

structs in DSLs that are translated into executable
code by the application generator� which is not gen

erally true of general purpose languages� Since these
declarations really imply operations� there is often a
need to make choices between the implied operations
that can only be made at run
time� This leads to the
type of dynamic selection of multiple de�nitions that
is provided by the cases statement� Since a main
motivation of utilizing a DSL is to raise the level
of abstraction� it will be common for DSLs to have
declarative objects which imply operations and re

quire this dynamic selection� Thus� we suspect that
this construct will be useful in DSLs in general� and
in fact have found it necessary in other DSLs that
we have experimented with� This suggests that there
are new constructs and principles that are interest

ing and unique to DSLs and warrant study�

� Results

In this section we present the results of applying
our framework to the domain of video device drivers�
The results are presented in terms of the advantages
we have gained from using our approach for this fam

ily of drivers� There are two aspects of the approach
that led to these advantages� One aspect is the use
of DSLs and application generators in general� and
the second is speci�c to our framework for applica

tion generator design�

��� Domain Speci�c Language

The GAL language demonstrates many advan

tages of using an application generator with a DSL
for the video device driver domain� These bene�ts
include an increased level of abstraction� the pos

sibility of automated program analyses� reuse� and
productivity�
There are two signi�cant examples of the bene


�t of a higher level of abstraction� The �rst� al

ready discussed in section ������ is the use of ports�
registers� and �elds to abstract from the low
level
bitwise operations that would otherwise have to be
used� This eliminates many common errors� is more
readable� and easier to write� A second example is
an abstraction from implementation� The X Win
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Figure 	� An extract of the generated S� card pro�le�

dow server can be considered a framework� where
the device driver provides the additional functions�
As with any framework� the device driver needs to be
implemented in a certain way in order to be compat

ible with the server and requires considerable knowl

edge about the framework� Using an application
generator� knowledge about the framework and com

patibility issues are coded in the application gener

ator� and hidden from the device driver designer�
GAL also demonstrates that automatic analyses

can be performed on the DSL� which would not be
possible or feasible with a general purpose language�
Example analyses that are performed on GAL speci

�cations include detecting unused de�nitions� check

ing for exhaustive identi�cation of video cards� iden

tifying overlap in �eld de�nitions� checking for mini

mum requirements on prede�ned �elds� and generat

ing a card pro�le �summary of card characteristics��
None of these analyses would have been feasible on
the existing device drivers implemented in C� Using
GAL not only makes the analyses feasible� but also
easy to implement� For example� all of these analy

ses for GAL were implemented within a single day�
One particularly interesting analysis is the one

which generates a card pro�le� Generating a card
pro�le is an analysis which� from the GAL speci�ca

tion� produces a summary of the video modes that
are supported by the generated device driver� Fig

ure 	 shows an extract of the pro�le generated for
the S� speci�cation listed in Appendix B� A pro�le
is generated for each subset of cards in the speci�ca

tion that have the same pro�le� The �gure shows the
pro�le for the S� TRIO�� and S� TRIO��� This sum

mary can be compared with vendor speci�cations to
�nd mistakes in �eld de�nitions and provides auto

matic documentation of the speci�cation�
Finally� using an application generator provides

reuse by capturing design knowledge� In the do

main of video device drivers there are large bene�ts
of reuse because there is a large growing number



of video cards which could potentially be generated
from a single application generator� The amount of
productivity gained depends on the ease of building
the application generator and consequently on the
approach to its design� Thus� we discuss productiv

ity measurements in the next section with respect to
our framework�

��� Our Framework

In addition to the advantages obtained from the
DSL approach� there are several advantages demon

strated by GAL due to our framework of generator
design� The experiment shows that the framework
achieves automatic and predictable generation of ef

�cient video drivers� and a high
level of reuse� GAL
also demonstrates that the bene�ts of the two
level
approach for analyses and multiple implementations
are of practical value�

����� Reuse and Productivity

The abstract machine for X Window device drivers
consists of 
� small C procedures totaling �	�� lines�
Implementing the abstract machine has roughly the
same di�culty level as implementing a single driver
directly� as the code is very similar� Since we had
existing device driver implementations� some of the
abstract machine code could be reused from those
drivers�

The interpreter for GAL consists of ���� lines of
C code and an automatically generated parser� much
of which concerns building an environment and look

up routines for declarations� Thus� together the sys

tem consists of about ���� lines of C code� We can
compare this to the size of the existing hand
coded
drivers which averaged about ���� lines� Though
the e�ort required to build an interpreter should be
less than that for building a device driver� we can
estimate that the application generator requires a
little more than ��� times the e�ort of an individual
driver �assuming code size proportional to e�ort��

For the version of the X Window server we used�
the existing drivers together consisted of ����� lines
of code� The GAL speci�cations that have been
written are at least a factor of 
 smaller than the
corresponding existing C driver � We can then es

timate that these drivers could be generated from
less than ���� lines of GAL speci�cations plus the
���� lines of the generator� totaling less than �����
lines� This is an estimated productivity gain of a
factor of ���� In practice there would be a higher
gain� since GAL speci�cations are easier to write
then the corresponding C driver� In addition� hav


Server lines�s percent
S� XAA ��
���� ���
S� AM ������� �

S� PE �
����� ���

Server rectangles�s percent
S� XAA 	������ ���
S� AM ��
���� ��
S� PE 	������ ���

Table 	� Performance results�

ing an interpreter for GAL provides a prototyping
environment�

����� E	ciency

Here we consider two measures of e�ciency� object
code size and execution speed� Although design

ing an interpreter is easier than designing a com

piler� there are signi�cant losses in speed and size
�compared to compilation�� In terms of speed� inter

preters are typically ��
��� times slower than com

piled programs� and in terms of size� our GAL in

terpreter is �� times larger than a typical driver in
object code size� However� a bene�t of using partial
evaluation is that we can regain the loss in e�ciency�
We used Tempo ����� a partial evaluator for C�

as the program specializer used to translate GAL
speci�cations to abstract machine programs� and to
produce an e�cient implementation of the abstract
machine programs� In order to make a size compar

ison� we compared the object �le sizes of the gener

ated drivers to that of the hand
coded drivers� On
average� the generated driver is only ��� larger than
the hand
coded one�
The speed of most of the device driver functions

are insigni�cant� as they are only called during con

�guration� However� we picked three device driver
functions used for drawing lines and rectangles in
hardware to benchmark performance� Since the in

terpreter level of our framework is guaranteed to be
eliminated �see section 	�� we are only concerned
with the abstract machine layer�
For comparison� we prepared three versions of the

X Window server for an S� TRIO��V� video card
on a Pentium PRO
	��� Table 	 shows the timing
results for the three servers� The S� XAA server
is the X Window server provided with XFree�� and
the included hand
coded S� device driver� S� AM is
the same server with a device driver which directly
uses the abstract machine� Finally� S� PE is the
same server using the abstract machine� but after
partial evaluation� The table shows the performance



of these servers for lines and �lled rectangles of size
�� as measured by the standard XBench benchmark
utility�� The table also includes a percentage using
S� XAA as a baseline�
The table indicates that there is a loss of about

	�� in performance from the use of the abstract ma

chine� This loss of performance can be contributed
to error checking� interpretation� function call� and
data copying overhead� Data copying is due to the
need to communicate across abstract machine oper

ations� The write operation includes error checking
to insure that if previous operations fail the result

ing data is not written to the card� This is particu

larly important because the card could otherwise be
damaged� Finally� the I�O operations require some
interpretation of their parameters to determine the
type of I�O to perform and which addresses to use�
Although directly using the abstract machine in

curs this performance loss� the results for the S� PE
server show that the program transformations per

formed by partial evaluation are able to recapture
all of the performance loss� A majority of the er

ror checking can also be eliminated using Tempo
because often the operations preceding write opera

tions can not fail� and thus error conditions do not
need to be checked� Finally� the parameters which
are interpreted to select the type of I�O to perform
and used for address computation are known and
eliminated by Tempo� Tempo also performs inlining
and copy elimination which eliminates function call
and data copying overhead�

����� Analyses

Our framework for application generator design con

tributes in two ways to the use of program analyses�
The generation process is predictable and can be an

alyzed� and the separation of the abstract machine
from the interpreter allows analysis at the abstract
machine level�
As an example� the GAL abstract machine in


cludes operations that allocate and deallocate tem

porary storage and operations which use the tempo

rary storage� As long as the operations which use
the temporary storage are only used between a set
of allocate and deallocate operations� we can insure
there will be no uninitialized pointer dereferences�
The analyses of partial evaluation are capable of pro

ducing a speci�cation of all the programs that could
possibly be generated by the partial evaluation pro

cess� From this� we can obtain a formal description
of all possible abstract machine programs that could
be generated� and can check that the operations are

�A small size is used to minimize the e	ect of the hardware�

always generated in the correct order� Thus� for the
GAL system we can prove that uninitialized pointer
dereferences will never occur� This description of the
generation process may also be analyzed for perfor

mance measurements� for example�

The separation of the abstract machine and the
DSL provides an intermediate level at which anal

yses can be performed and could allow analysis at
run
time� In fact� this separation corresponds to a
standard technique of program speci�cation� which
factors the veri�cation process into two parts ���� As
an example of analysis at run
time� we may wish to
check that device access within a video driver is safe
�e�g�� does not access the disk device�� This cannot
be done until run
time because it depends on what
devices are present at run
time� In this case� we
might accept video drivers in abstract machine form
and analyze the abstract machine at run
time� Par

tial evaluation can be performed at run
time �����
so the e�ciency can still be recaptured� This kind
of analysis is not feasible on machine code or even
Java bytecodes due to their general purpose nature�
In proof
carrying code ����� the burden of proof is
put on the programmer and the proof is sent with
the code to be veri�ed �veri�cation being easier��
whereas here we make the proof easier so that it can
be done at run
time�

����� Multiple implementations

The video device driver family also demonstrates
a useful application of having multiple implemen

tations of interpreters and abstract machines� In
this domain� it would be desirable to have abstract
machines for several architectures and interpreters
for di�erent operating systems� For example� Fig

ure � shows the situation where there are imple

mentations of interpreters for Microsoft Windows 
�
and Linux�X��� and implementations of the abstract
machine for the Dec Alpha and Intel based comput

ers� In this situation� with the equivalent of two ap

plication generators �interpreter�abstract machine
pairs�� the same GAL speci�cation can be used to
generate four di�erent device drivers� We have im

plemented the X���Intel path of Figure ��

For prototyping� we have also bene�ted from hav

ing a second implementation of the abstract ma

chine which simulates the abstract machine opera

tions� The simulation records the values that would
be written to the card by the real abstract machine�
This is an important feature as some video adaptors
can be damaged by writing inappropriate values to
the card�
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� Conclusions and Future Work

Domain speci�c languages hold the promise of de

livering high payo�s in terms of software reuse� au

tomatic program analysis� and software engineering�
In this paper we have presented GAL� an example
of a complete DSL for a realistic program family�
video device drivers� We also demonstrated the ben

e�ts of DSLs by showing how GAL raises the level of
abstraction of device driver speci�cations and iden

tifying some analyses that can be performed on GAL
speci�cations because it is domain speci�c�
A further contribution of the paper is to validate

our framework of application generator design by
applying it to this program family to provide an
implementation of GAL� Since our implementation
is based on partial evaluation� it provides a com

plete interpreter for prototyping device drivers� but
still automatically generates e�cient device drivers�
E�ciency is demonstrated with results comparing
hand
coded drivers to automatically generated de

vice drivers� Generated drivers are roughly one third
larger than hand
code drivers and perform equiva

lently in terms of speed� Additionally� we give mea

sures on expected reuse bene�ts� GAL speci�cations

are roughly a factor of 
 smaller than a driver hand

coded in C�
Although our framework signi�cantly reduces the

development time of application generators� future
work could be done in this direction� Speci�

cally� this approach would bene�t from a generator

speci�c reuse method that would allow interpreters
and abstract machines to be constructed from reused
composable parts� Additionally� given the nature
of DSLs� they are extended frequently to adapt to
new program requirements� and the ease of exten

sion also needs to be considered for such language
components�
Our implementation of the static analyses indi


cates that methods of quickly constructing static
analyses should also be investigated �e�g�� compos

able analyses�� This is more important for DSLs
than GPLs� since static analyses are a major moti

vation of the approach�
In this work we have presented an application of

our approach to a program family with existing fam

ily members� To further validate the approach� it is
also important to study its application to a program
family which is not pre
existing� In this case� the
abstract machine and DSL might be developed from
the results of a domain analysis or a commonality
analysis� such as FAST ��	��
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A A Complete GAL Example

Appendix B gives a complete listing of the GAL speci�cation for several models of S� video adaptors� In
this appendix� we explain some of the constructs that were not included in the main text�
Although the various registers of video cards are typically accessed using an addressing scheme� there is

sometimes a sequential procedure that must be followed to access some registers� The serial construct is
used to specify this kind of procedure �see listing�� The construct consists of a list of sequences of actions
that should be performed on the ports to access the registers� Thus multiple ports may be accessed during
the procedure� as in the example� Each sequence consists of a port� an operation �
� write� 
�� read�write�
�� read�� and a sequence of values for writes or registers names for reads and read�writes� The actions in
the sequence are performed from the �rst port to the last� from left to right in the sequence� The mode �R
read� R�W read�write� W write� to the right of the sequence indicates whether this sequence applies to reading
the registers to writing the registers or both�
The serial construct in the example de�nes the registers PLL�� and PLL�� In order to write values to these

registers the construct would be executed as follows� Write � to misc������� write the value of PLL� to
seq��x���� write the value of PLL� to seq��x���� and �nally� write �� then �� then � to seq��x�������
The S� speci�cation also includes an example of a derived �eld� which is not discussed in the paper� This

is a �eld whose value is derived from one of the standard �elds� In the example� StartFIFO is a derived
�eld� Its value is set whenever the graphics mode is set� and is based on the value of HTotal� the horizontal
resolution� The declaration indicates this with the from clause�
The clockmap is used when a card has both �xed and programmable clocks such as the S� Trio cards� It

indicates which clocks are �xed and which are programmable� The example for the S� indicates that clock
� and � are �xed� clock 	 is not available �NA�� and clock � is the programmable clock f�� The parameters
MinPClock and MaxPClock are also related to clocks and specify the minimum and maximum values that
can be generated by the clock �i�e� not all values of f�M� f�N�� and f�N� are valid��
Finally� the operating mode access is used to lock an unlock registers on the card�

B GAL S� Listing

�� List all cards�models supported by this driver�

chipsets S������S������S��
�x�S����
�S��
���S������S��
���S��
�
�

S����
�S��TRIO���S��TRIO���

�� Define ports�

port svga indexed���x�d��

port seq indexed���x�c��

port misc �� �x�cc� �x�c��

�� Define registers�

register Miscr��misc�

register Slock��seq��x
��

register Offset��svga��x����

register ExtChipID��svga��x�e��

register ChipID��svga��x����

register Memory��svga��x����

register State��svga��x����

register Lock���svga��x�
��

register Lock���svga��x����

register StartFIFOr��svga��x�B��

register Misc���svga��x�a��

register Control��svga��x����

register Control���svga��x����

register HOverflow��svga��x�D��



register VOverflow��svga��x�E��

register Control���svga��x����

�� Serial registers �see appendix A��

serial begin

misc������
� ���� ������� W�

seq��x���
�� ���PLL�������� R�W�

seq��x���
�� ���PLL�������� R�W�

seq��x������
����� ������� W�

end�

�� Define predefined fields

�� Horizontal resolution fields�

field HTotal �� HOverflow����std�

field HEndDisplay �� HOverflow����std�

field HStartBlank �� HOverflow����std�

field HStartRetrace �� HOverflow����std�

�� Vertical resolution fields�

field VTotal �� VOverflow����std�

field VEndDisplay �� VOverflow����std�

field VStartBlank �� VOverflow����std�

field VStartRetrace �� VOverflow����std�

�� Virtual screen fields�

field LogicalWidth �� Control��������Offset scaled 
�

cases

for S����
�S����
�S��TRIO���S��TRIO��

field StartAddress �� Control��������Memory�������std�

for S��
�x

field StartAddress �� Control�����Memory�������std�

for S��
���S�����

field StartAddress �� Control��������std�

for others

field StartAddress �� Memory�������std�

end�

�� Define derived fields �see appendix A��

field StartFIFO from HTotal �� HOverflow����StartFIFOr offset �� scaled 
�

�� Special S� flags that must be set for ��� color graphics modes�

enable SVGAMode sequence is Misc����
���Memory���
���

�� Define standard parameters�

param TwoBankRegisters��false�

param InterlaceDivide �� true�

cases

for S������S�����

param RamSize��State��� mapped �����������������

for others

param RamSize��State������ mapped ��������������������
����������
���������

����������������

end�



�� Define clocks�

cases

for S��TRIO���S��TRIO��

param NoClocks����

field ClockSelect��Miscr�������

param MinPClock������

param MaxPClock������

field f�M��PLL������� offset � range � to ����

field f�N���PLL������� offset � range � to ���

field f�N���PLL������� mapped �������������������
��

clock f� is ����
�f�M � f�N��f�N��

clockmap is �fixed�fixed�NA�f���

for others

param NoClocks�����

field ClockSelect��Control�������

end�

�� Identification procedure�

identification begin

�� ChipID������ �� ��x
��step �� �x���S����
� �xA��S��
�x� �xB��S����
�

�xC��S��
��� �xD��S������ �xE��step ���

�� ChipID������ �� ��x���S�������x���S�������

�� ExtChipID �� ��x����S��TRIO��� �x����S��TRIO��� �x
���S��
���

�x����S��
�
� �xB���S����
��

end�

�� Register locks on S� chips�

enable access sequence is Lock�
��x�
�Lock�
��xA��Slock
��x��

disable access sequence is Lock�
��x���Lock�
��x�A�Slock
��x��


