
Automatic Optimization of the Sun RPC Protocol Implementation
via Partial Evaluation

Gilles Muller, Eugen-Nicolae Volanschi, Renaud Marlet
IRISA / INRIA

Campus Universitaire de Beaulieu

35042 Rennes Cedex - France

{muller,volanski,marlet}@irisa.fr

Abstract

We report here an experiment of using partial evaluation
on a realistic program, namely the Sun commercial RPC
protocol. RPC is a highly generic software that offers sev-
eral opportunities of specialization. We used Tempo, a
partial evaluator for C programs targeted towards system
software.

Our specialized marshaling layer is up to 3.5 times faster
than the non-specialized one. On a complete RPC call, we
have a speedup of 18%.

This work shows that partial evaluation is reaching a rel-
ative level of maturity: it can now be applied to real system
software.

Keywords: partial evaluation, generic system software,
RPC protocol.

1 Introduction

Remote Procedure Call (RPC) is a protocol that makes a
remote procedure look like a local one. A call to this pro-
cedure is done, transparently, on the local machine but the
actual computation takes place on a distant machine.

Performance is a key point in RPC. A lot of research
has been carried out on the optimization of various lay-
ers of the protocol [14, 3, 8, 15, 10], but they lead to pro-
tocols which are incompatible with an existing standard
such as Sun’s RPC. Moreover, even reimplementation of
the present protocol could lead to incompatibility because
of existing but yet accepted bugs (i.e. features). Our point
is that the high genericity of Sun’s standard RPC imple-
mentation is an invitation to specialization.

Partial evaluation is a source-to-source program trans-
formation technique for specializing programs with re-
spect to parts of their inputs [4]. Our group is currently
developing a partial evaluator for C named Tempo [5]. It is
targeted at realistic programs, as opposed to toy examples

or specially (re)written programs. It is more specifically
designed to treat industrial-strength system code. The RPC
experiment described here has been one of the driving test-
examples of Tempo’s recent research, design and imple-
mentation.

Our contributions are the following:

• We have optimized the client part of the RPC proto-
col, reusing the existing software layers. On the mar-
shaling layer only, we run up to 3.5 times faster. On
a complete RPC call, we have a 18% speedup. We
expect to double that speedup when also specializing
the server side.

• We have illustrated the fact that partial evaluation
is a very appropriate tool to suppress modularity in
generic software.

• Finally, we have shown that partial evaluation is
reaching a level of maturity that makes it suitable to
treat realistic (system) programs.

The remainder of the paper is organized as follows. Sec-
tion 2 presents partial evaluation and describes the Tempo
specializer. Section 3 recalls the internal architecture of the
Sun RPC. Section 4 explores opportunities for partial eval-
uation and shows specialization results. Section 5 gives
some benchmarks on a real example. The conclusions of
our experiment opens up new perspectives.

2 Partial Evaluation

The conflict between modularity and performance is now
a well-identified problem in system software development.
Modularity in system code has many advantages such as
maintainability, reusability, and adaptability. However,
these advantages come at the expense of performance if
the modular design is mapped directly to an implemen-
tation. Indeed, it often introduces some overhead due to
operations such as data copying and format translation be-
tween layers, and heavily parameterized interface func-

1

arg.int1 = ... // Set first argument
arg.int2 = ... // Set second argument
rmin(&arg) // Generated byrpcgen

clnt_call(argsp) // Generic procedure call (macro)
clntupd_call(argsp) // UDP generic procedure call

// Write procedure identifier
XDR_PUTLONG(&proc) // Generic marshaling to memory, stream... (macro)

xdrmem_putlong(longp) // Write in output buffer and check overflow
htonl(lp) // Switch between big and little endian (macro)

xdr_min(argsp) // Stub function generated byrpcgen
// Write first argument

xdr_int(&argsp->int1) // Machine dependent switch on integer size
xdr_long(intp) // Switch between encoding and decoding
XDR_PUTLONG(lp) // Generic marshaling to memory, stream... (macro)

xdrmem_putlong(longp) // Write in output buffer and check overflow
htonl(*lp) // Switch between big and little endian (macro)

// Write second argument
xdr_int(&argsp->int2) // Machine dependent switch on integer size

xdr_long(intp) // Switch between encoding and decoding
XDR_PUTLONG(lp) // Generic marshaling to memory, stream... (macro)

xdrmem_putlong(longp) // Write in output buffer and check overflow
htonl(*lp) // Switch between big and little endian (macro)

Figure 1: Abstract trace of the encoding part of a remote callto rmin

tions. Modular design should rather be the basis of a step-
wise refinement process to derive an implementation, in-
stead of being directly mapped to an implementation.

We claim that this refinement process can be achieved
by program specialization [4].

Overview of Tempo. In our experiment, we have used
a partial evaluator of C named Tempo [5]. Form a source
program and parts of its input, Tempo produces a special-
ized program. Tempo also allows run-time code genera-
tion [6].

Tempo is an off-line [4] specializer in that it processes
a program in two steps: analysis and specialization. A
known/unknown division of the input is given to the anal-
ysis phase. Pointer and side-effect information of the sub-
ject program are first computed. Then, abinding-time
analysis(BTA) determines the computations which rely
on the known parts of the input. Finally, an action analysis
determines a program transformation for each construct in
the program.

More precisely, every construct is assigned one of the
following annotations:

• static: known at specialization time, hence can be ex-
ploited and eliminated in the specialized program,

• dynamic: only known a run time, hence must be resid-
ualized (i.e., must remain in the specialized program),

• static & dynamic: known at specialization time but

forced to be residualized (usually for values such as
pointers), hence can be exploited in specialization but
must nonetheless appears in the specialized program.

The analysis phase handles partially-static structures, that
is, data structures where only some but not all the fields are
known. It also treats pointers to partially-static structures.

3 The Sun RPC Standard Protocol

The Sun Remote Procedure Call protocol was introduced
in 1984 as a basis for the implementation of distributed
services between heterogeneous machines. This protocol
has become a standard in distributed operating systems de-
sign and implementation. It is notably used for implement-
ing widespread distributed services such as NFS [9] and
NIS [13]. It implements mainly three functionalities:

(1) It makes a remote procedure look like a local one. It
provides an interface between a client and a server
through astub functions. Those functions are auto-
matically generated from the signature of the called
procedure.

(2) It marshals / unmarshals (i.e. encodes / decodes) data
from a local machine dependent representation to a
network independent one.

(3) It manages the exchange of messages through the net-
work.

2

xdr_long(xdrs,lp) // Generic send or receive long integer
{

if(xdrs->x_op == XDR_ENCODE) // If in encoding mode
return XDR_PUTLONG(xdrs,lp); // Write a long int into buffer

if(xdrs->x_op == XDR_DECODE) // If in decoding mode
return XDR_GETLONG(xdrs,lp); // Read a long int from buffer

if(xdrs->x_op == XDR_FREE) // If in “free memory” mode
return TRUE; // Nothing to be done for long int

return FALSE; // Return failure if nothing matched
}

Figure 2: Reading or writing of a long int:xdr long() — Key: Static, Dynamic, Static&Dynamic

The network data representation is standardized by the eX-
ternal Data Representation (i.e., XDR) protocol.

More precisely, the RPC implementation is composed of
a set of micro-layers, each one devoted to a small task such
as managing the transport protocol (e.g. TCP or UDP), or
reading/writing data from/to the marshaling buffers. The
micro-layers may have several implementations. Thus
the overall implementation stays modular although, most
of the time, given an application, the configuration never
changes.

Let us consider a very simple example: a functionrmin
which takes two integers and returns their minimum, com-
puted on a remote server. From the procedure interface
specification,rpcgen (the RPC stub compiler) produces
an assortment of source files that implement the call on the
client’s side and the dispatch of procedures on the server’s
side.

Figure 1 shows an abstract1 execution trace of a call to
rmin. The actual arguments have to be stored in a struc-
ture that is passed as a single argument.

4 Opportunities for Specialization

We consider here the partial evaluation of the client2 stub
routine (i.e. the actual function that performs the remote
procedure call), as opposed to the specialization of a user’s
code that would make use of stub routines; we want the
stub functions to be reusable in many contexts. In that
sense, it may be seen as some kind of post-processing op-
timization torpcgen3.

1In the following code listings, irrelevant items are removed for clar-
ity: declarations, “uninteresting” arguments and statements, error han-
dling, casts, some levels of functions calls.

2We are currently working on the specialization of the serverstub
routine, which is very similar to the client part, as far as the encod-
ing/decoding is concerned.

3Note that we consider here only the specialization of the (user) li-
brary protocol layer of RPC, as opposed to the system protocol layer (in
the kernel).

The following subsections discuss various optimizations
examples that a specializer can perform.

Elimination of dispatch constructs. A smart compiler
can optimize the equality test in a function like

xdr_int(...)
{

if (sizeof(int) == sizeof(long))
return xdr_long(...);

else
return xdr_short(...);

}

It replaces the wholeif construction with one of its
branches. However, there is nothing it can do in cases such
asxdr_long() (see figure 2) where,a priori, nothing is
known aboutxdrs->x_op.

We must resort here to partial evaluation. The inter-
procedural analysis of the specializer takes note when
xdrs->x_op is assigned a known (i.e. static) value.
Thus, when we reach functionxdr_long(), we may ex-
ploit the actual value of the fieldx_op, which is computed
somewhere above in the call tree. As a result, the whole
specialized function can be reduced to only one of the re-
turn constructs. Actually, the specializedxdr_long()
function, being small enough, will disappear after inlining:
the dispatch onx_op is totally eliminated.

Elimination of buffer overflow checking. The bind-
ing time annotations that Tempo produces for function
xdrmem_putlong() (used to encode a long integer) are
shown in figure 3.

The fieldx_handy stores the remaining space in the
buffer. Like x_op in the example above, the analysis
sees that it is first initialized (i.e. given a static value),
then decremented and tested several times (for each call
to xdrmem_putlong and related functions). Hence, it
can be considered as static and the whole buffer overflow
checking can be performed at specialization time; only the

3

xdrmem_putlong(xdrs,lp) // Copy long int into output buffer
{
if((xdrs->x_handy -= sizeof(long)) < 0) // Decrement space left in buffer

return FALSE; // Return failure on overflow
*(xdrs->x_private) = htonl(*lp); // Copy to buffer
xdrs->x_private += sizeof(long); // Point to next copy location in buffer
return TRUE; // Return success

}

Figure 3: Writing a long int:xdrmem putlong() — Key: Static, Dynamic, Static&Dynamic

void xdr_min(xdrs,argsp) // Encode arguments ofrmin
{

// Overflow checking eliminated
*(xdrs->x_private) = argsp->int1; // Inlined specialized call
xdrs->x_private += 4u; // for writing first argument

*(xdrs->x_private) = argsp->int2; // Inlined specialized call
xdrs->x_private += 4u; // for writing second argument

// Return code eliminated
}

Figure 4: Specialized encoding routinexdr min

buffer copy will remain in the specialized version (unless
a buffer overflow is discovered).

Note the different uses of the pointerxdrs: in a static
context withxdrs->x_handy, but in dynamic one with
xdrs->x_private. It is assigned a “static & dynamic”
annotations that allows both the overflow condition to be
reduced and the copy code to be residualized.

Elimination of returned values. In the two above ex-
amples, all the return statements are static. This means
that the result of calls to those functions may be known
and exploited at specialization time.

Figure 4 shows the specialization of functionxdr_min
in the context of the specialized version ofrmin. The
type of the function has been turned tovoid; its re-
sult, which is alwaysTRUE independently of dynamic
argsp argument, is exploited to reduce an extra test in
clntudp_call (not shown). Note the inlined special-
ized calls toxdr_long.

5 Benchmarks

This section analyzes the performance that can be expected
in specializing the RPC layer with Tempo.

Due to the increasing speed of off-the-shelf processors
and the increasing throughput of modern networks such as
ATM, network of workstations can now be used as large

scale multiprocessors. Because large networks are often
heterogeneous, environments for communicating machine
independent data involves encoding. Such environments
often rely on Sun’s XDR. Examples of these environments
are PVM [7] for a message passing model and Stardust [2]
for a Distributed Shared Memory model.

Our test program emulates the behavior of parallel pro-
grams which exchange large chunks of structured data.
The test program loops on a simple RPC which sends and
receives an array of integers. We have made two differ-
ent kinds of measurements: (i) a micro-benchmark, which
evaluates only the speedup of the sending (encoding) layer
in the client, and (ii) a round-trip RPC benchmark which
measures the real total time of a complete RPC call. The
interest of this second experiment is to take into account
architectural machine behavior such as cache, memory
and network bandwidth which highly affect global perfor-
mance.

The client test program specialized by Tempo is 1500
lines long (without comments), including 400 lines of dec-
larations. Measurements have been done on two Suns 4/50
connected with a 100 Mbits ATM link. All programs have
been compiled usinggcc, with the option-O2.

Summary of results. On the sending layer (see table 1),
the specialized code is up to 3.5 times faster than the non
specialized one. On the round-trip RPC execution (see ta-
ble 2), we have a speedup of up to 18%. It must be noted

4

Array size 250 500 1 000 2 000
time speedup time speedup time speedup time speedup

Non specialized code 1 450 - 1 870 - 2 660 - 4 300 -
Specialized code 410 3.5 570 3.5 880 3.0 1 860 2.3

Loop optimized code 430 3.4 590 3.5 890 3.0 1 470 2.9

Table 1: RPC client marshaling performance (in microseconds)

Array size 250 500 1 000 2 000
time speedup time speedup time speedup time speedup

Non specialized code 6.5 - 8.7 - 11.7 - 22.4 -
Specialized code 5.3 18% 7.3 16% 10.1 13% 19.1 14%
Loop optimized code 5.2 20% 7.0 19% 10.1 13% 17.4 22%

Table 2: Round-trip RPC call performance (in milliseconds)

that in our experiment, only the client program is special-
ized. It is realistic to think that speedup can be doubled by
also specializing the server.

Micro-benchmark. Speedups of the micro-benchmark
are given in table 1; they varies between 2.3 and 3.5.
Surprisingly, the speedup decreases with the size of the
array of integers. When the size grows, most of the
encoding time is spent in encoding the array of inte-
gers. If specialization decreases the number of instruc-
tions used to encode an integer, the number of memory
moves remains constant between the specialized and non-
specialized code. The reason for which the speedup de-
creases with the size is that on our test machine, instruc-
tions execution time is dominated by memory accesses.

During specialization, the array encoding loop is un-
rolled. Unrolling large loops is sometime nasty since it
breaks the locality of instruction accesses in the cache. To
analyze unrolling effect on the cache, we have manually
rewritten the unrolled code with a loop (see third row of
table 1). When the size of the array grows, the loop op-
timized code becomes faster than the unrolled generated
one. This clearly shows the break of the cache locality.
Automatic do-unroll/do-not-unroll loops strategies are be-
ing investigated in the Tempo group.

Round-trip RPC. On the round-trip RPC (see table 2),
the specialized code is between 13% to 18% faster than
the non-specialized one. Similar to the micro-benchmark,
the speedup decreases with the size of the data. However,
the loop optimized code is always faster than the Tempo
specialized one, with a maximum gain of 22%.

Finally, we must say that the ATM cards and driver used

in our experiment are two years old and quite inefficient
compared to up to date products, both in term of latency
and bandwidth (i.e., 155 Mbits / 622 Mbits). Therefore,
we expect to have even better results in the future.

6 Conclusion and Future Work

This experiment has taught us several things.
Partial evaluation can be applied to realistic industrial-

strength programs and yields non-trivial results. It stillre-
quires some work to solve specific problems. However,
first results are very encouraging. We can now consider
the automation of previous operating systems specializa-
tion that have been obtained manually [12, 11].

We are working at the moment on the specialization of
the server. The hypothesis are pretty much the same as for
the client. We also plan to specialize the lower level net-
work layers integrated in the system kernel, such as sockets
and UDP. This raises complex issues since the specialized
code has to cohabit in the kernel with the non-specialized
one. Our final goal is to merge the stub and system layers
and run the resulting optimized code in asupervisor do-
main of protection[1, 16]. The latter mechanism provides
support for extensibility in Chorus.

Finding potential invariants and opportunities of spe-
cialization requires a good knowledge of the application
domain. This observation is coherent with other experi-
ments realized in our group. Specialization of complex
real cases cannot be totally automated. More precisely,
heavy analysis and transformations can be automated, but
there are some cases where it must be guided or helped by
a expert in the application domain.

This experiment should encourage people to write (or

5

keep on writing) generic applications, letting partial eval-
uation take care of performance issues. In particular, in
the operating systems domain, people should keep on try-
ing to write generic modules without worrying too much
about performance. Adaptability, maintainability, reuse,
must unquestionably be the main key points.

Acknowledgments. The authors would like to thank
the other designers and implementors of Tempo (Charles
Consel, Jacques Noyé, Luke Hornof, Julia Lawall, Scott
Thibault, François Noëlet al.) for fruitful discussions, pa-
tient attention, and unsparing efforts.

References

[1] C. Bryce and G. Muller. Matching micro-kernels to
modern applications using fine-grained memory pro-
tection. InProceedings of the Seventh IEEE Sympo-
sium on Parallel and Distributed Processing, pages
272–279, San Antonio, TX, USA, October 1995.
IEEE Computer Society Press.

[2] G. Cabillic and I. Puaut. Stardust: an environment for
parallel programming on networks of heterogeneous
workstations. Journal of Parallel and Distributed
Computing, February 1997.

[3] D.D. Clark and D.L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
SIGCOMM Symposium on Communications Archi-
tectures and Protocols, pages 200–208, Philadelphia,
PA, September 1990. ACM Press.

[4] C. Consel and O. Danvy. Tutorial notes on par-
tial evaluation. InConference Record of the Twen-
tieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles Of Programming Languages, pages
493–501, Charleston, SC, USA, January 1993. ACM
Press.

[5] C. Consel, L. Hornof, F. Noël, J. Noyé, and E.N.
Volanschi. A uniform approach for compile-time
and run-time specialization. In O. Danvy, R. Glück,
and P. Thiemann, editors,Partial Evaluation, Inter-
national Seminar, Dagstuhl Castle, number 1110 in
Lecture Notes in Computer Science, pages 54–72,
February 1996.

[6] C. Consel and F. Noël. A general approach for run-
time specialization and its application to C. InCon-
ference Record of the23

rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles Of Programming
Languages, pages 145–156, St. Petersburg Beach,
FL, USA, January 1996. ACM Press.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunde.PVM: Parallel Vir-
tual Machine - A Users’ Guide and Tutorial for Net-
worked Parallel Computing.MIT Press, 1994.

[8] D.B. Johnson and W. Zwaenepoel. The Peregrine
high-performance RPC system.Software - Practice
And Experience, 23(2):201–221, February 1993.

[9] Sun Microsystem. NFS: Network file system pro-
tocol specification. RFC 1094, Sun Microsystem,
March 1989.

[10] S. O’Malley, T. Proebsting, and A.B. Montz. USC: A
universal stub compiler. Technical Report TR94-10,
University of Arizona, Department of Computer Sci-
ence, 1994. Also in Proc. Conf. on Communications
Archi. Protocols and Applications.

[11] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang. Op-
timistic incremental specialization: Streamlining a
commercial operating system. InProceedings of the
1995 ACM Symposium on Operating Systems Princi-
ples, pages 314–324, Copper Mountain Resort, CO,
USA, December 1995. ACM Operating Systems Re-
views, 29(5),ACM Press.

[12] C. Pu, H. Massalin, and J. Ioannidis. The Synthe-
sis kernel. Computing Systems, 1(1):11–32, Winter
1988.

[13] R. Ramsey.All about administering NIS+. SunSoft,
1993.

[14] M.D. Schroeder and M. Burrows. Performance of
Firefly RPC. ACM Transactions on Computer Sys-
tems, 8(1):1–17, February 1990.

[15] C.A. Thekkath and H.M. Levy. Low-latency commu-
nication on high-speed networks.ACM Transactions
on Computer Systems, 11(2):179–203, May 1993.

[16] E.N. Volanschi, G. Muller, and C. Consel. Safe op-
erating system specialization: the RPC case study.
In Workshop Record of WCSSS’96 – The Inaugu-
ral Workshop on Compiler Support for Systems Soft-
ware, pages 24–28, Tucson, AZ, USA, February
1996.

6

