Automated Software Engineering, , 1-30 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Efficient Implementations of Software
Architectures via Partial Evaluation

RENAUD MARLET, SCOTT THIBAULT AND CHARLES CONSEL

{marlet,consel }Qirisa.fr ~thibault@gmvhdl.com

Compose group
IRISA /INRIA - Université de Rennes 1
Campus universitaire de Beaulieu, 35042 Rennes cedex, FRANCE

Editor:

Abstract. The notion of flexibility (that is, the ability to adapt to changing requirements or
execution contexts) is recognized as a key concern in structuring software, and many architectures
have been designed to that effect. However, the corresponding implementations often come with
performance and code size overheads. The source of inefficiency can be identified to be in the
loose integration of components, because flexibility is often present not only at the design level
but also in the implementation.

To solve this flexibility wvs efficiency dilemma, we advocate the use of partial evaluation, which
is an automated technique to produce efficient, specialized instances of generic programs. As
supporting case studies, we consider several flexible mechanisms commonly found in software
architectures: selective broadcast, pattern matching, interpreters, software layers, and generic
libraries. Using Tempo, our specializer for C, we show how partial evaluation can safely optimize
implementations of those mechanisms. Because this optimization is automatic, it preserves the
original genericity and extensibility of the implementation.

Keywords: software architectures, partial evaluation, program specialization, genericity, exten-
sibility, adaptability, selective broadcast, pattern matching, interpreters, software layers

1. Introduction

Software architectures express how systems should be built from various compo-
nents and how those components should interact. It is widely accepted that, as
the size and complexity of software systems increase, the choice of software archi-
tectures becomes a major issue because of its impact on the cost of development,
validation and maintenance. Because this choice also affects the extensibility and
interoperability of systems, it can have large impacts on the time from conception
to product release, providing a competitive advantage or disadvantage.

1.1. The flexibility issue

Complex software systems are characterized by their changing nature: computa-
tions may be distributed over a network of heterogeneous machines and components,
where tasks can migrate at run time; connections between software components can
evolve in time; computations may be intensive or scattered in time; hardware plat-
forms offer vastly different functionalities, performance and resource constraints;

2 R. MARLET, S. THIBAULT AND C. CONSEL

software environments provide applications with changing services; etc. This calls
for programs that are able to adapt to changing requirements and execution con-
texts.

The flexibility of an application (or application family) reflects its power of adap-
tation with respect to variable needs. Three “actors” typically express such needs:
the software vendor sells various applications within a product line (or a single,
evolving product), varying the set of available platforms (hardware, operating sys-
tems, etc.) and features; the user configures or parameterizes a given application
depending on specific needs; the environment (CPU, operating system, network,
etc.) imposes variable resource constraints to the application as it runs.

The degree of adaptation offered to each of those actors is ideally defined at spec-
ification time. Given these requirements, the choice of a software architecture then
determines the general framework of a design-time flexibility. The implementation
steps that follow take advantage of this flexibility and can further restrict it. The
later the adaptation choices are in the development stages, the more flexible the
system.

1.2. Flexible software architectures

When architecturing software, common instances of flexibility include extensibility,
portability, interoperability, re-usability, modularity, abstraction, genericity, pa-
rameterization and configurability, as well as safety, fault tolerance and quality of
service. Depending on the granularity used for reasoning, flexibility typically comes
in two flavors that usually coexist: it can be provided by the generality of individual
components or by the richness of the mechanisms for composing components.

Many approaches aimed at achieving software flexibility have been proposed and
put into practice, including pipes and filters [3], layered systems [47], data abstrac-
tion and object-oriented organization, event-based communication [37, 62], software
buses [52], coordination languages [12], and domain-specific languages [26, 80].

Using flexible software architectures reduces the correlation of components and
favors sharing, hence also reduces complexity. Flexibility is therefore a key feature
when developing software: it leads to better a cost, time and quality of development,
validation, maintenance and evolution.

1.8. The flexibility vs efficiency dilemma

Flexibility is required at adaptation time, whereas efficiency is only required at
program-execution time. The problem is that flexibility impairs efficiency when it
is not only present at the design level but also in the implementation: in this case,
some computations are devoted to adaptation as opposed to what the application
is supposed to produce.

For example, in a generic component, some amount of execution time is spent
in following decision trees and indirections that correspond to parameterization
choices. Because many cases are considered, this is less efficient than using a
specific component that only provides the required service for a given execution

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 3

context. Likewise, concerning communication mechanisms (what glues components
together), some amount of execution time is spent in traversing software connectors
rather than spent in the components themselves.

Flexibility and efficiency necessitate a compromise. Our strategy is to express
flexibility at the implementation level and to remove it systematically and auto-
matically by program transformation to improve performance.

1.4. This article

Our contributions are the following.

e We characterize the fundamental reasons why implementing the mechanisms of
flexible software architectures can lead to inefficiency problems.

e We advocate the use of partial evaluation, a systematic and automatic opti-
mization technique, to build efficient implementations of software architectures
without compromising flexibility.

e To support our stand, we consider five representative instances of mechanisms
used in software architectures, namely selective broadcast, pattern matching,
interpreters, software layers, and generic libraries. For each of them we show
how partial evaluation indeed improves efficiency while retaining flexibility.

The rest of the article is organized as follows. Section 2 characterizes the general
sources of inefficiency in the implementation of flexible software architectures. Sec-
tion 3 introduces partial evaluation. Section 4 considers in turn several mechanisms
used in flexible software architectures and the application of partial evaluation. Sec-
tion 5 discusses the general applicability, predictability and automation of partial
evaluation. Section 6 compares it to other existing techniques. Section 7 concludes
and gives some research directions for further improvements.

2. Sources of inefficiency when implementing software architectures

Flexibility and efficiency depend on the way software components interact: (i) what
data they exchange, and (ii) how they communicate. After examining these issues
in turn, this section elaborates on the flexibility vs efficiency dilemma.

2.1. Data integration

Software systems are made of components that exchange or share data. These
components might not use the same data representation (data structure, layout
in memory, unit of measure, etc.). Such a situation occurs often, for example
when an existing software component is being reused in a different context, when
components are programmed using different languages, or when components run
on different systems or hardware platforms in a distributed environment.

Data communication between heterogeneous components requires conversions.
Two main approaches are being used. One is to systematically convert component-

4 R. MARLET, S. THIBAULT AND C. CONSEL

specific data into a universal format that is used in all inter-component communi-
cations. As a consequence, each data communication necessitates two conversions.
The universal format may be provided by an intermediate data description lan-
guages such as ASN.1 [36] or IDL [66]. Pushing all conversions into the callee is
another solution. The called component examines a format tag included in the
received data to determine whether these data need to be converted; at most one
conversion is needed. However, the number of converters is not linear but quadratic
in the number of formats. Extensibility is reduced because adding a new data for-
mat requires writing many new converters.

Data integration is measured by the amount of computations devoted to pro-
ducing actual (observable) results compared to computations aimed at managing
data communications between components. A tighter data integration makes data
representation more uniform across components so that less conversions are needed.

Another instance of the data integration problem is the verification of data well-
formedness. When a component does not trust another component, it must check
the validity of input data. Type checkers already guarantee some static constraints
at compile time. But when the constraints are too complex to be expressed in a
type system, or when the implementation language is dynamically typed, the com-
ponent must resort to explicit, dynamic checking. Besides typing, well-formedness
verification includes protection against null pointer dereference and buffer overflow.
This can be enforced by the language itself (e.g., systematic array bounds checking
in Java). It is clear that verifying safety assertions at run time impairs efficiency.
Given a configuration that combines two components, a tighter data integration
removes assertion checking when it can be proved that communication will always
involve legal data. It is common practice though to turn on assertion-checking only
during development. It is turned off in production, for programs with low safety
requirements, that have no error recovery policy.

2.2. Control integration

Besides unifying data formats and ensuring data well-formedness and integrity,
composing software components also involves strategies to make these components
communicate.

Control integration is measured by the amount of computations devoted to pro-
ducing actual (observable) results compared to the computations needed to invoke
services between components (or choosing a service inside a component).

In systems in which the interface of components consists of a collection of routines,
communication is based explicit invocation, i.e. procedure call. Explicit invocation
is fast but not very flexible: the exact name of the routines to call must be known
at compile time. Implicit invocation refers to communications where the called pro-
cedure can depend on run-time values. For example, in an object-oriented system,
invocation of virtual methods is textually explicit but actually involves an addi-
tional object-dispatch indirection. Similarly, broadcasting a message is an implicit
invocation of procedures in other components. Implicit invocation is slower than
explicit invocation because it introduces an additional dispatch layer. That is why,

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES)

e.g., compilers for object-oriented languages try to turn virtual calls into explicit
calls. However, implicit mechanisms offer more support for extensibility.

In some sense, generic components can also contain aspects of implicit invocation
at a finer grain where parameters of the component are used to select various
behaviors. Although general and extensible, parameterization impairs efficiency
because execution time is spent in testing options, as opposed to actually providing
the required service.

Control integration also has a significant impact on code size. In fact, adaptability
calls for the anticipation of many contexts of usage. Given a specific context, only
a few cases are needed; the other cases can be viewed as dead code. If this dead
code cannot be eliminated, the code size of the whole system is unnecessarily large.
Because of limitations of memory or network bandwidth, the size issue is important
for embedded systems and mobile code.

2.3. Improving efficiency while retaining flexibility

For greater efficiency, the integration of data and control that is expressed in the ar-
chitecture should be made tighter in the implementation: the number of conversions
should be reduced; safety and security checks should be removed when unnecessary;
implicit control should be turned into explicit control; generic components should
be adapted to specific uses.

Also, flexibility might actually be used at different stages of the assembly of a
software system. Therefore, gaining efficiency in the implementation may occur at
different times: configuration time, compile time, link time, load time, and run time.
In practice, the later the adaptation, the more difficult to implement it efficiently.

A central idea in optimizing component integration is specialization. (Other
strategies are listed in Section 6.) The effects of specialization range from customiz-
ing the connection between components to the complete merging of the components’
functionalities. Specialization is detailed in the next section.

3. Program specialization and partial evaluation

Program specialization is a program transformation that adapts programs with
respect to known information about their inputs. We first give a general overview
of specialization. Then, we focus on partial evaluation, a process that automates
specialization, and introduce Tempo, a partial evaluator for C.

3.1. Specialization in a nut shell

3.1.1. Principles. Let us consider a program p, taking some argument data d and
producing a result r: ezxecp(d) = r. If the inputs d may be split into d = (d;, d»)
where d; is a known subset of the inputs (i.e., it does not vary) and ds is yet
unknown, we may form a new program pg,, equivalent to p, where computations
depending on d; have been exploited: execpy, (d2) = execp(di,ds) = r. The

6 R. MARLET, S. THIBAULT AND C. CONSEL

mini_printf(char fmt[], int val[])

{
int i = 0;
while (*fmt != ’\0’') {
if (*fmt != '%’)
putchar(*fmt);
else
switch (*++fmt) {
case ’'d’ : putint(val[i++]); break;
case ’'%’ : putchar(’%’); break;
default : prterror(*fmt); return;
}
fmt++;
}
} /* Legend: Known Unknown */ la. Original

mini printf fmt(int val[])
{
putchar(’'<’);
putint(val[0]);
putchar(’,’);
putint(val[l]);
putchar(’'>");
} 1b. Specialized

Figure 1. Specialization of mini_ printf () with respect to fmt = "<%d, %d>"

program pg, is called a specialization of p with respect to the invariant d;. Known
(resp. unknown) input is also called static (resp. dynamic).

More generally, specialization exploits any invariant present in the code, not only
input values but also embedded constants. The idea is to factor out computations
from the specialized program.

3.1.2. FEzxzample. Let us consider the simple example shown in Figure 1. At the
top of the figure is the definition of mini printf (), a simplified version of the C
printf () text formatting function. At the bottom of the figure is a specialized
version of mini printf () with respect to the format string fmt = "<%d, %d>".
Note that all computations depending on fmt (i.e., the interpretation of the format
string) have been removed.

Bold face font is used here (and in the rest of the paper) to highlight parts of
the original program that only rely on the known partial input (here, fmt) or on
embedded constants (here, the initial 0 value for variable i). They disappear in
the specialized program.

3.1.3. Advantages. Program specialization may reduce both execution time and
code size. Indeed, running pg4, (d=2) is usually faster than running p(d;, ds) because
computations involving d; are already performed. If building the specialized pro-
gram pg, comes at a certain price though (in particular when it is performed at

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 7

run time), it is worth it only if pg4, (d2) is run enough times to amortize the cost
of building pg,. In addition, cases written to treat other values than d; can be
removed from pg, : they are dead code. In this case, program pg, is smaller.

On the other hand, specialization can also involve loop unrolling, which may
increase code size. For example, in Figure 1b, the whole loop has been unrolled; if
the format string had been longer, many putchar () calls would have appeared in
the specialized program. The possible drawback of loop unrolling may be prevented
while retaining most of the specialization advantages using a technique known as
data specialization [10, 44].

There already exists tools that provide some primitive support for a kind of
specialization. For example, some software and hardware particularities may be
expressed at configuration time using tools like configure. Others particularities
can be handled at compilation time using macro facilities, in addition to simple com-
piler optimizations. A more thorough comparison with other existing techniques
can be found in section 6.

3.2. Partial evaluation

Partial evaluation is a technique that automates the specialization process [14, 39].
Partial evaluation is also systematic, as opposed to ad hoc specializations that are
restricted to specific cases. Using the same notations as in Section 3.1, a partial
evaluator is a tool that automatically produces the specialized program pg,, given
a program p and a known input subset dy. Therefore, it improves speed and, in
some circumstances, may also reduce code size.

Roughly speaking, standard partial evaluation can be thought of as a combination
of aggressive inter-procedural constant propagation (not only applied to scalars but
to all data types, including pointers, arrays and structures), constant folding, and
loop unrolling. It may be followed by procedure inlining and some algebraic sim-
plifications. Those transformations are beyond the scope of optimizing compilers.

Most of the flexibility (whether genericity or extensibility) of the original code is
lost in this optimization process. In contrast with manual specialization, partial
evaluation is safe. But the key point is that the original code stays unaffected and
can be later modified and re-specialized. Because partial automatically takes care
of efficiency issues, it encourages programmers to write generic code. In addition,
optimizing code using partial evaluation is much less tedious than doing manual
specialization, and scales up to large programs. Also, because the program analyses
that are part of the partial evaluation process determine the portions of the code
that can be specialized, partial evaluation is predictable,

Long confined to functional or logic programming, partial evaluation has now
been put into practice for imperative languages. It is reaching a level of maturity
that makes it applicable to real-sized systems. In fact, not only are there now
partial evaluation systems for languages like C, but the program specialization
approach is the basis of the development of adaptable systems in a number of
major research projects and in different areas such as networking [48, 76], graphics
[44], and operating systems [7, 29, 60].

8 R. MARLET, S. THIBAULT AND C. CONSEL

3.3. Tempo, a partial evaluator for C programs

Our claim concerning the applicability of partial evaluation to software engineering
is not specific to a language or a partial evaluator. However, it is backed up by
experiments using a specific tool. In the following, we use Tempo, a partial evaluator
for C programs developed in our group® [15, 16]. Tempo has been applied to sizable
and realistic programs such the Sun RPC [49]. Tempo and its documentation are
publicly available?. It is being used by more than twenty people around the world,
including non-partial evaluation expert. It is also being used as a front end for
specializing Java [63].

There exists another system for automatic C specialization named C-Miz [1],
whose analyses are less accurate and which does not support run-time code gener-
ation (see [50] for comparison details).

Tempo is an off-line specializer [14]: partial evaluation is split into two phases.
First, a preprocessing phase performs an abstract propagation of all known informa-
tion throughout the code. This phase is known as the binding-time analysis (BTA).
It partitions the program into two computational stages (static and dynamic): for
each program construct, the BTA determines whether it can be evaluated early
(i.e., at specialization-time) or must be evaluated late. The output of this analysis
can be visualized as pretty-printed code with color information, in a form which
is very similar to the font decoration in Figure la. The user can thus assess the
benefits of applying partial evaluation. Second, a processing phase performs actual
specialization (i.e., code generation), given some partial input values. An additional
postprocessing phase performs inlining and some algebraic simplifications.

Tempo can exploit values when they are known, whether at compile time or at
run time [20]. Compile-time specialization is a source-to-source program transfor-
mation, whereas run-time specialization directly produces binary code. To achieve
this, the information gathered in the BTA is used to determine a grammar of all
possible specializations (for all possible known input). Templates of code that
correspond to the building blocks of the specialized code are thus identified and
precompiled. Then, run-time specialization merely amounts to assembling precom-
piled templates and filling holes in those templates with computed values. Binary
template assembly provides fast code generation [51]. Run-time code generation
is an important feature because it does not limit us to static configurations, i.e.,
compile-time architectures.

The following section illustrates applications of Tempo to optimize various soft-
ware architecture mechanisms.

4. Case studies

In order to support our assessment, we consider, in turn, five mechanisms that are
common in software architectures. For each one, (i) we give a short description of
the mechanism, taking as an example an architecture and a real system that actually
relies on it, (ii) we point out efficiency problems inherent in the mechanism, and

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 9

(iii) we show how partial evaluation can automatically improve performance and,
in some cases, reduce code size.

Specialized code listed in this section has been automatically produced by Tempo,
apart from the following manual simplifications aimed at clarity: some minor trans-
formations like copy propagation (ordinarily performed by optimizing compilers)
were done by hand on the specialized source; some irrelevant parts of the code have
been omitted, as well as some type and variable definitions. In addition, code has
been manually pretty-printed to fit in the figures and some comments have been
added.

All partial evaluation examples displayed in this section are compile-time source-
to-source program transformations, as opposed to run-time code generation. This is
for obvious readability reasons: when specialization values are known at run time,
and even vary during program execution, Tempo can generate binary specialized
routines on the fly that could only be displayed in assembly format.

4.1. Optimizing selective broadcast

Our first case study deals with selective broadcast, also called reactive integra-
tion [64]. In such an architecture, components are independent agents that interact
with each other by sending broadcast events. Components in the system that are
interested in particular messages register callback procedures to be called each time
such messages are broadcast. This mechanism is also called implicit invocation
because broadcasting events “implicitly” invokes procedures in other components.
Blackboard techniques may also be based on similar indirect access mechanisms [32].

4.1.1. The mechanism. The Field programming environment is a representative
example of such an architecture [62]. It is an open system that integrates many
programming tools. Let us consider a system containing an editor, a debugger
and control flow graph viewer. The example in Figure 2b models—the actual
implementation of Field is more complex—a typical communication between those
tools. The editor and the flow graph viewer register their interest in the DEBUG_AT
event, which is emitted by the debugger when execution is stepped or when a
breakpoint is reached. When the DEBUG_AT event is received, the editor wants to
set the cursor on the line where the debugger stopped, and the flow graph viewer
wants to highlight the node of the current function in the graph.

In order to properly separate concepts, events are identified here using an integer,
and data associated to events is a structure pointer (manipulated as a “dummy”
character pointer). This only models the bare broadcast mechanism (see Figure 2a).
Section 4.2 considers the real selection and communication mechanism of Field that
relies on string messages and pattern matching for tool integration.

4.1.2. Efficiency problems. Such a broadcast mechanism suffers from a perfor-
mance problem related to control integration. Since invocation is implicit, broad-
casting a message is clearly slower than explicitly calling the callback procedures.

10 R. MARLET, S. THIBAULT AND C. CONSEL

register_for_event(int event, void (*func) (char*))
{
handler[nb_handlers].func = func; // Record callback function
handler[nb_handlers].event = event; // Record event id
nb_handlers++; // Adjust nb of handlers
}
broadcast(int event, char *arq)
{
for (i = 0; i < nb_handlers; i++) // For each registration
if (handler[i].event == event) // Look for registered event
(*handler[i].func) (arg); // Run callback accordingly
} 2a. Mechanism
{
register_for_event(DEBUG_AT, editor_goto); // Set callbacks for
register_for_event(DEBUG_AT, cfg_highlight); // event DEBUG_AT
debug_info->func_line = line; // Group some arguments
debug_info->func_name = fname; // into a single structure
broadcast(DEBUG_AT, (char *)debug info); // Emit event DEBUG_AT
broadcast(BUS_ERROR, (char *)NULL); // Emit event BUS_ERROR
} 2b. Example of use
{
debug_info->func_line = line; // Group some arguments
debug_info->func name = fname; // into a single struct
editor goto((char*)debug _info); // Invoke editor_ goto
cfg highlight((char*)debug info); // Invoke cfg _highlight
} 2c. Specialization

Figure 2. Registration and broadcast

Worse, the complexity of a broadcast is linear in the number of registered events
because the whole registration table must be scanned in order to find, among all
registrations, the callbacks that are registered for the given event. This could some-
how be optimized with an array or a hash-table for simple event identifiers, but not
for a pattern-matching-based selection mechanism (see Section 4.2), which would
require a much more complex automaton encoding.

4.1.8. Application of partial evaluation. The static configuration here consists
in event identifier that appear in the code. Figure 2c shows the optimization of
registration and broadcast using partial evaluation. All indirect, implicit invo-
cations of callback procedures have been turned into direct, explicit calls. Note
that broadcasting an event like BUS_ERROR, for which no component has regis-
tered any interest, is turned into “no operation”. Whereas the complexity of a
broadcast in the original program is linear in the number of registered events (i.e.,
nb_handlers), the specialized program achieves broadcast in constant time: all
functions registered for the given event are known and hard-coded; at run time, it
is no longer necessary to look in the handler table.

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 11

The applicability of this optimization requires that the registered and broad-
cast events be known at specialization time. The example in Figure 2c illustrates
compile-time specialization but a similar specialization can be done at run time,
using a run-time specializer. User-aided specialization has already been consid-
ered for run-time compilation of event dispatch in extensible systems [9] but the
approach is less automatic and less systematic.

As a by-product of partial evaluation, if there is an application-dependent policy
such that all broadcast messages should be received by at least one component (i.e.,
no uncaught event), then inconsistencies between event registrations and broadcasts
can be detected at specialization time. Assuming a warning function is called in the
body of broadcast () whenever there is no registered receiver for a message to
broadcast, then partial evaluation replaces all occurrences of such void broadcasts
by calls to the warning function. Then, testing the above policy only amounts to
looking for calls to the warning function in the specialized program, which can easily
be checked. In particular, this process allows the detection of typos in registrations
and broadcasts.

Another instance of implicit invocation (another name for selective broadcast) is
virtual method invocation in object-oriented languages. The elimination of virtual
calls (i.e., transformation into an explicit call), as obtained after class hierarchy
analysis [25], can also be achieved using partial evaluation [41].

4.2. Optimizing pattern matching

Selection of callback procedures to execute may involve pattern matching rather
than just comparison of event identifiers. In this case, when a message is broadcast,
the system invokes all the procedures that are associated with registered patterns
matching the message. In an environment like Field [62], a pattern not only iden-
tifies the type of the message but also the parts of the message that correspond to
the arguments of the callback routine, and the format of those arguments. Pattern
matching thus serves two purposes: selection of a message (string comparison) and,
if there is a match, invocation of the callback routine with arguments decoded into
the proper internal format.

4.2.1. The mechanism. In Field, patterns and messages exchanged by tools
are all strings. The format of patterns is very similar to the Unix scanf facil-
ity. Basically, escape sequences for argument matching and decoding consist of
a percent sign, an integer specifying the position of the argument in the callback
routine and a type character: ’d’ for an integer, ’s’ for a string, etc. For ex-
ample, after registering the pattern "DEBUG AT %2s line %1d" with callback
procedure handle debug at, broadcasting the message "DEBUG AT ./tree.c
line 24" eventually invokes the function with the call handle debug at (24,
"./tree.c").

Because the original pattern matching code of Field (implemented at Brown Uni-
versity) is more than a thousand lines long, what we show in Figure 3a is only

12

R. MARLET, S. THIBAULT AND C. CONSEL

PMATmake_pattern(str, ct, defaults) {

process_message(msg, pattern, handler)
{
n = PMATmatch(msg, pattern, args);
if (n >= 0)
if (pattern->retargs == 2)
(*handler) (args[0], args[1l]);

// Make pattern descriptor

// Call handler if pattern

// matched text

// Match msg against pattern
// n =-1 means failure

// If two arguments were read
// Callback invocation

// Direct cmp for const prefix

// Reset matching success flag
// Skip constant prefix

0; ++p) { // Scan pattern
// Match non-escape character
// Fail if mismatch

// Else scan argument

// Move text pointer

// Case: read some argument
// Index of read argument

// Address of read argument
// Scan text to read argument
// Remember matching failure
// Other cases, e.g., $%

// Stop on failure

// Return failure or

// number of read arguments

// Read some argument

// Point to text to read

// Read integer

// Reset success flag

// Reset computed integer
// Scan input string

// Look for digits

// Compute integer

// Set success flag

// TFail unless success flag set

// Read string

// Reset string buffer pointer
// Reset string length

// Scan input string

// Check buffer overflow

// and copy char to buffer
// Mark end of string

// Make fresh string copy

// Other type cases
// Store read value
// Succeed

}
PMATmatch(txt, pp, args)
{
if (pp->prefix_len != 0)
if (strncmp(txt,pp->pattern,pp->prefix_len) != 0) return -1;
rslt = TRUE;
txt += pp->prefix_len;
for (p = pp->pattern + pp->prefix_len; *p
if (*p != '%")
if (*txt++ != *p) rslt = FALSE;
else {
++p;
if (*p == 'A") {
i = (*++p) - 1;
ap = (args == NULL) ? NULL : &args[i];
if (!match_arg(&txt, &pp->arg[i], ap))
rslt = FALSE; }
else if (...) ...
if (!rslt) break; }
}
return (!rslt) ? -1 : pp->retargs;
}
match_arg(sp, pa, argp)
{
s = *sp;
if (pa->type == PMAT TYPE_INT) {
mode = 0;
v = 0;
while (TRUE) {
if (!isdigit(*s)) break;
v = v*base + *s++ - '0’';
mode = 1; }
if (mode == 0) return FALSE;
}
else if (pa->type == PMAT_TYPE_STRING) {
bufp = buf;
len = 0;
while (*s != 0 && !isspace(*s)) {
if (len++ < MAX ARG SIZE) *bufp++
++s; }
*bufp = 0;
v = (argp != NULL) ? strdup(buf)
}
else if (...) ...
if (argp != NULL) *argp = v;
return TRUE;
}

3a. Mechanism

Figure 3. Pattern matcher

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 13

{
p = PMATmake_pattern("DEBUG AT %1s %2d", 2, NULL);
process_message(msg, p, my_callback);

} 3b. Example of use

{ // Scan constant prefix "DEBUG AT "
if (strncmp(msg, "DEBUG AT %A\001 %A\002", 9)) {
n = -1;
goto end;
}
rslt = TRUE;
msg += 9;
bufp = buf; // Scan string (i.e., %s)
len = 0;
while (*msg != 0 && !isspace(*msg)) {
if (len++ < MAX_ARG_SIZE) *bufp++ = *msg;
++msg;
}
*bufp = 0;
args[0] = strdup(buf);
if (*msg++ != ' ') rslt=FALSE; // Scan " "
if (!rslt) goto stop;
mode = 0; // Scan integer (i.e., $d)
v = 0;
while (TRUE) {
if (!isdigit(*msg)) break;
v = v*10 + *msg++ - ‘0';
mode = 1;
}
if (mode == 0) rslt = FALSE;
else args[l] = v;

stop:
if (!rslt) n = -1; else n = 2; // Did the text match the pattern?
end:
if (n >= 0) // Callback invocation
my callback(args[0], args[1l]);
} 3c. Specialization

Figure 3. (continued) Specialized pattern matcher

a small representative excerpt. Figure 3b illustrates a typical call to the pattern
matcher, with the pattern argument "DEBUG AT %1s %2d". To actually match
a string against a given pattern, a pattern descriptor (a C structure) must first
be computed. (This is not shown in Figure 3a for size reasons.) This descriptor,
that somehow “precompiles” part of the pattern, contains (among other things) the
desired types and positions for the arguments to decode. For efficiency reasons, it
also stores the length of the longest prefix of the pattern, that does not contain es-
cape sequences. In our case, the length is 9, i.e. the size of "DEBUG AT ". It also
converts the scanf-like pattern into a type-free pattern with argument position
information: all arguments to read are marked as %A, regardless of types, and are
followed by a (char) number, e.g., "DEBUG AT %A\001 %A\002". Then, actual
pattern matching really starts: string comparison of the constant prefix with the

14 R. MARLET, S. THIBAULT AND C. CONSEL

message, string conversions of arguments according to escape sequences, and literal
character comparison for embedded string constants. In the end, if the message
actually matched, the callback routine is invoked with the decoded arguments.

4.2.2. Efficiency problems. As stated by Reiss [62, p. 64], “all Field messages
are passed as strings. While this introduces some inefficiencies, it greatly simplifies
pattern matching and message decoding and eliminates machine dependencies like
byte order and floating point representation.” As patterns and messages are more
complex, selection (i.e., pattern matching) may become the bottleneck of broadcast.
The phenomenon can be amplified if the complexity of the broadcast stays linear
(see Section 4.1). The efficiency problem here is a mixture of data integration
(converting data back and forth to and from strings according to the given formats)
and control integration (broadcast selection using pattern matching).

4.2.8. Application of partial evaluation. The static parameter here is the event
pattern. We have extracted the pattern matching routines from the Field imple-
mentation and run our partial evaluator on various pattern samples. In order to
keep the original and specialized program small enough to fit in the paper, we only
present in Figure 3a a simplified version of the code. For example, numbers are
only read in decimal notation, not in octal nor hexadecimal. Because of a current
limitation in Tempo regarding static loops that contain dynamic exits, the code
was also slightly patched as a workaround. Figure 3c shows the partial evaluation
(including inlining) of the call to the pattern matcher displayed in Figure 3b.

What must be noted is that the call to PMATmake pattern() has been totally
evaluated away: all pattern information has been inter-procedurally propagated and
exploited so that the specialized program only performs the basic literal comparison
and conversion operations. In terms of integration overhead, the optimization can
be understood as follows. Because the type formats have been fused into control flow
in the specialized pattern matcher, the data integration overhead now only reduces
to string conversions. Moreover, control integration overhead is now restricted to
raw string comparison. Partial evaluation of pattern matching has been well studied
in the context of functional and logical programming [13, 23, 65]. The performance
gain varies according the complexity of patterns. In our case, with pattern "DEBUG
AT %1s %2d" and text "DEBUG AT ./tree.c 24", using gcc2.8.1 -02 on
a 200MHz Sun UltraSPARC running Solaris 2.5, the specialized code is 3.0 times
faster than the original code.

Pattern matching can be combined with the optimization of selective broadcast
(see Section 4.1). Assuming patterns and event strings are known at specializa-
tion time, all pattern matching results (success or failure) can be computed by
partial evaluation. Broadcasts then directly translate into explicit callback invoca-
tions, with no lookup; arguments to those callbacks are just calls to explicit string
conversions.

Besides, as mentioned above, there exists a manual optimization in the original
source code: the length of the constant prefix of the pattern is saved so that only

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 15

a simple string comparison with the first characters of the message is needed; then
the full pattern matching machinery is set in motion. This situation burdens the
code and the data structures; this is a drawback from a software engineering point
of view. Yet, the same optimization could have been obtained automatically from
the general pattern matching code via partial evaluation.

4.3. Tight integration of software layers

A layered system is a hierarchical organization of a program where each layer pro-
vides services to the layer above it and acts as a client to the layer below. The most
widely known examples of this kind of architecture are layered communication pro-
tocols [47].

4.3.1. The mechanism. As an example of such an architecture, we have con-
sidered the Sun implementation of the remote procedure call (RPC) that makes a
remote procedure look like a local one: the client transparently calls a function that
is executed on a distant server. This protocol has become a de facto standard in
the design and implementation of distributed services (NFS, NIS, etc.). It manages
the encoding/decoding of local, machine-dependent data to a network-independent
format, standardized by the eXternal Data Representation protocol (XDR). The
user specifies the interface of the function using an Interface Definition Language.
The IDL compiler rpcgen then generates automatically “stub” routines for the
client (encoding of arguments, emission, reception, and decoding of result) and the
server (reception and decoding of arguments, computation, encoding, and emission
of result), using generic RPC functions.

The Sun implementation is divided into many micro-layers, each one being de-
voted to a small task: generic client procedure call, selection of transport protocol
(UDP, TCP, etc.), dispatches depending on scalars data size, choice between en-
coding and decoding (the same routine can perform both), choice of generic coding
medium (memory, stream, etc.), reading/writing in input/output buffers with over-
flow checks. Figure 4a shows the bottom of RPC layers stack. As may be seen, the
implementation is highly parameterized. For example, a function like xdr long()
can achieve both encoding and decoding, depending on a flag provided in the ar-
guments.

A typical execution context for client encoding is displayed in Figure 4b. The
function xdr_pair () encodes or decodes a pair of integers. It has been generated
automatically, given the definition of the remote procedure interface.

4.8.2. Efficiency problems. Layered systems have several good properties: their
design follows incremental abstraction steps, they favor extensibility and reuse, and
different implementations of the same layer can be interchanged. However, as noted
Shaw and Garlan, “considerations of performance may require closer coupling be-
tween logically high-level functions and their low-level implementation” [64, p. 25].
This is precisely what partial evaluation achieves automatically.

16 R. MARLET, S. THIBAULT AND C. CONSEL

xdr pair(xdrs, objp) // (User generated from IDL spec)
{
if (!xdr_int(xdrs, &objp->intl)) // Encode or decode 1°¢ int
return (FALSE); // Stop on failure
if (!xdr_int(xdrs, &objp->int2)) // Encode or decode 2% int
return (FALSE); // Stop on failure
return (TRUE); // Succeed
}
xdr_int(xdrs, ip) // Read or write some integer
{
if (sizeof(int) == sizeof(long)) // Depending on integer size
return xdr_long(xdrs, (long *)ip); // choose coding routine
else
return xdr_ short(xdrs, (short *)ip);
}
xdr_long(xdrs, 1lp) // Read or write a long integer
{
if (xdrs->x_op == XDR_ENCODE) // 1f encoding requested
return XDR_PUTLONG(xdrs, 1lp); // encode long int into I/O buffer
if (xdrs->x_op == XDR_DECODE) // 1f decoding requested
return XDR_GETLONG(xdrs, lp); // decode long int into I/O buffer
if (xdrs->x_op == XDR_FREE) // If free resource requested
return TRUE; // no op in this implementation
return FALSE; // Other cases are illegal
}
#define XDR_PUTLONG(xdrs,longp) \ // Use specified coding medium
(*(xdrs)->x_ops->x_putlong) (xdrs,longp) // (memory, stream, ...)
xdrmem_putlong(xdrs, 1p) // Write long to memory
{

if ((xdrs->x_handy -= sizeof(long)) < 0) // Buffer overflow check
return FALSE;

* (xdrs->x_private) = htonl(*1lp); // Buffer copy
xdrs->x_private += sizeof(long); // Buffer offset increment
return TRUE; // Succeed
} // (htonl: treat little/big endian)
#define htonl(x) x 4a. Mechanism
{
xargs = xdr_pair; // Specify argument-coding routine
xdrs->x_ops->x_putlong = xdrmem_putlong; // Choose "memory” coding
xdrs->x_op = XDR_ENCODE; // First, set up encoding
if (! (*xargs)(xdrs,argsp)) // Perform encoding
return cu->cu_error.re_status; // Abort on error (overflow)
sendto(...); // Emit encoded call on network
} 4b. Example of use
{
*(xdrs->x_private) = argsp->intl; // Encode 1%t argument into buffer
xdrs->x_private += 4; // Increment buffer pointer
* (xdrs->x_private) = argsp->int2; // Encode 2™ argument into buffer
xdrs->x_private += 4; // Increment buffer pointer
sendto(...); // Emit encoded call on network
} 4c. Specialization

Figure 4. Tight integration of micro-layers

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 17

Concerning XDR, the integration of data is fixed by the protocol. Control in-
tegration seems relatively important: invocations are all explicit, apart from the
indirect call (through a function pointer) in XDR_PUTLONG (). However, invoca-
tions are numerous and exit statuses are propagated (and often checked) through
each micro-layer. Moreover, a dispatch function like xdr long() does not actu-
ally produce any result; it merely acts as a switch. In addition, the output buffer is
checked for overflow for each single integer encoding, rather than once and for all.
All this introduces significant overhead.

4.3.8. Application of partial evaluation. The information driving the dispatch
in xdr long() and the number of integers written in the output buffer can be
completely known from the execution context. Consequently, the exit status of the
inner-most layer can be known prior to run time (buffer overflow or not). Propa-
gating this information to each layer makes the tests unnecessary.

Figure 4c shows what partial evaluation achieves automatically on such an archi-
tecture [50]. Note that the dispatches, the propagation of exit status, and the safety
checking for buffer overflow have all been removed. For specializing upper layers
(not shown here), we had to slightly change the original code though, because of
a limitation in Tempo regarding the binding-time polyvariance of structures. The
specialized encoding routines can be up to 3.7 times faster [49]; including time for
network transport, remote procedure calls can be up to 1.5 faster.

4.4. Compiling language interpretation

Scripting languages [53] are intended to glue together a set of powerful compo-
nents (building blocks) written in traditional programming languages. Scripting
languages simplify connections between components and provide rapid application
development. Domain-specific languages [26, 80] exploit the same idea.

4.4.1. The mechanism. The Toolbus coordination architecture [6] uses this con-
cept. It consists of independent tools (seen as processes) communicating via mes-
sages. However, communication of messages is not performed by the tools; it is
carried out by a single script that coordinates all the processes. This script is writ-
ten in a language specific to the Toolbus architecture, called T script. Toolbus also
relies on the selective broadcast mechanism (see Section 4.1) and pattern matching
(see Section 4.2); messages are tree-like terms and patterns are terms with variables.

Figure 5b shows a sample script written in T Script. As described in [6], a
T script consist of a composite process formed from builtin atomic processes. The
atomic processes are combined using choice (+), sequence (.), and iteration (*).
Atomic rules take terms as arguments. Terms are constructed from lower case
literal identifiers and capitalized variable names. Each script is associated with
a tool and evaluates terms of the atomic processes snd-eval and snd-do by
calling an evaluation function for that tool. The sample script specifies a simple
calculator, which receives expressions from other tools, evaluates them and then

18 R. MARLET, S. THIBAULT AND C. CONSEL

void interp(pe_t *pe, rterm t *(*eval)(term t*))
{
if (pe->op == CHOICE) {
if (try(pe->el))
interp(pe->el,eval);
else
interp(pe->e2,eval);
}
else if (pe->op == SEQUENCE) {
interp(pe->el,eval);
interp(pe->e2,eval);
}
else if (pe->op == ITERATION) {
ok = try(pe->el);
while (ok) {
interp(pe->el,eval);
ok = try(pe->el); }
interp(pe->e2,eval);
}
else if (pe->op == ATOMIC) {
if (pe->atomic->action == SND_MSG) {
SB_prod_term(pe->atomic->term);
SB_snd_msg(pe->atomic->term);
}
else if (pe->atomic->action == REC_MSG) {
SB_cons_term(pe->atomic->term, SB_rec_msg());
}
else if (pe->atomic->action == SND_EVAL) {
SB_prod_term(pe->atomic->term);
result = (*eval) (pe->atomic->term);
}
else if (pe->atomic->action == REC_VALUE) {
SB_cons_term(pe->atomic->term, result);
}
else if (pe->atomic->action == SND_DO) {
SB_prod_term(pe->atomic->term);
(*eval) (pe->atomic->term);
}
}

} 5a. The mechanism

Figure 5. T script interpreter

prints their result. The evaluation function for the calculator treats terms of the
form calc (X)) by evaluating the expression specified by X and terms of the form
prn(X) by printing X. The script consists of an iteration of the four atomic
processes rec-msg, snd-eval, rec-value, and snd-do, which respectively
wait for a message and match it to the term calc (Exp), build the term run (Exp)
and pass it to the evaluation function for the tool, place the return value of the
previous snd-eval into the Val variable, and build the term prn(Val) and pass
it the evaluation function. Iteration continues as long as the rec-msg continues
to succeed, i.e. as long as there are messages that match the term calc (Exp).

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 19

(rec-msg(calc(Exp)) .
snd-eval (run(Exp)) .
rec-value(Val) .
snd-do(prn(Val))) * delta 5b. Example of use

void specialized_interp(pe)
{
ok = try(pe->el);
while (ok)
{
petmpl = pe->el;
petmp2 = petmpl->el;
SB_cons_term(petmp2->atomic->term, SB_rec _msg());

petmp3 = petmpl->e2->el;
SB_prod_term(petmp3->atomic->term);

result = my_ handler (petmp3->atomic->term);

petmp4 = petmp2->e2->el;
SB_cons_term(petmp4->atomic->term, result);

petmp4 = petmp3->e2;
SB_prod_term(petmp4->atomic->term);
my_handler (petmp4->atomic->term);

ok = try(pe->el);

} 5c. Specialization

Figure 5. (continued) T script compilation via partial evaluation

Figure 5a shows the core of an interpreter for T scripts. The interpreter accepts
a script in abstract syntax form and traverses the tree executing each construct.
The process operators + and * use a “try” function in order to predetermine if a
process expression will fail. This is used, for example, to determine when to termi-
nate iteration. The atomic processes are implemented with some basic functions:
SB_cons_term() matches a message to a term and assigns values to variables
in the terms; SB _prod term() expands variables in a term with their values;
SB_snd msg() and SB_rec_msg() respectively send and receive a message.

4.4.2. Efficiency problems. Most often, scripts are interpreted and type-less.
These features provide more flexibility to the gluing language. However, they also
introduce performance overhead that becomes significant when the building blocks
are small. As stated by Bergstra and Klint, “there are many methods for imple-
menting the interpretation of T scripts, ranging from purely interpretative methods
to fully compilational methods that first transform the T script into a transition
table. The former are easier to implement, the latter are more efficient. For ease
of experimentation we have opted for the former approach.” [6, p. 82].

20 R. MARLET, S. THIBAULT AND C. CONSEL

The performance overhead of interpretation is due to a poor control integration.
For example, in mini printf () (see Figure 1a), the format is interpreted. When
callingmini_ printf (), some execution time is lost in scanning the format string,
before eventually invoking the printing routines putchar () and putint (). Sim-
ilarly, in the case of Toolbus, interpreting T scripts leads to a significant latency in
communications.

4.4.8. Application of partial evaluation. The T script interpreter has a similar
structure to that of mini printf () (see Figure la). As for mini printf(),
partial evaluation successfully eliminates the interpretation of T scripts, producing
a program similar to what one would write by hand to implement the script func-
tionality. Given a C-structure representation of the script shown in Figure 5b (pe
argument) and the evaluation function my handler (eval argument), specializa-
tion yields a program with one while loop resulting from the * iteration construct;
its body consists of the implementation of the four atomic processes used in the
script (see Figure 5c). Basically, the script has been compiled by partial evaluation.
For clarity, the definition of functions SB_zzz were not specialized. However, since
the SB_cons_term() and SB_prod term() functions consist of basic pattern
matching, partial evaluation could be further applied to them in a similar manner
as in Section 4.2.

The application of partial evaluation to interpreters has been extensively stud-
ied [38]. In fact, constructing compilers from interpreters in one of the standard
use of partial evaluation [19]. Similarly, a run-time specializer yields a JIT (just-
in-time compiler) for the price of an interpreter. It is thus not surprising that
partial evaluation is advocated as a general tool to help building domain-specific
languages (DSLs) [71].

Typically cited performance gains range from 10 to 100, depending on the static
semantics of the language being interpreted [21]. Our own experience of using
Tempo for specializing interpreters gives similar figures. For example, an inter-
preter for PLAN-P (an active network language) shows execution-time speedups
of 100 for compile-time specialization, and 40 for run-time specialization [72]. On
a learning bridge case study, the latency of the run-time specialized PLAN-P pro-
gram is similar the C hand-written one, and the throughput is only 20% slower.
This offers safety and programmability of application protocols for a very little per-
formance overhead. Another experiment involved GAL, a domain-specific language
for specifying video card drivers [73]. While keeping the benefits of a high-level
description (in particular, productivity and maintainability, as the specification is
10 times smaller), the drivers generated by Tempo have the same performance as
hand-coded ones.

4.5. Efficient instances of generic libraries

Generic libraries like libg++, NIHCL, COOL, or the Booch C++ Components [8]
have had a large success in achieving reuse. However, for performance reasons,

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 21

Real _in prod(VEC *a, VEC *b, u_int i0) // Safe encapsulation
{
if (a == (VEC *)NULL || b == (VEC *)NULL) // Well-formedness verification
error (E_NULL, "_in_prod");
limit = min(a->dim, b->dim);
if (10 > limit) // Service validity checking
error(E_BOUNDS, "_in_prod");
return __ ip (a->ve+i0, b->ve+iO, (int) (limit-i0));

}
Real __ ip (Real *dpl, Real *dp2, int len) // Faster unsafe implementation
{

sum = 0;

r
for (i = 0; i < len; i++)
sum += dpl[i] * dp2[i];
return sum;
} 6a. The mechanism

norm = v_get(3); // Create two vectors of size 3
light = v_get(3);
norm _dot_light = _in prod(morm, light, 0);

} 6b. Example of use

norm = ...
light =
norm_dot light = norm->ve[0] * light->ve[0] +
norm->ve[l] * light->ve[l] +
norm->ve[2] * light->ve[2];
} 6c. Specialization

Figure 6. Optimization of a call to a math library function

they implement a large number of hand-written specific components that represent
a unique combination of features (e.g. concurrency, data structures, memory al-
location algorithms). As a consequence, the library implementation itself achieves
little reuse. It has been argued that this way of building data structure component
libraries is inherently unscalable.

Another approach is to provide only primitive building blocks and have a gener-
ator combine these blocks to yield complex custom components [5]. However, the
generator is not general purpose but specific to a given architecture. Moreover, the
generated code may still contain aspects of the software architecture in the spec-
ification. Furthermore, they only address compile-time code generation. In some
cases, computer algebras such as Maple and Mathematica may also automatically
generate parts of libraries from given mathematical models (yielding Fortran or C
code). Still, this is very restricted and specific to a given model and computer
algebra system.

22 R. MARLET, S. THIBAULT AND C. CONSEL

4.5.1. The mechanism. We have taken as an example the Meschach Library [68]
developed at the Australian National University, which provides a wide range of
matrix computation facilities. It is very general in its design and implementation.
For example, many functionalities in Meschach are implemented using two routines.
The first one provides a safe, clean interface; it controls the validity of arguments
and performs bounds checking. The second one does the actual computation on
raw data. Such an example is shown in Figure 6a: the function in prod()
provides a safe encapsulation to the unsafe function ip () which computes
an inner product. Figure 6b gives an example of how the library is used: two
three-dimension vectors are allocated and used for an inner-product operation.

4.5.2. Efficiency problems. It is clear that the software protection provided by
the in prod() interface function is achieved at the expense of performance loss.
Moreover, because the function may apply to vectors of any size, the inner-product
computation involves loop management overhead. In terms of control integration,
the communication between the caller and the library function seems explicit. How-
ever, only the invocation of __ip (), that performs the actual computation, is
significant. Communication must thus be considered as implicit. Another interpre-
tation is to see this as the well-formedness aspect of the data integration problem.
In any case, the components need tighter integration.

4.5.8. Application of partial evaluation. As may be seen from Figures 6b and 6c¢,
partial evaluation uses available information (i.e., the size of the vectors) to elimi-
nate all verifications concerning the validity of the arguments: the safety interface
layer is compiled away. That is analogous to the elimination of buffer overflow
checking in the RPC case (see Section 4.3.3). In addition, the raw computation
itself is slightly improved using loop unrolling. When an application heavily relies
on a generic library, such optimizations become crucial. A study of compile-time
and run-time specialization of numeric functions reports performance gains up to
a factor of 12, including speedups of 5 on the Fast Fourier Transform [51].

5. Discussion

In this section, we analyse the case studies presented in Section 4 and characterize
the scope and the achievements of partial evaluation.

Case studies analysis. All the case studies in Section 4 have two aspects in com-
mon. First, some states are encoded in data rather than in the control flow of the
program: callback registration array, event pattern, encode/decode flag and buffer
size, T script text, vector size. Second, some of these data are constant for a given
architecture configuration. The effect of program specialization is to eliminate com-
putations depending on these configuration data, thus also pruning and reducing
control.

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 23

Generality. Having configurations encoded in data is a general and common tech-
nique. This generality is what makes partial evaluation systematic, as opposed to
optimizations that rely on definite software architectures or application domains.
A new technology does not have to be developed when a new software architecture
needs to be treated; only implementing the architecture and studying its specializa-
tion is required. However, architecture- or domain-specific optimizations that are
richer than specializing a generic program are beyond the scope of partial evalua-
tion.

Besides, because partial evaluation can also be performed at run time, depending
on run-time values, flexibility is not limited to source-code structuring: the archi-
tectural configuration that decides the interaction between components may evolve
dynamically, as the program runs.

Predictability. Although we may expect partial evaluation to be successful each
time a configuration state is encoded in some data, we must check that this state
depends only on available constants. For this, the binding-time analysis phase
prior to code transformation enables the user to visualize the code regions to be
eliminated by specialization (cf. Section 3.3).

However, it is generally not possible to determine the actual performance im-
provement because it is as complex as estimating the execution time of general
programs. Moreover, the speedup can vary depending on the value of the known
input. Preliminary work by Andersen and Gomard suggests that traditional spe-
cialization provides an improvement that is linear in the structure of the known
input [2]. (Other program transformations like lazy rewriting and common subex-
pression elimination can theoretically lead to supra-linear improvements.) In prac-
tice, experience shows that coupling profiling to the visualization of code regions
to be specialized provides good estimates of the performance improvement.

Degree of automation. One key advantage of partial evaluation is that it is au-
tomatic. More precisely, the program specialization process, given some known
input, is automatic. In particular, when the configuration data is not a parameter
but hard-coded into the text of the program (e.g., registration and broadcast state-
ments), blindly running a partial evaluator on the whole application automatically
yields an optimized implementation.

However, there are several practical limitations to full automation: programs
generally have external configuration parameters; the specializer does not offer any
automatic speedup prediction; uncontrolled loop unrolling may arbitrarily increase
the code size (¢f. Section 3.1.3); existing partial evaluator prototypes cannot rea-
sonably specialize more than a few thousand lines of code. It must also be kept in
mind that, altough partial evaluation should typically be used in the latest stages of
development (after prototyping and debugging), very large code analyses and spe-
cializations can take several hours. Even if partial evaluators become more efficient,
blindly specializing a whole application is unpractical.

24 R. MARLET, S. THIBAULT AND C. CONSEL

Thus, in practice, using partial evaluation is not a fully automatic process but
requires some user interaction. The user has to identify configuration data (using his
own expertise, some profiling data, or program analyses), split the program source
to focus on relevant parts (e.g., identify the pattern matcher), and instruct the
partial evaluator. Examining code regions to be specialized provides a feedback to
refine the identification and impact of configuration data. Then, given configuration
values, specialized code has to be re-plugged into the original application and used
appropriately.

Ongoing work in our group aims at simplifying the user’s interaction with the
specialization process, that is, offering high-level means to express specialization
intentions [75]: without altering the original source code, the user can specify what
to specialize, how to specialize it and when to use specialized code. Then, a compiler
processes these declarations, and the original source code is automatically instru-
mented so that it uses specialized code when appropriate. The prototype of a Java
specialization classes compiler has been implemented and is publicly available3.

Our experience is that existing code (not written by us) sometimes requires mi-
nor rewriting before Tempo can specialize it successfully. Indeed, we had to slightly
change the original code in the two cases studies relying on existing code (Field pat-
tern matching and Sun RPC). These “binding-time improvements” [39] are needed
when static and dynamic computations are too much intertwined and end up mak-
ing all computations dynamic. Obtaining good binding times when writing code
explicitly with specialization in mind is easier.

6. Related work

There are several other techniques for deriving efficient implementation of software
architectures, preserving or not a form of flexibility. These techniques can be man-
ual or automatic, specific or systematic, implementation-time or code-generation-
time.

Language-level mechanisms. Some optimizing compilers implement a simple form
of constant propagation and constant folding. However, propagation is often intra-
procedural, and limited to scalar values. The range of optimizations provided by
partial evaluation goes much beyond that. Indeed, none of the above case studies
could have been treated using any existing compiler. A partial evaluator and an
optimizing compiler are somehow complementary.

The oldest and roughest approach to tighten the integration of components to
improve performance consists in hand-optimizing the implementation code, using
any a priori knowledge about the execution context. Because it is tedious and error-
prone, manual specialization is generally local, i.e. restricted to a small “window”
of code; it does not scale up to large systems. In addition, manual optimization
tends to duplicate code and freeze choices early in the development process. It thus
conflicts with maintenance and extensibility. Yet, it is still widely used to optimize
critical paths when performance is a major concern (e.g., in Chorus IPCs [11]).

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 25

Another common practice is to rely on a two-level language: macros (as is C
or Scheme), templates (as in C++), etc. The idea is to program code expansion.
Although automatic, this approach is not systematic: each new optimization (i.e.,
code expansion) must be explictly programmed. However, finely tuning code ex-
pansion can lead to a fast final implementation [4, 46, 74]. One major limitation to
this approach is that the optimization usually can only be local, not contextual: two
separate rewritings cannot usually cooperate. The reason is that the rewriting lan-
guage often does not have states (or states more complex than scalars) nor scoping
mechanisms. For example, in the selective broadcast case, macros and templates
are useless for optimizing registration and broadcast. Besides, there are other,
practical drawbacks: macros and templates are usually more complex to develop
and maintain that standard programs; they require the user to explicitly stage the
computations. Moreover, unless such systems have reached enough maturity, the
high-level part of the two-level language is often untyped or cannot be type-checked
and compiled separately. The user can only examine expanded code, which makes
debugging more difficult, especially when expansion occurs at run-time.

Specification-level mechanisms. One way to overcome these limitations is to auto-
matically generate non-flexible implementation from a flexible design specification.

Common examples are generators of code skeletons, stubs, etc. For example,
rpcgen (the IDL compiler for the Sun RPC) translates the definition of a procedure
interface into actual code. However, as discussed in Section 4.3.3, there are still
optimization opportunities captured by partial evaluation which are left unexploited
by the IDL compiler. These opportunities are located inside the libraries used by
all generated code, where knowledge about the specific execution context is not
exploited. Smarter compilers exist [27] but are very specific to the domain or the
application.

In Section 4.4, a domain-specific language was defined using an interpreter. Lan-
guages can also be defined using a specific semantics formalism. An implementation
is then derived from the semantics definition. Such a technology is developed in the
SDRR project [43]. It is based on higher-order functional definitions and incorpo-
rates a form of specialization. Still, the authors recognize that there is much more
that can be done to further improve the performance of the generated Ada code.

Experiments are missing to compare partial evaluation with more general code
synthesis techniques. Our intuition is that partial evaluation is mostly comple-
mentary to these techniques. In particular, systems that relies on axiomatized
libraries [69] do not cover specialization of library routines. Moreover, since specifi-
cation formalisms, by essence, are not meant to express operational behaviors, it is
likely that the generated code contains optimization opportunities. Concerning, in
model-integrated system development [40] and aspect-oriented programming [42],
the customization of components is not general but domain-specific. Besides, these
strategies do not primarily focus on performance but on code structuring.

26 R. MARLET, S. THIBAULT AND C. CONSEL

Run-time flexibility. Run-time flexibility adds other tradeoffs: regardless of the
approach, being more platform independant favors porting and extensibility but
compromises efficiency. The fact that generated code is in this case binary rather
than textual makes debugging a delicate issue. This issue not only affects the user
but also the developer and the maintainer of the related tools.

Dedicated run-time specializers have the advantage and drawback of being a
domain-specific artefact: they produce efficient code but they are not easily exten-
sible [61]. Such specializers are hard to develop, maintain, extend and port.

More general mechanisms have been proposed, consisting in run-time two-level
(or multi-level) languages. Besides a delicate debugging process, they have the
same advantages and drawbacks listed above concerning compile-time multi-level
languages. Some systems include type and coherence checking of the different lan-
guage levels [34, 70]; others just trust the user’s annotations [28]. Besides Tempo,
there exists other general run-time specializers which may or not rely on user an-
notations [33, 45]. However, there were not used specifically on various software
architectures.

7. Conclusion

The literature on software architectures presents implementations which are a com-
promise of flexibility and efficiency. The reason is that genericity and extensibility
introduce overhead when they are not only present at the design level but also in
the implementation.

We characterize the fundamental inefficiency problems in flexible architecture
implementations as being related to the loose integration of data and control in
software components. We advocate the use of partial evaluation, a systematic and
automatic program transformation that can turn flexible implementations into effi-
cient ones while retaining flexibility at the structuring level. This claim is validated
by five case studies. The discussion on the general applicability of partial evaluation
argues that it is a major tool for achieving program adaptation [22].

Future work

Partial evaluation is well-suited for control integration. It also addresses the safety
and security aspects of data integration. However, it does little concerning the
heterogeneity problem of data integration (c¢f. Section 2.1).

A more powerful program specialization technique, known as deforestation [78§],
can be used to treat certain combinations of a sequence of data conversions. How-
ever, to our knowledge, it has not yet been applied to imperative programming,
except in the simpler case of filter fusion [59]. Semi-automatic approaches to copy
elimination between software layers have been considered [77] but not yet put into
practice

Because specialization needs actual values, there is also a limit to the type of
control and software protection overhead that partial evaluation can eliminate. In
particular, traditional partial evaluation cannot exploit properties about values, such

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 27

as interval ranges. Several extensions to partial evaluation exploiting properties
have been proposed: parameterized partial evaluation [17] and generalized partial
computation [30]. However, they have not yet been put into practice on realistic
applications.

It is clear that using a partial evaluator today still requires some expertise. Yet,
we cannot expect all programmers to be or to become experts in specialization.
Thus, our long-term goal is to hide specialization as much as possible. In particular,
given implementations of flexible architectures (including design patterns [31]) and a
careful analysis of the application of partial evaluation, we want to provide the user
with a programming environment where those predefined software architectures
have guaranteed optimizations.

Acknowledgments

The research presented here was partly supported by CNET /France Telecom grant
96-1B-027. We would like to thank Brown University and the Australian National
University (Canberra), that have given us access respectively to the sources of
Field and Meschach. We would like to thank as well the anonymous referees and
the members of the Compose group for their helpful and insightful comments.

Notes

1. Compose group home page: http://www.irisa.fr/compose
2. Tempo, a specializer for C: http://www.irisa.fr/compose/tempo

3. JSCC, a Java specialization classes compiler: http://www.irisa.fr/compose/jscc

References

1. L.O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, Computer Science Department, University of Copenhagen, May 1994. DIKU
Technical Report 94/19.

2. L.O. Andersen and C.K. Gomard. Speedup analysis in partial evaluation: preliminary re-
sults. In Partial Evaluation and Semantics-Based Program Manipulation, pages 1-7, San
Francisco, CA, USA, June 1992. Yale University, New Haven, CT, USA. Technical Report
YALEU/DCS/RR-909.

3. Maurice J. Bach. The Design of the UNIX Operating System, chapter 5, pages 111-119.
Software Series. Prentice Hall, 1986.

4. D. Batory and B. Geraci. Composition validation and subjectivity in GenVoca generators.
IEEE Transactions on Software Engineering, 23(2):67-82, February 1997.

5. Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas. Scalable Software Libraries. In
Proceedings of the ACM SIGSOFT ’93 Symposium on the Foundations of Software Engi-
neering, pages 191-199, December 1993.

6. J. A. Bergstra and P. Klint. The ToolBus coordination architecture. In Ciancarini and
Hankin [12], pages 75-88.

7. B.N.Bershad, S. Savage, P. Pardyak, E. Giin Sirer, M.E. Fiuczynski, D. Becker, C. Chambers,
and S. Eggers. Extensibility, safety and performance in the SPIN operating system. In
SOSP95 [67], pages 267-283.

8. Grady Booch. The design of the C++ booch components. ACM SIGPLAN Notices, 25(10):1-
11, October 1990. OOPSLA ECOOP ’90 Proceedings, N. Meyrowitz (editor).

28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

R. MARLET, S. THIBAULT AND C. CONSEL

C. Chambers, S. Eggers, J. Auslander, M. Philipose, M. Mok, and P. Pardyak. Automatic
dynamic compilation support for event dispatching in extensible systems. In WCSSS’96 [79],
pages 118-126.

S. Chirokoff and C. Consel. Combining program and data specialization. In PEPM’99 [56].
to appear.

Chorus. Chorus kernel v3 r5 implementation guide. Technical Report CS/TR-94-73.1, Chorus
Systemes, 1994.

Paolo Ciancarini and Chris Hankin, editors. Coordination and models, Proceedings of the
first international conference, Cesena, Italy, number 1061 in LNCS. Springer Verlag, 1996.
C. Consel and O. Danvy. Partial evaluation of pattern matching in strings. Information
Processing Letters, 30(2):79-86, 1989.

C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Conference Record of the
Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of Programming
Languages, pages 493-501, Charleston, SC, USA, January 1993. ACM Press.

C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and N. Volan-
schi. Tempo: Specializing systems applications and beyond. ACM Computing Surveys,
Symposium on Partial Evaluation, 30(3), 1998.

C. Consel, L. Hornof, F. Noél, J. Noyé, and E.N. Volanschi. A uniform approach for compile-
time and run-time specialization. In Danvy et al. [24], pages 54-72.

C. Consel and S. C. Khoo. Parameterized partial evaluation. ACM Transactions on Pro-
gramming Languages and Systems, 15(3):463-493, 1993. Extended version of [18].

C. Consel and S.C. Khoo. Parameterized partial evaluation. In Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages
92-106, Toronto, Ontario, Canada, June 1991. ACM SIGPLAN Notices, 26(6).

C. Consel and R. Marlet. Architecturing software using a methodology for language devel-
opment. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of the 10t" Inter-
national Symposium on Programming Language Implementation and Logic Programming,
number 1490 in Lecture Notes in Computer Science, pages 170-194, Pisa, Italy, September
1998.

C. Consel and F. Noél. A general approach for run-time specialization and its application to
C. In POPL96 [58], pages 145-156.

C. Consel and Danvy O. Static and dynamic semantics processing. In Conference Record of
the Eighteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of Programming
Languages, Orlando, FL, USA, January 1991. ACM Press.

Charles Consel. Program adaptation based on program transformation. ACM Computing
Surveys, 28(4es):164-167, 1996.

O. Danvy. Semantics-directed compilation of non-linear patterns. Information Processing
Letters, 37:315-322, March 1991.

O. Danvy, R. Gliick, and P. Thiemann, editors. Partial Evaluation, International Seminar,
Dagstuhl Castle, number 1110 in Lecture Notes in Computer Science, February 1996.

J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using static
class hierarchy analysis. In Proceedings of ECOOP’95, Aarhus, Denmark, August 1995.
Springer-Verlag.

Conference on Domain Specific Languages, Santa Barbara, CA, October 1997. Usenix.
Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom. Flick: A flexible, opti-
mizing IDL compiler. In Proceedings of the ACM SIGPLAN ’97 Conference on Programming
Language Design and Implementation, pages 44-56, Las Vegas, Nevada, June 15-18, 1997.
D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘C: A language for high-level, efficient, and
machine-independent dynamic code generation. In POPL96 [58], pages 131-144.

D.R. Engler, M.F. Kaashoek, and J.W. O’Toole. Exokernel: An operating system architec-
ture for application-level resource management. In SOSP95 [67], pages 251-266.

Y. Futamura, K. Nogi, and A. Takano. Essence of generalized partial computation. J.
Theoretical Computer Science, 90:60—79, 1991.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.
D. Garlan, G.E. Kaiser, and D. Notkin. Using tool abstraction to compose systems. IEFE
journal Computer, 25(6):30-38, June 1992.

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES 29

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J. Eggers. Annotation-directed run-
time specialization in C. In PEPM’97 [55], pages 163-178.

L. Hornof and T. Jim. Certifying compilation and run-time code generation. In PEPM’99
[56], pages 60-74.

Proceedings of the International Symposium on Computing in Object-Oriented Parallel En-
vironments, number 1505 in Lecture Notes in Computer Science, Santa Fe, New Mexico,
December 1998. Springer-Verlag.

ISO. Specification of abstract syntax notation one (ASN.1). ISO standard 8824, 1988.

Tan Jacobs, Janet Bertot, Francis Montagnac, and Dominique Clement. The SOPHTALK
reference manual. Technical Report RT 150, INRIA, February 1993.

N.D. Jones. What not to do when writing an interpreter for specialisation. In Danvy et al.
[24], pages 216-237.

N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Gener-
ation. International Series in Computer Science. Prentice-Hall, June 1993.

G. Karsai, A. Misra, J. Sztipanovits, A. Ledeczi, and M. Moore. Model-integrated system
development: Models, architecture, and process. In Proceedings of the Computer Software
and Applications Conference (COMPSAC), pages 176-181, Bethesda, MA, August 1997.
Siau Cheng Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation. In
PEPM’91 [54], pages 211-222. ACM SIGPLAN Notices, 26(9).

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors, Proceedings of the
European Conference on Object-oriented Programming (ECOOP’97), volume 1241 of Lecture
Notes in Computer Science, pages 220242, Jyviskyld, Finland, June 1997. Springer.

R. Kieburtz, F. Bellegarde, J. Bell, J. Hook, J. Lewis, D. Oliva, T. Sheard, L. Walton, and
T. Zhou. Calculating software generators from solution specifications. In Theory and Practice
of Software Development (TAPSOFT), volume 915 of LNCS, pages 546—-560. Springer Verlag,
1995.

T.B. Knoblock and E. Ruf. Data specialization. In PLDI'96 [57], pages 215-225. Also TR
MSR-TR-96-04, Microsoft Research, February 1996.

P. Lee and M. Leone. Optimizing ML with run-time code generation. In PLDI’96 [57], pages
137-148.

B.N. Locanthi. Fast bitblt() with asm() and cpp. In European UNIX Systems User Group
Conference Proceedings, pages 243-259, AT&T Bell Laboratories, Murray Hill, September
1987. EUUG.

G.R. McClain. Open Systems Interconnection Handbook. Intertext Publications, McGraw-
Hill, New York, 1991.

A.B. Montz, D. Mosberger, S.W. O’Malley, L.L. Peterson, T.A. Proebsting, and J.H. Hart-
man. Scout: A communications-oriented operating system. Technical Report 94-20, Depart-
ment of Computer Science, The University of Arizona, 1994.

G. Muller, R. Marlet, E.N. Volanschi, C. Consel, C. Pu, and A. Goel. Fast, optimized Sun
RPC using automatic program specialization. In Proceedings of the 18th International Con-
ference on Distributed Computing Systems, pages 240-249, Amsterdam, The Netherlands,
May 1998. IEEE Computer Society Press.

G. Muller, E.N. Volanschi, and R. Marlet. Scaling up partial evaluation for optimizing the
Sun commercial RPC protocol. In PEPM’97 [55], pages 116-125.

F. Noél, L. Hornof, C. Consel, and J. Lawall. Automatic, template-based run-time special-
ization : Implementation and experimental study. In International Conference on Computer
Languages, pages 132-142, Chicago, IL, May 1998. IEEE Computer Society Press. Also
available as IRISA report PI-1065.

OMG. CORBA: The Common Object Request Broker: Architecture and Specification. Fram-
ingham, 1995.

John K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE
Computer, 1998.

Partial FEvaluation and Semantics-Based Program Manipulation, New Haven, CT, USA,
September 1991. ACM SIGPLAN Notices, 26(9).

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation, Amsterdam, The Netherlands, June 1997. ACM Press.

30

56.

57.

58.

59.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

R. MARLET, S. THIBAULT AND C. CONSEL

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipu-
lation, San Antonio, TX, USA, January 1999. ACM Press.

Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation, Philadelphia, PA, May 1996. ACM SIGPLAN Notices, 31(5).

Conference Record of the 23" Annual ACM SIGPLAN-SIGACT Symposium on Principles
Of Programming Languages, St. Petersburg Beach, FL, USA, January 1996. ACM Press.
Todd A. Proebsting and Scott A. Watterson. Filter fusion. In POPL96 [58], pages 119-130.
C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole,
and K. Zhang. Optimistic incremental specialization: Streamlining a commercial operating
system. In SOSP95 [67], pages 314-324.

C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1(1):11-32,
Winter 1988.

Steve P. Reiss. Connecting tools using message passing in the Field environment. IEEFE
Software, 7(4):57-66, July 1990.

U. Schultz, J. Lawall, C. Consel, and G. Muller. Towards automatic specialization of java
programs. In Proceedings of the European Conference on Object-oriented Programming
(ECOOP’99), Lisbon, Portugal, June 1999. To appear.

M. Shaw and D. Garlan. Software Architecture. Prentice Hall, 1996.

D. A. Smith. Partial evaluation of pattern matching in CLP domains. In PEPM’91 [54],
pages 62-71. ACM SIGPLAN Notices, 26(9).

R. Snodgrass. The Interface Definition Language: Definition and Use. Computer Science
Press, Rockville, MD, 1989.

Proceedings of the 1995 ACM Symposium on Operating Systems Principles, Copper Moun-
tain Resort, CO, USA, December 1995. ACM Operating Systems Reviews, 29(5), ACM
Press.

D. R. Stewart. MESCHACH: Matriz Computations in C. University of Canberra, Australia,
1992. Documentation of MESCHACH Version 1.0.

M. Stickel, R. Waldinger, M. Lowry, and T. Pressburger. Deductive composition of astronom-
ical software from subroutine libraries. In Twelfth International Conference on Automated
Deduction (CADE), volume 814 of LNCS, pages 341-355, Nancy, France, June 1994.

W. Taha and T. Sheard. Multi-state programming with explicit annotations. In PEPM’97
[55], pages 203-217.

S. Thibault and C. Consel. A framework of application generator design. In M. Harandi,
editor, Proceedings of the Symposium on Software Reusability, pages 131-135, Boston, Mas-
sachusetts, USA, May 1997. Software Engineering Notes, 22(3).

S. Thibault, C. Consel, and G. Muller. Safe and efficient active network programming. In 17th
IEEE Symposium on Reliable Distributed Systems, pages 135-143, West Lafayette, Indiana,
October 1998.

S. Thibault, R. Marlet, and C. Consel. A domain-specific language for video device drivers:
from design to implementation. In DSL’97 [26], pages 11-26.

T.L. Veldhuizen. Arrays in Blitz++. In ISCOPE’98 [35].

E.N. Volanschi, C. Consel, G. Muller, and C. Cowan. Declarative specialization of object-
oriented programs. In OOPSLA’97 Conference Proceedings, pages 286-300, Atlanta, USA,
October 1997. ACM Press.

E.N. Volanschi, G. Muller, and C. Consel. Safe operating system specialization: the RPC
case study. In WCSSS’96 [79], pages 24-28.

E.N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noyé, and C. Pu. A uniform and
automatic approach to copy elimination in system extensions via program specialization.
Research Report 2903, INRIA, Rennes, France, June 1996.

Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Com-
puter Science, 73:231-248, 1990.

Workshop Record of WCSSS’96 — The Inaugural Workshop on Compiler Support for Systems
Software, Tucson, AZ, USA, February 1996.

1st ACM-SIGPLAN Workshop on Domain-Specific Languages, Paris, France, January
1997. Technical Report, Department of Computer Science, University of Illinois at Urbana-
Champaign.

