
Partial Evaluation for Software Engineering

C� Consel� L� Hornof� R� Marlet� G� Muller� S� Thibault� E��N� Volanschi�

IRISA � INRIA �University of Rennes� France

and

J� Lawall

Oberlin College� Ohio

and

J� Noy�e
�Ecole des Mines de Nantes� France

Up to now� partial evaluation has focused on the specialization process� Less attention has been
devoted to validating the technology on concrete applications� This paper presents methods
that are essential to integrate partial evaluation into the software engineering process� either
explicitly by declaring specialization opportunities� or implicitly by using software architectures
and mechanisms that are known to expose predictable specialization opportunities�

�� BEYOND THE SPECIALIZATION PROCESS

Partial evaluation has been intensively studied in the past twenty years� It has made
major advances regarding the understanding of specialization from both a semantic
and an implementation viewpoint� Many variations with respect to various language
paradigms and features have been explored� Though prototype implementations
have been putting theory into practice for several �mainly declarative� programming
languages� they have only been applied to small programs� Less attention has been
devoted to validating the technology on concrete applications�
Recently� however� attention has turned toward making a real proof of concept�

so as to convince potential end�users in various communities� To do so� a partial
evaluator has to successfully specialize large pieces of code� written in languages
used by the software industry� Widely�used programming languages like Fortran
and C are now being targeted for the development of partial evaluators �Baier et al�
����	 Andersen ����	 Consel et al� ���
��
However� as opposed to an optimizing compiler which calls for little parame�

terization� a specializer is a complex tool that requires speci�c expertise from the
programmer to guide the optimization process� As a result� partial evaluation is
seldom used outside of its own community�
This paper presents essential methods for partial evaluation to be actually inte�

grated in a software engineering process� either explicitly by declaring specializa�
tion opportunities� or implicitly by using software architectures and mechanisms
that are known to expose predictable specialization opportunities� Another use of
partial evaluation for software engineering� not treated in this paper� is program
understanding �Blazy and Facon �����
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�� EXPLICIT SPECIALIZATION

As partial evaluators become more powerful� they also become more di�cult to
use� The user must identify the portion of code to specialize and describe the
invariants to which specialization should be carried out� Then the user must choose
between traditional compile�time specialization and new forms of specialization such
as runtime specialization �Consel and No�el ���
�� incremental specialization �Consel
et al� ������ and data specialization �Knoblock and Ruf ���
�� Finally� specialized
routines must be installed� so that they are used in valid specialization contexts�
To make this process accessible to a non�expert� a simple interface must be pro�

vided� allowing a high�level description of what� when� and how to specialize� Spe�
cialization classes �Volanschi et al� ���� are an example of such a speci�cation
that automatically exploits and manages specialization� Specialization classes are
fully integrated in the object�oriented paradigm� They introduce declarations to
the Java language that enable a programmer to specify how programs should be
specialized for a particular usage pattern�
This approach has been implemented as a compiler from our extended language

into standard Java� It is currently being used for experimentation with Java spe�
cialization through Harissa �a Java to C translator� �Muller et al� ���� and Tempo
�a C specializer� �Consel et al� ���
	 Consel et al� ������
Specialization classes allow a programmer to declare specialization opportuni�

ties� Beyond this explicit approach� one may wonder whether opportunities can be
exposed implicitly�

�� IMPLICIT SPECIALIZATION OF SOFTWARE ARCHITECTURES

Experience has shown that specialization works well on generic programs� This
observation suggests that good specialization can be guaranteed for some program�
ming styles and software architectures� Thus� partial evaluation could be embedded
in a built�in mechanism responsible for the e�cient instantiation of a software ar�
chitecture�
A software architecture expresses how systems should be built from various com�

ponents and how those components should interact� A key feature of software archi�
tectures is �exibility� resulting in re�usability� extensibility� adaptability� Because
�exibility is present not only at the design level but also in the implementation�
it may introduce a performance overhead� Sources of ine�ciency can be identi�ed
in the integration of data �exchanged or shared� and control �means of commu�
nication� between components� Partial evaluation has been shown to improve the
performance of a wide range of software architectures and mechanisms �Marlet et al�
�����

Selective Broadcast� In the selective broadcast �or implicit invocation� architec�
ture �Shaw and Garlan ���
�� components are independent agents that interact
with each others by subscribing to certain types of events and sending broadcast
messages� Specializing with respect to a subscription converts broadcasting into
explicit calls to registered agents�

Pattern Matching� In an environment like Field �Reiss ������ pattern matching
is used to select broadcast events and decode message arguments� Specializing the
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pattern matcher and the decoder with respect to the pattern generates automata�
like routines�

Software Layers� A layered system is a hierarchical organization of a program
where each layer provides services to the layer above it and acts as a client to the
layer below� An example is Sun�s implementation of the Remote Procedure Call
�RPC� protocol� If we specialize with respect to the data interface description� par�
tial evaluation tightly merges the micro�layers that perform the encoding�decoding
of data to�from a network independent representation� resulting in simple memory
transfers �Muller et al� �����

Interpreters� Scripting languages glue together powerful components �building
blocks� written in traditional systems programming languages� For �exibility and
simplicity� they are often interpreted� If we specialize with respect to the script� the
partial evaluation of the interpreter acts as a compiler �Jones ���
�� This approach
applies to domain�speci�c languages as well� with the additional specialization of the
components �Thibault and Consel ����� It has been successfully put into practice
for the automatic generation of e�cient video card drivers �Thibault et al� �����

Generic Libraries� Complex data structures consist of shape as well as actual
content information� Routines in very generic libraries need to test the validity of
such arguments and complete bounds checking before performing the actual service�
Specializing with respect to the shape of a data structure eliminates veri�cations�
the safety interface layer is compiled away�

The above invariants need not be available at compile time in order to allow suc�
cessful optimization� partial evaluation can be performed at runtime as well �Consel
and No�el ���
�� In contrast with unstructured programming� the improvement here
can be predicted and guaranteed� Since partial evaluation is automatic� it does not
defeat the goals of software engineering� performance is improved while �exibility
is retained�

�� CONCLUSION

In order to bridge the gap between software engineers� programmers and partial
evaluation� we have proposed two directions� On the one hand� explicit partial
evaluation is speci�ed using a high�level description that describes specialization
opportunities and hides the intricacies of a partial evaluator� On the other hand�
partial evaluation is implicitly guaranteed when using a wide range of software
architectures�
Both tracks are actively pursued within the Compose project� as we foresee that

partial evaluation will not be successful outside of its community until� paradoxi�
cally� it has completely disappeared from the scene�
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