
Partial Evaluation for Software Engineering

C� Consel� L� Hornof� R� Marlet� G� Muller� S� Thibault� E��N� Volanschi�

IRISA � INRIA �University of Rennes� France

and

J� Lawall

Oberlin College� Ohio

and

J� Noy�e
�Ecole des Mines de Nantes� France

Up to now� partial evaluation has focused on the specialization process� Less attention has been
devoted to validating the technology on concrete applications� This paper presents methods
that are essential to integrate partial evaluation into the software engineering process� either
explicitly by declaring specialization opportunities� or implicitly by using software architectures
and mechanisms that are known to expose predictable specialization opportunities�

�� BEYOND THE SPECIALIZATION PROCESS

Partial evaluation has been intensively studied in the past twenty years� It has made
major advances regarding the understanding of specialization from both a semantic
and an implementation viewpoint� Many variations with respect to various language
paradigms and features have been explored� Though prototype implementations
have been putting theory into practice for several �mainly declarative� programming
languages� they have only been applied to small programs� Less attention has been
devoted to validating the technology on concrete applications�
Recently� however� attention has turned toward making a real proof of concept�

so as to convince potential end�users in various communities� To do so� a partial
evaluator has to successfully specialize large pieces of code� written in languages
used by the software industry� Widely�used programming languages like Fortran
and C are now being targeted for the development of partial evaluators �Baier et al�
����	 Andersen ����	 Consel et al� ���
��
However� as opposed to an optimizing compiler which calls for little parame�

terization� a specializer is a complex tool that requires speci�c expertise from the
programmer to guide the optimization process� As a result� partial evaluation is
seldom used outside of its own community�
This paper presents essential methods for partial evaluation to be actually inte�

grated in a software engineering process� either explicitly by declaring specializa�
tion opportunities� or implicitly by using software architectures and mechanisms
that are known to expose predictable specialization opportunities� Another use of
partial evaluation for software engineering� not treated in this paper� is program
understanding �Blazy and Facon �����

Name� Compose project �http���www�irisa�fr�compose�
Address� IRISA� Campus universitaire de Beaulieu� ����	 Rennes Cedex� France

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro
t or direct commercial
advantage and that copies show this notice on the 
rst page or initial screen of a display along
with the full citation� Copyrights for components of this work owned by others than ACM must
be honored� Abstracting with credit is permitted� To copy otherwise� to republish� to post on
servers� to redistribute to lists� or to use any component of this work in other works� requires prior
speci
c permission and�or a fee� Permissions may be requested from Publications Dept� ACM
Inc�� ���� Broadway� New York� NY ���� USA� fax �� �	�	� �������� or permissions�acm�org�



� � Compose project

�� EXPLICIT SPECIALIZATION

As partial evaluators become more powerful� they also become more di�cult to
use� The user must identify the portion of code to specialize and describe the
invariants to which specialization should be carried out� Then the user must choose
between traditional compile�time specialization and new forms of specialization such
as runtime specialization �Consel and No�el ���
�� incremental specialization �Consel
et al� ������ and data specialization �Knoblock and Ruf ���
�� Finally� specialized
routines must be installed� so that they are used in valid specialization contexts�
To make this process accessible to a non�expert� a simple interface must be pro�

vided� allowing a high�level description of what� when� and how to specialize� Spe�
cialization classes �Volanschi et al� ���� are an example of such a speci�cation
that automatically exploits and manages specialization� Specialization classes are
fully integrated in the object�oriented paradigm� They introduce declarations to
the Java language that enable a programmer to specify how programs should be
specialized for a particular usage pattern�
This approach has been implemented as a compiler from our extended language

into standard Java� It is currently being used for experimentation with Java spe�
cialization through Harissa �a Java to C translator� �Muller et al� ���� and Tempo
�a C specializer� �Consel et al� ���
	 Consel et al� ������
Specialization classes allow a programmer to declare specialization opportuni�

ties� Beyond this explicit approach� one may wonder whether opportunities can be
exposed implicitly�

�� IMPLICIT SPECIALIZATION OF SOFTWARE ARCHITECTURES

Experience has shown that specialization works well on generic programs� This
observation suggests that good specialization can be guaranteed for some program�
ming styles and software architectures� Thus� partial evaluation could be embedded
in a built�in mechanism responsible for the e�cient instantiation of a software ar�
chitecture�
A software architecture expresses how systems should be built from various com�

ponents and how those components should interact� A key feature of software archi�
tectures is �exibility� resulting in re�usability� extensibility� adaptability� Because
�exibility is present not only at the design level but also in the implementation�
it may introduce a performance overhead� Sources of ine�ciency can be identi�ed
in the integration of data �exchanged or shared� and control �means of commu�
nication� between components� Partial evaluation has been shown to improve the
performance of a wide range of software architectures and mechanisms �Marlet et al�
�����

Selective Broadcast� In the selective broadcast �or implicit invocation� architec�
ture �Shaw and Garlan ���
�� components are independent agents that interact
with each others by subscribing to certain types of events and sending broadcast
messages� Specializing with respect to a subscription converts broadcasting into
explicit calls to registered agents�

Pattern Matching� In an environment like Field �Reiss ������ pattern matching
is used to select broadcast events and decode message arguments� Specializing the



Partial Evaluation for Software Engineering � �

pattern matcher and the decoder with respect to the pattern generates automata�
like routines�

Software Layers� A layered system is a hierarchical organization of a program
where each layer provides services to the layer above it and acts as a client to the
layer below� An example is Sun�s implementation of the Remote Procedure Call
�RPC� protocol� If we specialize with respect to the data interface description� par�
tial evaluation tightly merges the micro�layers that perform the encoding�decoding
of data to�from a network independent representation� resulting in simple memory
transfers �Muller et al� �����

Interpreters� Scripting languages glue together powerful components �building
blocks� written in traditional systems programming languages� For �exibility and
simplicity� they are often interpreted� If we specialize with respect to the script� the
partial evaluation of the interpreter acts as a compiler �Jones ���
�� This approach
applies to domain�speci�c languages as well� with the additional specialization of the
components �Thibault and Consel ����� It has been successfully put into practice
for the automatic generation of e�cient video card drivers �Thibault et al� �����

Generic Libraries� Complex data structures consist of shape as well as actual
content information� Routines in very generic libraries need to test the validity of
such arguments and complete bounds checking before performing the actual service�
Specializing with respect to the shape of a data structure eliminates veri�cations�
the safety interface layer is compiled away�

The above invariants need not be available at compile time in order to allow suc�
cessful optimization� partial evaluation can be performed at runtime as well �Consel
and No�el ���
�� In contrast with unstructured programming� the improvement here
can be predicted and guaranteed� Since partial evaluation is automatic� it does not
defeat the goals of software engineering� performance is improved while �exibility
is retained�

�� CONCLUSION

In order to bridge the gap between software engineers� programmers and partial
evaluation� we have proposed two directions� On the one hand� explicit partial
evaluation is speci�ed using a high�level description that describes specialization
opportunities and hides the intricacies of a partial evaluator� On the other hand�
partial evaluation is implicitly guaranteed when using a wide range of software
architectures�
Both tracks are actively pursued within the Compose project� as we foresee that

partial evaluation will not be successful outside of its community until� paradoxi�
cally� it has completely disappeared from the scene�

REFERENCES

Andersen� L� ����� Program Analysis and Specialization for the C Programming Language�
Ph� D� thesis� Computer Science Department� University of Copenhagen� DIKU Technical
Report ������

ASE���� ����� Conference on Automated Software Engineering �Lake Tahoe� Nevada� Nov�
������ IEEE Computer Society�



� � Compose project

Baier� R�� Gl�uck� R�� and Z�ochling� R� ����� Partial evaluation of numerical programs

in Fortran� In ACM SIGPLAN Workshop on Partial Evaluation and Semantics�Based

Program Manipulation �Orlando� FL� USA� June ������ pp� ������	� Technical Report
����� University of Melbourne� Australia�

Blazy� S� and Facon� P� ����� Application of formal methods to the development of
a software maintenance tool� In Conference on Automated Software Engineering �Lake
Tahoe� Nevada� Nov� ������ pp� �	����� IEEE Computer Society�

Consel� C�� Hornof� L�� Lawall� J�� Marlet� R�� Muller� G�� Noy�e� J�� Thibault� S��

and Volanschi� N� ����� Tempo� Specializing systems applications and beyond� ACM
Computing Surveys� Symposium on Partial Evaluation� To appear�

Consel� C�� Hornof� L�� No�el� F�� Noy�e� J�� and Volanschi� E� ���� A uniform ap�
proach for compile�time and run�time specialization� In O� Danvy� R� Gl�uck� and P� Thie�
mann Eds�� Partial Evaluation� International Seminar� Dagstuhl Castle� Number ���� in
Lecture Notes in Computer Science �Feb� ����� pp� ����	�

Consel� C� and No�el� F� ���� A general approach for run�time specialization and its
application to C� In Conference Record of the 	�rd Annual ACM SIGPLAN�SIGACT

Symposium on Principles Of Programming Languages �St� Petersburg Beach� FL� USA�
Jan� ����� pp� ������� ACM Press�

Consel� C�� Pu� C�� and Walpole� J� ����� Incremental specialization� The key to high
performance� modularity and portability in operating systems� In Partial Evaluation and

Semantics�Based Program Manipulation �Copenhagen� Denmark� June ������ pp� �����
ACM Press� Invited paper�

Danvy� O�� Gl�uck� R�� and Thiemann� P� Eds� ���� Partial Evaluation� International

Seminar� Dagstuhl Castle� Number ���� in Lecture Notes in Computer Science �Feb� �����

Jones� N� ���� What not to do when writing an interpreter for specialisation� In O� Danvy�
R� Gl�uck� and P� Thiemann Eds�� Partial Evaluation� International Seminar� Dagstuhl
Castle� Number ���� in Lecture Notes in Computer Science �Feb� ����� pp� 	��	���

Knoblock� T� and Ruf� E� ���� Data specialization� In Proceedings of the ACM SIG�

PLAN ��� Conference on Programming Language Design and Implementation �May �����
pp� 	���		�� ACM SIGPLAN Notices� ������ Also TR MSR�TR������ Microsoft Research�
February ����

Marlet� R�� Thibault� S�� and Consel� C� ����� Mapping software architectures to e��
cient implementations via partial evaluation� In Conference on Automated Software Engi�

neering �Lake Tahoe� Nevada� Nov� ������ pp� ������	� IEEE Computer Society�

Muller� G�� Moura� B�� Bellard� F�� and Consel� C� ����� Harissa� A �exible and
e�cient Java environment mixing bytecode and compiled code� In Proceedings of the �rd

Conference on Object�Oriented Technologies and Systems �Portland �Oregon�� USA� June
������ pp� ��	�� Usenix�

Muller� G�� Volanschi� E�� and Marlet� R� ����� Scaling up partial evaluation for
optimizing the Sun commercial RPC protocol� In ACM SIGPLAN Symposium on Partial

Evaluation and Semantics�Based Program Manipulation �Amsterdam� The Netherlands�
June ������ pp� ����	�� ACM Press�

Reiss� S� P� ����� Connecting tools using message passing in the 
led environment� IEEE
Software �� � �July�� ����

Shaw� M� and Garlan� D� ���� Software Architecture� Prentice Hall�

Thibault� S� and Consel� C� ����� A framework of application generator design� In Pro�

ceedings of the Symposium on Software Reusability �May ������ pp� ��������

Thibault� S�� Marlet� R�� and Consel� C� ����� A domain�speci
c language for video de�
vice drivers� from design to implementation� In Conference on Domain Speci�c Languages

�Santa Barbara� CA� Oct� ������ pp� ���	� Usenix�

Volanschi� E�� Consel� C�� Muller� G�� and Cowan� C� ����� Declarative specialization
of object�oriented programs� In OOPSLA��� Conference Proceedings �Atlanta� USA� Oct�
������ pp� 	������ ACM Press�


