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Abstract

Choosing the accuracy of program analyses is a crucial issue when designing and de-
veloping a partial evaluator capable of treating realistic programs, and in particular legacy
software. In this paper, we investigate the degree of accuracy of alias and binding-time
analyses that is required to successfully exploit the specialization opportunities present in
the Sun commercial implementation of the Remote Procedure Call protocol (RPC).

The Sun RPC implementation consists of a stack of small parameterized layers. This
structure is representative of a certain programming style in operating system and net-
work development. The analysis features that we have explored have been implemented in
Tempo, a partial evaluator for C. After automatic specialization of the RPC using Tempo,
we measured speedups up to 1.5 for complete remote procedure calls (including network
transport) and up to 3.7 for local buffer encoding alone. This experiment suggests that par-
tial evaluation is reaching a high level of maturity.

Key words: Partial evaluation, program analysis, program transformation, remote
procedure call (RPC)

1 Introduction

Partial evaluation has seldom been applied to realistic programs, and in particu-
lar to legacy software. One reason is that most existing partial evaluator address
functional and logic programming languages whereas the software industry relies
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mainly on imperative and object-oriented programming. Another reason is that a
partial evaluator not only has to treat large programs that use most constructs of
the language, but it also has to be powerful enough to appropriately exploit the
specialization opportunities present in the code.

An offline partial evaluator is divided into an analysis phase and a specialization
phase. The transformations straightforwardly follow from the results of the anal-
ysis. The accuracy of the analysis phase is thus a crucial concern for both an end
user and the designer of a partial evaluator. Implementing a sound and efficient
analyzer is difficult, and later extending it to improve the precision may involve
major changes. Choosing the precision of the analyses is thus an issue that must be
addressed early in the development process of a partial evaluator. It does not mean
that analyses should be as precise as possible. Too precise analyses can be worth-
less or even impractical as the computation time generally increases much with the
accuracy.

The level of accuracy needed depends on the kind of programs that are targeted.
Taking this issue into account, a large part of the work in the Compose research
group concerning partial evaluation has been aimed at operating systems. Our re-
search has been driven by realistic examples such as the Sun implementation of the
Remote Procedure Call (RPC) protocol. This implementation is highly generic: it
consists of a stack of small parameterized layers, which is characteristic of a certain
programming style in operating system and network implementation. This software
architecture calls for specialization [19].

The design of Tempo, our partial evaluator for C, was strongly influenced by the
requirements of the Sun RPC case. It determined the subset of the C language to
treat as well as the major functionalities and precision of the analyses. In particular,
it motivated the improved binding-time analysis presented in [13] (included in this
issue). Subsequently, these features have proved sufficient to optimize the Chorus
IPC [37], software architectures [19], interpreters [34–36], computer graphics, and
scientific computations [17,23]. These applications required an analysis precision
equal or less than what was needed for the Sun RPC.

The main goal of this paper is to briefly present and assess the features that a partial
evaluatormust have to handle legacy system software such as the Sun RPC. We be-
lieve this information is fundamental for people that plan to develop a specializer,
as well as for software engineers who wish to determine whether a partial evalu-
ator matches their needs. Space constraints prevent us from providing a thorough
description of the examples that support our study; detailed reports on the Sun RPC
specialization experiment can be found elsewhere [20,22].

The paper is organized as follows. Section 2 provides an introduction to the RPC
and describes the architecture of Sun’s implementation, as well as specialization
opportunities and expectations. Section 3 lists the analysis features that are required
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to meet those expectations. Section 4 briefly presents Tempo which implements
most of these features. Section 5 gives benchmarks on the resulting specialization
of the Sun RPC, and Section 6 concludes.

2 The Sun RPC Standard Protocol

The RPC protocol was introduced as a basis for the implementation of distributed
services between heterogeneous machines. This protocol has become a standard
in distributed operating systems design and implementation. It is notably used for
implementing widespread distributed services such as NFS [32] and NIS [29]. The
RPC implementation used in this paper is the commercial, 1984 copyrighted ver-
sion of Sun.

Performance is a key point in RPC. A lot of research has been carried out on the
optimization of the layers of the protocol [3,15,24,30,33]. However, many of these
optimizations involve new protocols that are incompatible with an existing standard
such as the Sun RPC.

2.1 RPC Main Features

The RPC protocol makes a remote procedure look like a local one. A call to a
remote procedure is done transparently on the local machine, but the actual compu-
tation takes place on a distant machine. To that end, RPC supplies an interface be-
tween a client (on the local machine) and a server (on the remote machine) through
stub functions, that are automatically generated from the user-specified signature
of the procedure.

RPC performs two kinds of operations:

� It converts data between a local, machine-dependent representation and a net-
work, machine-independent representation. This machine-independent data rep-
resentation is standardized by the eXternal Data Representation (XDR) protocol.

� It manages the exchange of XDR-encoded messages through the network.

Our study focuses on the first point.

2.2 Specialization Opportunities

The Sun RPC is composed of a set of generic, modular micro-layers. Each layer
is devoted to a small task such as managing the transport protocol (e.g., TCP or
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UDP) or writing (or reading) data into the encoding buffers (memory or stream).
The micro-layers may have several implementations. However, most of the time,
given an application, the configuration never changes.

The layers and their configuration are the sources three main specialization oppor-
tunities: the signature of a remote procedure, communication configuration param-
eters, and explicit constants that are embedded in the Sun RPC routines.

� The user-defined signature of a remote procedure (i.e., the list of types for the
arguments and return value) determines statically the exact sequence of encoding
and decoding operations for the arguments and return value of an RPC.

� The configuration of the communication is performed at initialization time, when
the user chooses the transport protocol, e.g., TCP or UDP. This choice determines
the implementation of network and buffering operations.

� The Sun RPC code comprises various routines that are passed an explicit con-
stant parameter. In particular, an invariant field of a structure that is passed as an
argument to all the layers determines the coding direction. As an example, XDR
routines are generic; they can perform both encoding and decoding.

2.3 Specialization Expectations

By exploiting the specialization opportunities listed above, a partial evaluator should
be able to eliminate safely numerous computations that performs tests, checks, and
function calls:

� Conditions that determine if an XDR routine should either decode or encode.
Since the coding direction flag is invariant for a given transfer, the condition can
be evaluated away.

� I/O buffer overflow checking. Because the size of the buffers, as well as the num-
ber and types of the remote procedure arguments are known, it is possible to
safely evaluate away overflow checks.

� Tests of exit status at all layers. A failure here can only be the propagation of a
buffer overflow error. The knowledge of an overflow can be safely propagated
through all layers, leading to additional checks elimination.

� Indirect function calls. Since the configuration of the layer is fixed, indirect func-
tion calls between layers can be replaced by procedure calls.

� Useless function calls. Reducing code size by eliminating checks and removing
indirect function calls opens new inlining opportunities.

As a result, partial evaluation tightly merges the software layers and yields a spe-
cialized implementation that merely consists of elementary copies to or from the
I/O buffers.
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3 Accuracy of Analyses for Specializing the Sun RPC

The heart of offline partial evaluators lies in the binding-time analysis (BTA) [5,16].
The BTA partitions the program into static and dynamic computations. Static com-
putations are those that only involve values that are known at specialization time.
Dynamic computations are those that may depend on values that will not be known
until run time. Given actual input values, the specialization transformation phase
then evaluates static computations, and leaves dynamic constructs unaffected (i.e.,
residualized). The most trivial BTA simply annotates everything as dynamic. A
more precise analysis can identify more static computations, which can be per-
formed at specialization time.

A BTA is a data-flow analysis. In the case of a language with pointers like C, it has
to take aliases into account. An alias analysis must thus precede the BTA. (Doing
both analyses simultaneously does not improve the overall results, as the alias anal-
ysis has no use for binding-time information.) The precision of the alias analysis
affects the precision of the binding-time information, and thus the degree of spe-
cialization: superfluous aliases to memory locations that are found dynamic force
a dereference to be dynamic as well. In the following, we consider the precision of
both the binding-time and the alias analyses.

3.1 Intra-Procedural vs Inter-Procedural Analyses

An intra-procedural analysis of a function has no information about the arguments
(actual parameters as well as global variables) and thus has to make conservative
assumptions. On the contrary, an inter-procedural analysis exploits information de-
pending on the calling contexts.

In the Sun RPC, all the parameters related to communication are stored in a struc-
ture that is passed to each of the small layered functions. The BTA must thus
be inter-procedural. The alias analysis must also be inter-procedural. Otherwise
(conservatively) pointer-typed arguments can point to any location; in practice this
makes their dereference systematically dynamic.

3.2 Data Structure Granularity

The granularity of data structure properties determines whether the analysis assigns
a single, global property to an entire C structure, or a separate property to each field
of the structure (i.e., structure polyvariance). An intermediate alternative is to keep
separate field properties, but to merge the properties of all instances of a given
structure type (i.e., structure monovariance).
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In the Sun RPC, the current coding state is stored in a structure that contains known
configuration parameters (some of which are pointers) as well as pointer fields to
dynamic buffers. To exploit such a partially static data structure, both the alias and
the binding-time analyses must at least be structure-monovariant.

The problem with structure monovariance is that as soon as a static field becomes
dynamic, it cannot later become static again. This is because setting the field of
a structure instance to static does not imply that this field is static in all other in-
stances. This case occurs in the Sun RPC code for the coding direction flag because
the emission and reception of data are embedded in a retry loop to handle possi-
ble network errors. Structure polyvariance solves this problem. However, in system
code in general, different instances of the same structure type tend to be used uni-
formly. Structure polyvariance is thus generally not needed.

3.3 Context Sensitivity

A context-sensitive analysis of a function determines computation properties that
can depend on the local properties at each call site, as opposed to being identical for
each call site (i.e., merging all possible properties). In the context of binding-time
properties, this feature is also called binding-time polyvariance: several instances
of a function with different binding times for the arguments (and the accessed store)
may coexist.

Context sensitivity is useful for the integer encoding function. This function is usu-
ally called with dynamic data representing the Sun RPC arguments. Still, a static
integer is encoded in each client emission: the encoding of the procedure identifier.
Differentiating between the two call contexts preserves a specialization opportu-
nity.

3.4 Flow Sensitivity

A flow-sensitive analysis determines computation properties that can depend on
program points, as opposed to being constant for a whole function where all possi-
ble properties are merged. (This is an issue only for languages with side-effects.)

Possible run-time errors may occur in the decoding of input buffer when receiving
a message. Testing for this error introduces dynamic conditions after which static
information is lost. However, each branch of the corresponding conditionals can
still exploit the static information. To this end, the binding time must not be a
global property; it must depend on program point.
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3.5 Use Sensitivity

Many of the data structures used within the Sun RPC layers are partially static.
Typically, these structures are passed to a function by means of a pointer. If this
pointer is static, one would expect to statically access the static fields of the struc-
ture, and to dynamically access the dynamic fields. However, in a traditional BTA,
a computation can only be either static or dynamic. Thus, the statement that initial-
izes the structure pointer must be considered dynamic. If the pointer is dynamic,
then all uses of it are considered dynamic as well, thus destroying the interest of
partially-static structures.

Motivated by several similar cases, the BTA of Tempo has been enhanced to be
use-sensitive: it allows a computation to be considered both static and dynamic
when used in static and dynamic contexts [14]. Such a computation is evaluated
and exploited at specialization time, but is also present in the residualized program.

3.6 Return Sensitivity

Most of the functions in the XDR layers return a literal boolean value (expressing
success or failure) selected under a static condition. However, these functions con-
tain dynamic side-effects. Consequently, all the calls must be residualized. In this
case, a traditional BTA considers that the return value is dynamic, thus inhibiting
specialization of all the callers.

A return-sensitive BTA was designed to allow a residualized function to return
a static value that can be exploited by the callers [12]. Exploiting such an anal-
ysis requires a new specialization transformation. Alternatively, the program can
be rewritten just before specialization so as to return static results through global
variables. The rewritten functions become void functions, and are called in the
residual program for their dynamic side effects. Returned static values and assign-
ments to the global variables are fully exploited and consumed at specialization
time.

4 Implementation in Tempo

Our group has developed an offline partial evaluator for C, named Tempo [6,8],
that implements the above features. Tempo supports traditional compile-time spe-
cialization as well as run-time specialization [9,23], data specialization [2], and
incremental specialization [18]. It is publicly available � .

� Tempo home page: http://www.irisa.fr/compose/tempo
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Tempo’s alias analysis is inter-procedural, structure-monovariant, flow-sensitive
and context-insensitive. Tempo’s BTA is inter-procedural, structure-monovariant,
and sensitive to flow, context, use [14] and return [12]. In addition to these fea-
tures, two manual transformations were necessary to successfully specialize the
Sun RPC. Because Tempo is only structure-monovariant, we had to specialize sep-
arately the emission and the reception of network data, rather than specializing
the function that sequences both operations (cf. Section 3.2). Another very sim-
ple transformation (known in the partial evaluation community as “the trick”) was
needed to expose a specialization opportunity: the length of received data has a
static expected value; however, the actual value read from the network is dynamic
because the transmission can fail. Still this value can be exploited by making it
explicit (cf. [22, Section 3.4]).

Other existing partial evaluators for C implement different accuracy choices. C-
Mix is a compile-time specializer [1]. Its BTA is not sensitive to flow, context,
use, nor return; it handles partially static data structures only intra-procedurally,
via structure splitting. DyC is a run-time specializer [10,11]. It does not include
an alias analysis; aliases are handled through user annotations. The BTA is flow-
sensitive but also relies on manual annotations for partially static structures, use
sensitivity and inter-procedural features such as context sensitivity. Therefore, only
Tempo is able to treat the Sun RPC case.

The combination of the features present in Tempo has proved to be generally suffi-
cient for the kinds of system programs we have studied so far. However, Tempo is
now also used as a back-end specializer for Java [31] using Harissa [21], a JavaVM-
to-C converter. In an object-oriented language like Java, different object instances
of the same class (which Harissa translates into a C structure) tend to be used differ-
ently, which results in different binding times. This calls for structure-polyvariance,
both for aliases and binding times. These new analysis features are currently being
implemented.

5 Benchmarks

Because it implements the feature requirements listed in Section 3, Tempo is able
to exploit the specialization opportunities mentioned in Section 2.3. To assess this
specialization, we have run tests that emulate the behavior of scientific parallel pro-
grams exchanging large chunks of data. The test program loops on a remote proce-
dure call that sends and receives an array of integers. We have made two different
kinds of measurements, comparing the specialized code to the original one, for dif-
ferent array sizes: (i) a micro-benchmark of the encoding process in the client, and
(ii) a full round-trip remote procedure call that includes network transport. In or-
der to take into account architecture-dependent aspects such as cache, memory and
network, measurements have been done on two different kinds of platforms: Suns
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Fig. 1. Sun RPC performance improvement

4/50 connected with a 100 Mbits ATM link, and PCs Pentium 100 MHz connected
with a 100 Mbits Ethernet network.

On the encoding layer, the specialized code is up to 3.7 times faster than the un-
specialized code for the Sun platform. The speedup is up to 3.5 for the PC platform
(see Figure 1). On the round-trip RPC, we have a speedup of up to 1.5 for the Suns,
and 1.3 for the PCs. Further details on this experiment can be found in [20,22].

6 Conclusion

After carefully studying crucial features of the BTA and implementing them in
Tempo, the Sun RPC has been successfully specialized and significant speedups
have been obtained. This shows that applications of partial evaluation to industrial-
strength programs can now be considered, and yield non-trivial results. In particu-
lar, we can now contemplate automating previous manual experiments in special-
ization of operating systems code [27,28].

This experiment illustrates the fact that partial evaluation is an appropriate and ef-
fective tool to suppress fine-grain modularity overhead. It should encourage engi-
neers to write software components and applications that are generic, letting partial
evaluation take care of performance issues. Adaptability should be considered more
important than immediate efficiency [7,4].
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