
PLILP/ALP ’98 - 1 -

Architecturing Software
Using a Methodology

for Language Development
Charles Consel
Compose Group

IRISA / University of Rennes 1 - INRIA
October 1998

-RLQW�ZRUN�ZLWK�5HQDXG�0DUOHW

PLILP/ALP ’98 - 2 -

Program Family

◆ Before developing a program:
– Isolated problem?

– Member of a program family?

◆ Program family:
– A set of programs VKDULQJ enough characteristics

to be studied / developed as a whole.

PLILP/ALP ’98 - 3 -

Program Family Examples

◆ Program analyzers.
– Commonalities: equation solver.
– Variations: languages, properties...

◆ Device drivers.
– Commonalities: API, bit operations...
– Variations: clock, parameters/registers…

◆ Graphic applications/libraries.
– Commonalities: basic graphic objects.
– Variations: layout, behavior...

PLILP/ALP ’98 - 4 -

Hypothesis:
Program Family Development

◆ Given a recognized program family.

◆ How to develop it?

◆ Current approaches?

PLILP/ALP ’98 - 5 -

Program Family Development:
Libraries

(of functions, objects, components, program patterns...)

◆ Use depends on the programmer.
– No systematic re-use.

– May require expertise.

– Usability problems for large libraries.

◆ Properties local to components, not global to
the application.
– Unpredictable global behavior

 (performance, safety…)

PLILP/ALP ’98 - 6 -

Program Family Development:
Genericity

Generic libraries / Generic applications:

◆ High parameterization.
– Poor performance.

– Difficult to use.

◆ Fast, hand-written specific components.
– Difficult to maintain.

– Does not scale up.

PLILP/ALP ’98 - 7 -

Program Family Development:
Generators

Library generators / Application generators:

◆ Combination of building blocks.

◆ Few or no general-purpose techniques.

◆ Few or no general-purpose tools.

PLILP/ALP ’98 - 8 -

Program Family Development:
General-Purpose Languages

◆ General-purpose abstractions.
– “Too” expressive.

◆ Limited static verifications.
– Unpredictable.

– Undecidable.

◆ Need for dynamic checking.
– Run-time tests.

– Dynamic analyses.

PLILP/ALP ’98 - 9 -

Program Family Development:
Domain-Specific Languages

◆ DSL = language with
– Abstractions (data and control)
– Notations

specific to a domain.

◆ Often:
– Small.
– Less expressive than a GPL.
– More declarative than imperative.

PLILP/ALP ’98 - 10 -

Various Facets of a DSL

◆ A programming/specification language.

◆ A dedicated interface to a library/application.

◆ A structured parameterization mechanism.

◆ A way to designate a program family
member.

PLILP/ALP ’98 - 11 -

DSL: Advantages

◆ Productivity.
– Easier programming.

– Systematic re-use.

◆ Verification.
– Easier analyses.

◆ Performance.
– Similar to GPL.

PLILP/ALP ’98 - 12 -

DSL Examples (1)
In Academia and Industry

◆ Not a toy concept.
– Graphics.

– Financial products.

– Telephone switching systems.

– Protocols.

– Robotics.

– ...

PLILP/ALP ’98 - 13 -

DSL Example (2)
GAL

Specification language for video device drivers.

◆ Productivity (compared to hand-coded C).
– High level.

– Close to hardware specification.

– Specification 9 times smaller.

◆ Verifications.
– No loop.

– No bit overlap in register specification.

PLILP/ALP ’98 - 14 -

DSL Example (3)
PLAN-P

Application protocols for programmable
networks (extension of PLAN / UPenn).

◆ Productivity (compared to C).
– High level.
– Specification 3 times smaller.

◆ Verifications (safety and security).
– Restricted semantics.
– Global termination.
– No packet loss or exponential duplication.

PLILP/ALP ’98 - 15 -

DSL: Easier Programming

◆ Domain-specific abstractions and notations.
– Conciseness.

– Readability.

◆ Declarative (often).
– What to compute, not how to compute it.

➨ Software engineering benefits.
– Shorter development time.

– Easier maintenance.

PLILP/ALP ’98 - 16 -

DSL: Systematic Re-Use

◆ Building blocks = libraries.

◆ Abstractions = common program patterns.

◆ Syntax = interface = glue.

➨ Software engineering benefits.
– Expertise re-use (abstractions + notations).

– Code re-use (building blocks).

➨ Systematic re-use.

PLILP/ALP ’98 - 17 -

DSL: Verification

◆ Restricted semantics.
– Designed to make critical properties decidable.

– Analyzability.

➨ Software engineering benefits.
– Safety.

– Predictability.

PLILP/ALP ’98 - 18 -

Why should you care about DSL?

PLILP/ALP ’98 - 19 -

Developing DSLs:
Our Potential Contribution

◆ Who should develop DSLs?
– Few people have actually designed a language.

◆ How to develop a DSL?
– Guidelines for design.

– Support for implementation.

➨ Programming language community.
– Design expertise.

– Methodology and tools.

PLILP/ALP ’98 - 20 -

The 6SULQW Methodology:
Basic Ingredients

◆ Denotational semantics
– Key concepts of language design and semantics.

– Techniques to derive implementations.

➨/LPLWDWLRQV�DOOHYLDWHG�E\�WKH�QDWXUH�RI�'6/V�

◆ Software architectures
– Domain expertise (design).

– Building blocks (algebras).

– Program patterns (constructs).

PLILP/ALP ’98 - 21 -

Sprint: An Overview

• Domain knowledge

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

PLILP/ALP ’98 - 22 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Language requirements
• Objects and operations
• Elements of design

PLILP/ALP ’98 - 23 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Syntax
• Semantics algebras (signatures)
• Informal semantics

PLILP/ALP ’98 - 24 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Separation compile-time/run-time
– actions
– verifications

PLILP/ALP ’98 - 25 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Definition of valuation functions

PLILP/ALP ’98 - 26 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Dedicated abstract machine
based on the dynamic
semantic algebras

PLILP/ALP ’98 - 27 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• Implementation of
- abstract machine: library
- valuat. functions: interpreter

PLILP/ALP ’98 - 28 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• From interpreted to compiled code

PLILP/ALP ’98 - 29 -

Sprint: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Program family

DSL compiler

• DSL compiler
– flexible
– efficient

PLILP/ALP ’98 - 30 -

Working Example:
E-Mail Processing (1)

◆ Automatic treatment of incoming messages:
– Dispatch mail to people or folders.

– Filter out spam.

– Automatic reply when absent.

– Shell escape for specific treatments.

◆ Safety properties:
– e.g., no loss of messages.

PLILP/ALP ’98 - 31 -

Working Example:
E-Mail Processing (2)

◆ Program family:
– Analysis of e-mail and decision making.

◆ Domain knowledge.

◆ Re-use opportunities.

◆ GPL ⇒ no safety properties.

➨ Development of a DSL
◆ Inspired by mh/slocal, Unix mail delivery tool.

PLILP/ALP ’98 - 32 -

Language Analysis (1)

▲ Based on domain knowledge:
– Technical literature and domain experts.

– Existing programs.

– Common patterns and variations.

– Current and future requirements.

▲ Conducted using methodologies such as:
– Domain analysis.

– Commonality analysis.

Interface definition

Program family

PLILP/ALP ’98 - 33 -

Language Analysis (2)

◆ Language requirements.
– Functionalities.

◆ $FWLRQV��FRS\��PRYH��GHOHWH��IRUZDUG��UHSO\�WR�D�PHVVDJH�

◆ &RQGLWLRQV��PDWFK�PHVVDJH�ILHOGV�DJDLQVW�VWULQJ�SDWWHUQV�

– Language constraints (safety, security...).
◆ 1R�ORVV�RU�GXSOLFDWLRQ�RI�PHVVDJHV�

◆ 1R�ORRS�ZKHQ�UXQQLQJ�RU�IRUZDUGLQJ�PHVVDJHV�

– Implementation constraints (resource bounds...).

Interface definition

Program family

PLILP/ALP ’98 - 34 -

Language Analysis (3)

◆ Objects and operations (building blocks).
◆ 0HVVDJHV��H[WUDFW�KHDGHU�ILHOGV��FUHDWH�PHVVDJHV���

◆)ROGHUV��DGG�D�PHVVDJH�WR�D�IROGHU

◆ +LHUDUFK\�RI�IROGHUV���DVVRFLDWH�D�ILOH�WR�D�IROGHU�SDWK

◆)LOHV�RI�IROGHUV��UHDG��ZULWH

◆ 6WUHDPV��LQERXQG�RXWERXQG�PHVVDJHV��SLSH�WR�VKHOO

Interface definition

Program family

PLILP/ALP ’98 - 35 -

Language Analysis (4)

◆ Elements of design.
– Language paradigm and level.

◆ +\SRWKHVLV��VKHOO�SURJUDPPHUV�⇒�LPSHUDWLYH�OLNH�VKHOO

– Terminology and notations.
◆ 6KHOO�QRWDWLRQV�IRU�UHJXODU�H[SUHVVLRQV

Interface definition

Program family

PLILP/ALP ’98 - 36 -

Interface Definitions (1)

▲ Based on a denotational framework.

◆ Semantic algebras (signatures).
◆ 'RPDLQ��0HVVDJH

◆ 2SHUDWLRQV�

– QHZ�PVJ���0HVVDJH

– JHW�ILHOG���)LHOG1DPH�→�0HVVDJH�→�6WULQJ

– ���

◆ 'RPDLQV��,Q6WUHDP��2XW6WUHDP

◆ 2SHUDWLRQV�

– QH[W�PVJ���,Q6WUHDP�→��0HVVDJH�×�,Q6WUHDP�

– VHQG�PVJ���0HVVDJH�→�2XW6WUHDP�→�2XW6WUHDP

Language analysis

Staged semantics

PLILP/ALP ’98 - 37 -

Interface Definitions (2)

% = match 6ILHOG�6SDWWHUQ
 | not %
 | %� and %�
 | %� or %�

& = &� ; &�
 | if % then &� else &�
 | skip
 | delete
 | copy)
 | forward 6WR
 | reply 6ERG\
 | pipe 6FPG

◆ Abstract syntax (kernel). %�∈�%RRO([SU
&�∈�&RPPDQG
)�∈�)ROGHU3DWK
6�∈�6WULQJ

move) ≡ copy)�; delete
if % then &�≡ if % then &�else skip

◆ Concrete syntax (graphic interface…).

Language analysis

Staged semantics

PLILP/ALP ’98 - 38 -

Interface Definitions (3)

if match “Subject” “DSL” then
 forward “jake”;
 move Research.Lang.DSL
else
if match “From” “hotmail.com” then
 reply “Leave me alone!”;
 delete
else
if match “Subject” “seminar” then
 pipe “agenda --stdin”;
 delete

◆ Example:

Language analysis

Staged semantics

PLILP/ALP ’98 - 39 -

Staged Semantics (1)

▲ Separate static and dynamic semantics.

6WDWLF

Actions performed by
the compiler

Determine member of
program family

Configure generic
software

*3/

&RQFHSW

,PSOHPHQWDWLRQ

'\QDPLF

Computations depending
on input data

Produce answer for a
family member

Execute customized
software

➨ Reason about genericity: predict/control customisation.

Interface definitions

Formal definition

PLILP/ALP ’98 - 40 -

Staged Semantics (2)

◆ Initial staging constraints
◆ 6WDWLF��'6/�SURJUDP��IROGHU�KLHUDUFK\��XVHU¶V�QDPH

◆ '\QDPLF��LQERXQG�PHVVDJHV

◆ Staging of the semantic algebras
◆ 6WDWLF��RSHUDWLRQV�RQ�IROGHU�KLHUDUFK\

◆ '\QDPLF��VWUHDPV�DQG�RSHUDWLRQV�RQ�VWUHDPV

◆ Staging of the language constraints
◆ 6WDWLF��QR�ORRS��V\QWDFWLF���QR�ORVW�RU�GXSOLFDWHG�PHVVDJH

◆ '\QDPLF��QR�HQGOHVV�IRUZDUGLQJ

Formal definition

Interface definitions

PLILP/ALP ’98 - 41 -

Formal Definition (1)

◆ Determine semantic arguments.
◆)ROGHU�KLHUDUFK\��PHVVDJH�EHLQJ�WUHDWHG��VWUHDPV���

◆ Stage the semantic arguments.
◆ 6WDWLF��IROGHU�KLHUDUFK\��XVHU¶V�QDPH

◆ '\QDPLF��PHVVDJH��IROGHU�ILOHV��VWUHDPV��FXUUHQW�GDWH

◆ Stage control.
– Possibly introduce dynamic control combinators

◆ FRQG��IRU�G\QDPLF�FRQGLWLRQDOV

Staged semantics

Abstract machine

PLILP/ALP ’98 - 42 -

Formal Definition (2)

◆ Valuation functions.

&���&RPPDQG�→�6WDWLF6WDWH�→�'\QDPLF6WDWH�→�'\QDPLF6WDWH

& [[copy)]] ρ σ =
let ν = JHW�ILOHQDPH () [[)]]) ρfolder-hierarchy

 ϕ = DGG�PVJ��(VHW�ILHOG “Delivery-Date” σdate σmessage)
 (UHDG�IROGHU ν σfolder-files)

in [folder-files a ZULWH�IROGHU��ν ϕ σfolder-files] σ

% ��%RRO([SU�→�'\QDPLF6WDWH�→�'\QDPLF6WDWH

% [[match 6��6�]] σ = PDWFK� (JHW�ILHOG (6 [[6�]]) σmessage) (6 [[6�]])

Staged semantics

Abstract machine

PLILP/ALP ’98 - 43 -

Abstract Machine (1)

▲ A model of dynamic computations.

▲ Key to derive realistic implementation.

▲ Possibly shared between several DSLs.

Formal definition

Implementation

PLILP/ALP ’98 - 44 -

Abstract Machine (2)

◆ Single-threadedness:
– Globalization of dynamic semantic arguments

◆ *OREDOL]H�PHVVDJH�EHLQJ�WUHDWHG��IROGHU�ILOHV��VWUHDPV���

◆ Abstract machine entities (registers…)
◆ 'HGLFDWHG�UHJLVWHU�IRU�PHVVDJH�EHLQJ�FRPSRVHG

��RQO\�RQH�DW�D�WLPH�

Formal definition

Implementation

PLILP/ALP ’98 - 45 -

Abstract Machine (3)

◆ Semantic definitions.

&���&RPPDQG�→�6WDWLF6WDWH�→�$EV0DFK6WDWH�→�$EV0DFK6WDWH

& [[copy)]] ρ σ =
let ν = get-filename () [[)]]) ρfolder-hierarchy

in ((write-folder��ν) o
 (add-msg) o
 (set-fieldL��“Delivery-Date” σdate) o
 (read-folder��ν)) σ

Formal definition

Implementation

PLILP/ALP ’98 - 46 -

Implementation (1)

Valuation functions

◆ Direct: interpretation.
– Close to denotational definition.

– Easy, flexible, slow.

– Rapid prototyping.

– Semantics-preserving extensions.

◆ Indirect: compilation.
– Native code: expensive.

– Abstract machine code: still expensive.

Abstract machine

Partial evaluation

PLILP/ALP ’98 - 47 -

Implementation (2)

Abstract machine

◆ Little overhead:
– Each instruction = coarse-grain operation.

– Efficient compiler = efficient instruction.

◆ API: several implementations
◆)ROGHU�DV�VLQJOH�ILOH��1HWVFDSH��HPDFV�

◆)ROGHU�DV�GLUHFWRU\��RQH�ILOH�SHU�PDLO��H[PK�

Abstract machine

Partial evaluation

PLILP/ALP ’98 - 48 -

Partial Evaluation (1)

Interpretation
Layer

,QWHUSUHWHU
DSL

Program
OutputAbstract

Machine
Input

DSL
Program

Program
Specializer

Abstract Machine
Program

Program
Specializer

Compiled
DSL ProgramInput Output

Abstract machine

Partial evaluation

PLILP/ALP ’98 - 49 -

Partial Evaluation (2)

cond (match (get-fieldL “Subject”) “DSL”)
 (new-msg;
 set-field F “Date” (date)
 set-field F “To” “jake”;
 set-field F “From” “bob”;
 set-body F (msg-to-string L);
 set-field F “Subject”
 (concat “Fwd: ” (get-field L “Subject”));
 set-field F “Resent-by”
 (concat “bob” (get-field L “Resent-by”));
 send-msg;
 ...

if match “Subject” “DSL” then
 forward “jake”;
 ...

Implementation

DSL compiler

PLILP/ALP ’98 - 50 -

Partial Evaluation (3)

▲ Experiments with Tempo, a specializer for C.

◆ GAL performance:
– As fast as existing hand-coded C drivers.

◆ PLAN-P performance (UXQWLPH�VSHFLDOL]DWLRQ):
– PLAN-P -,7 twice as fast as a Java -,7.

– 100% of the throughput of hand-written C bridge.

– 100% of the bandwidth.

Implementation

DSL compiler

PLILP/ALP ’98 - 51 -

Sprint: Assessment

◆ Based on well-studied ingredients.

◆ Careful structuring.
– Design / definition / implementation.

– Analyzability: source / abstract-machine level.

◆ Development cost.
– Interpreter YV compiler.

– Off-line or -,7.

◆ Maintenance.
– Flexible, extensible.

PLILP/ALP ’98 - 52 -

Conclusion:
A Revival

◆ DSL ≠ GPL: many things become possible.

◆ Dig up your old theories.
– Paradigm.

– (Denotational) semantics.

– Implementation.

– Verification.

◆ The programming language community can
(must) play an important role.

PLILP/ALP ’98 - 53 -

More information

Prototypes
– DSLs: GAL, PLAN-P

– Specializer: Tempo

are
– described (papers),

– available (distribution).

at
 KWWS���ZZZ�LULVD�IU�FRPSRVH

PLILP/ALP ’98 - 54 -

Ce qui suit est du trash.

PLILP/ALP ’98 - 55 -

Partial Evaluation (1)

Interpretation
Layer

,QWHUSUHWHU

OutputAbstract
Machine

Input

DSL
Program

Program
Specializer

Abstract Machine
Program

Program
Specializer

Compiled
DSL Program

Implementation

DSL compiler

ANIMATION
A REFAIRE

PLILP/ALP ’98 - 56 -

Trash

& [[if % then &� else &�]] ρ = FRQG��(% [[%]]) (&�[[&�]] ρ) (& [[&�]] ρ)�

& [[pipe 6]] ρ σ = [cmd-stream a SLSH�PVJ σmessage (6 [[6]]) σcmd-stream] σ

PLILP/ALP ’98 - 57 -

DSL Example (1)
make

A utility to maintain programs.

◆ Small, mainly declarative.
– Expressive power: dependency updates.

– Actions delegated to a shell.

◆ Domain abstractions:
– File suffixes, implicit compilation rules.

◆ Verifications:
– No cycles in dependencies.

PLILP/ALP ’98 - 58 -

DSL Example (2)
Shell

A command programming language.

◆ Domain abstractions:
– stdin/stdout/stderr.

– Command line facilities.

◆ Expressive power:
– Run/control processes.

– Some string manipulations.

◆ Interface to standard system libraries.

PLILP/ALP ’98 - 59 -

Current Approaches to Deal with
Program Family (2)

◆ Patterns of programs: often unexploited
– Readability

» **???**

– Redundancy
» Development.

» Maintenance.

PLILP/ALP ’98 - 60 -

Adaptation Process

Interpreter

3URJUDPPDEOH�6\VWHP
DSL

Program
OutputAbstract

Machine
Input

DSL
Program

Program
Specializer

Abstract Machine
Program

Program
Specializer

Compiled
DSL ProgramInput Output

PLILP/ALP ’98 - 61 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family • Domain knowledge:
• Technical literature.
• Existing programs.
• Current and future requirements.
• ...

• Commonalities and variations
• Output:

• Description of objects and operations.
• Language requirements.
• Elements of design.

• Definition of the syntax of the DSL.
• Informal semantics relating

• Syntactic constructs, and
• The objects and operations.

• Signature for semantic algebras.
• Splitting compile-time and run-time actions.
• Making explicit stages of configuration.

• Definition of valuation functions.

• Dedicated abstract machine based on dynamic
 semantic algebras.

• Abstract machine implementation(s): library.
• Valuation function implementation: interpreter.

• From interpreted to compiled code.
DSL compiler

PLILP/ALP ’98 - 62 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

,QSXW� Domain Knowledge.
• Technical literature.
• Existing programs.
• Current and future requirements.
• Common patterns and variations.

2XWSXW�
• Description of objects and operations
• Language requirements.
• Elements of design.

PLILP/ALP ’98 - 63 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

Domain knowledge:
– Technical literature.
– Existing programs.
– Current and future requirements.
– Common patterns and variations.

PLILP/ALP ’98 - 64 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Description of objects and operations
• Language requirements.
• Elements of design.

PLILP/ALP ’98 - 65 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Definition of the syntax of the DSL
• Informal semantics relating

– syntactic constructs
– the objects and operations

• Signature of semantics algebras

PLILP/ALP ’98 - 66 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Division of compile-time and run-time actions
• Staging of the language constraints

PLILP/ALP ’98 - 67 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Definition of valuation functions

PLILP/ALP ’98 - 68 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Dedicated abstract machine based
on dynamic semantic algebras

PLILP/ALP ’98 - 69 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• Abstract machine implementation(s): library
• Valuation function implementation: interpreter

PLILP/ALP ’98 - 70 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• From interpreted to compiled code

PLILP/ALP ’98 - 71 -

Our Methodology: An Overview

Language analysis

Interface definition

Staged semantics

Formal definition

Abstract machine

Implementation

Partial evaluation

Problem family

DSL compiler

• DSL programming environment:
– efficient
– flexible

