Architecturing Software

Using a M ethodol ogy
for Language Development
Charles Consel
Compose Group
IRISA / University of Rennes 1 - INRIA
October 1998

Joint work with Renaud Marlet

"= IRISA PLILP/ALP 98 -1 -

Program Family

1 Before developing a program:
— |Isolated problem?
— Member of a program family?
1 Program family:

— A set of programsharing enough characteristics
to be studied / developed as a whole.

" IRISA PLILP/ALP 98 -2 -

Program Family Examples

1 Program analyzers.

— Commonalities: equation solver.
— Variations: languages, properties...

1 Device drivers.

— Commonalities: API, bit operations...
— Variations: clock, parameters/registers...

1 Graphic applications/libraries.

— Commonalities: basic graphic objects.
— Variations: layout, behavior...

. IRISA PLILP/ALP '98 -3 -

Hypothesis:
Program Family Development

11 Glven arecognized program family.
1 How to develop 1t?

1 Current approaches?

" I RISA PLILP/ALP '98 -4 -

Program Family Devel opment:
Libraries

(of functions, objects, components, program patterns...)

1 Use depends on the programmer.
— No systematic re-use.
— May require expertise.
— Usabillity problems for large libraries.

1 Properties local to components, not global to
the application.

— Unpredictable global behavior
(performance, safety...)

" IRISA PLILP/ALP 98 -5 -

Program Family Devel opment:
Genericity

Generic libraries / Generic applications:

1 High parameterization.
— Poor performance.
— Difficult to use.

1 Fast, hand-written specific components.
— Difficult to maintain.
— Does not scale up.

" IRISA PLILP/ALP '98 -6 -

Program Family Devel opment:
Generators

Library generators/ Application generators.
11 Combination of building blocks.

1 Few or no general-purpose techniques.

1 Few or no general-purpose tools.

"= IRISA PLILP/ALP '98 -7 -

Program Family Devel opment:
General-Purpose Languages

1 General-purpose abstractions.
— “To0” expressive.

1 Limited static verifications.

— Unpredictable.
— Undecidable.

1 Need for dynamic checking.
— Run-time tests.
— Dynamic analyses.

" IRISA PLILP/ALP 98 -8 -

Program Family Devel opment:
Domain-Specific Languages

1 DSL = language with
— Abstractions (data and control)
— Notations

specific to adomain.

1 Often:

— Small.
— Less expressive than a GPL.
— More declarative than imperative.

> IRISA PLILP/ALP 98 -9 -

Various Facets of aDSL

11 A programming/specification language.
1 A dedicated interface to alibrary/application.
1 A structured parameterization mechanism.

11 A way to designate a program family
member.

" IRISA PLILP/ALP 98 - 10 -

DSL: Advantages

1 Productivity.
— Easier programming.
— Systematic re-use.
0 Verification.
— Easier analyses.
1 Performance.
— Similar to GPL.

" I RISA PLILP/ALP 98 - 11 -

DSL Examples (1)
In Academia and Industry

0 Not atoy concepit.
— Graphics.
— Financial products.
— Telephone switching systems.
— Protocols.
— Robotics.

" IRISA PLILP/ALP '98 - 12 -

DSL Example (2)
GAL

Specification language for video device drivers.

1 Productivity (compared to hand-coded C).
— High level.
— Close to hardware specification.
— Specification 9 times smaller.
0 Verifications.
— No loop.
— No bit overlap in register specification.

" IRISA PLILP/ALP '98 - 13-

DSL Example (3)
PLAN-P

Application protocols for programmabl e
networks (extension of PLAN / UPenn).

1 Productivity (compared to C).
— High level.
— Specification 3 times smaller.
1 Verifications (safety and security).
— Restricted semantics.
— Global termination.
— No packet loss or exponential duplication.

" I RISA PLILP/ALP '98 - 14 -

DSL: Easier Programming

11 Domain-specific abstractions and notations.
— Conciseness.
— Readabillity.

1 Declarative (often).
— What to compute, not how to compute It.

1 Software engineering benefits.
— Shorter development time.
— Easier maintenance.

" IRISA PLILP/ALP '98 - 15 -

DSL: Systematic Re-Use

0 Building blocks = libraries.
1 Abstractions = common program patterns.
1 Syntax = interface = glue.
1 Software engineering benefits.
— EXxpertise re-use (abstractions + notations).

— Code re-use (building blocks).
0 Systematic re-use.

"= IRISA PLILP/ALP '98 - 16 -

DSL: Verification

1 Restricted semantics.
— Designed to make critical properties decidable.
— Analyzability.
1 Software engineering benefits.
— Safety.
— Predictabllity.

> IRISA PLILP/ALP '98 - 17 -

Why should you care about DSL ?

IRISA PLILP/ALP 98 - 18-

Developing DSLs:
Our Potential Contribution

11 Who should develop DSLS?
— Few people have actually designed a language.

1 How to develop aDSL?
— Guidelines for design.
— Support for implementation.
1 Programming language community.
— Design expertise.
— Methodology and tools.

" IRISA PLILP/ALP '98 - 19 -

The Sprint M ethodology:
Basic Ingredients

1 Denotational semantics
— Key concepts of language design and semantics.
— Techniques to derive implementations.
0 Limitations alleviated by the nature of DSLs.

1 Software architectures
— Domain expertise (design).
— Building blocks (algebras).
— Program patterns (constructs).

" IRISA PLILP/ALP '98 - 20 -

Sprint: An Overview

< Program family —<—

L anguage analysis

| nterface definition

Staged semantics

Formal definition

Abstract machine

 Domain knowledge

| mplementation

Partial evaluation

|
> IRISA

PLILP/ALP 98

- -

Sprint: An Overview

< Program family >
!
| Language analysis _ |—

| nterface definition

Staged semantics

e Language requirements

Formal definition —>| » Objects and operations
» Elements of design

Abstract machine

| mplementation

Partial evaluation

" IRISA PLILP/ALP '98

22

Sprint: An Overview

< Program family >
v

L anguage analysis

| Interface definition |

Staged semantics

e Syntax
Formal definition —| « Semantics algebras (signatures
e Informal semantics

Abstract machine

| mplementation

Partial evaluation

_DSL compiler >

" IRISA PLILP/ALP '98 - 23 -

Sprint: An Overview
@ran; family

L anguage analysis

| nterface definition

]

Staged semantics

Formal definition

L

Abstract machine

» Separation compile-time/run-timg

— actions
— verifications

| mplementation

Partial evaluation

|
> IRISA

PLILP/ALP 98

- 24 -

Sprint: An Overview
@ran; family

L anguage analysis

| nterface definition

v

Staged semantics

]

Formal definition

—

Abstract machine

| mplementation

Partial evaluation

|
> IRISA

e Definition of valuation functions

PLILP/ALP 98

- 25 -

Sprint: An Overview
@ran; family

L anguage analysis

| nterface definition

v

Staged semantics

v

Formal definition

]

Abstract machine

ag

» Dedicated abstract machine

based on the dynamic
semantic algebras

| mplementation

Partial evaluation

|
> IRISA

PLILP/ALP 98

- 26 -

Sprint: An Overview
@ran; family

L anguage analysis

| nterface definition

v

Staged semantics

v

Formal definition

v

Abstract machine

]

e Implementation of

- abstract machine: library
- valuat. functions: interpreter

| mplementation

|_

Partial evaluation

|
> IRISA

PLILP/ALP 98

- 27 -

Sprint: An Overview
@ran; family

L anguage analysis

| nterface definition

v

Staged semantics

v

Formal definition

v

Abstract machine

v

| mplementation

]

Partial evaluation

e From interpreted to compiled cogle

|_

|
> IRISA

PLILP/ALP 98

-28 -

Sprint: An Overview

< Program family >
v

L anguage analysis

| nterface definition

v

Staged semantics

v

Formal definition

v

Abstract machine

e DSL compiler

— flexible
— efficient

v

| mplementation

v

Partial evaluation

< DSL compiler _>—

|
> IRISA

¥

PLILP/ALP 98

-29-

Working Example:
E-Mail Processing (1)

1 Automatic treatment of Incoming messages.
— Dispatch mail to people or folders.
— Filter out spam.
— Automatic reply when absent.
— Shell escape for specific treatments.

1 Safety properties:
— e.g., no loss of messages.

. IRISA PLILP/ALP '98

-30 -

Working Example:
E-Mail Processing (2)

1 Program family:

— Analysis of e-mail and decision making.
11 Domain knowledge.
1 Re-use opportunities.

1 GPL [no safety properties.

11 Development of aDSL
0 Inspired by mh/ sl ocal , Unix mail delivery tool.

" IRISA PLILP/ALP '98 - 31 -

_ /@ram family
L anguage A nal yS| S (1) —» Interface definition

A Based on domain knowledge:
— Technical literature and domain experts.
— EXxisting programs.
— Common patterns and variations.
— Current and future requirements.

4 Conducted using methodologies such as:
— Domain analysis.
— Commonality analysis.

" IRISA PLILP/ALP '98 -32 -

_ /@ram family
L anguage A nal yS| S (2) —» Interface definition

1 Language reguirements.
— Functionalities.

0 Actions: copy, move, delete, forward, reply to a message.

0 Conditions: match message fields against string patterns.

— Language constraints (safety, security...).

0 No loss or duplication of messages.

0 No loop when running or forwarding messages.

— Implementation constraints (resource bounds...).

" IRISA PLILP/ALP '98 - 33 -

_ /@ram family
L anguage A nal yS| S (3) —» Interface definition

1 Objects and operations (building blocks).

0 Messages: extract header fields, create messages...

0 Folders: add a message to a folder

0 Hierarchy of folders. associate a file to a folder path
0 Files of folders: read, write

0 Streams: inbound/outbound messages, pipe to shell

> IRISA PLILP/ALP '98 - 34 -

_ /@ram family
L anguage A nal yS| S (4) —» Interface definition

1 Elements of design.

— Language paradigm and level.
0 Hypothesis: shell programmers [] imperative like shell

— Terminology and notations.

0 Shell notations for regular expressions

> IRISA PLILP/ALP '98 - 35 -

L anguage analysis

&~
Interface Definitions (1) —seessmics

A Based on a denotational framework.
11 Semantic algebras (signatures).

0 Domain: Message
0 Operations:
— new-msg : Message

— get-field : FieldName — Message — String

0 Domains: InStream, OutStream
0 Operations:
— next-msg : InStream — (Message % InStream)

— send-msg . Message — QutStream — QOutStream

" IRISA PLILP/ALP '98 - 36 -

L anguage analysis

&~
Interface Definitions (2) —seessmaics

1 Abstract syntax (kernel). B U BoolExpr
C O Command
cC=2ac; C, F U FolderPath
If B then C, else C, S U String
ski p
del et e
Copy E B = nat Ch Sfield Spattern
forward s, _ | not B
reply S, | B, and B,
pi pe S, | B, or B,

1 Concrete syntax (graphic interface...).

nove F = copy F ; delete
If Bthen ¢ =i1f B then C else skip

" IRISA PLILP/ALP '98 - 37 -

L anguage analysis

Staged semantics

Interface Definitions (3) f»

1 Example:

If match “Subject” “DSL” then
forward “jake”;
move Research.Lang.DSL

else

If match “From” “hotmail.com” then
reply “Leave me alone!”;
delete

else

If match “Subject” “seminar” then
pipe “agenda --stdin”;
delete

|
> IRISA

PLILP/ALP 98

- 38 -

Staged Semantics (1)

I nterface definitions

—p Formal definition

A Separate static and dynamic semantics.

Static Dynamic
Actions performed by Computations depending
GPL : :
the compiler on input data
Determine member of Produce answer for a
Concept : .
program family family member
: Configure generic Execute customized
Implementation
software software

11 Reason about genericity: predict/control customisation.

|
~ IRISA

PLILP/ALP 98

-39 -

I nterface definitions

V'
Staged Semantl CS (2) —» Formal definition

0 Initial staging constraints

0 Static: DSL program, folder hierarchy, user’s name

0 Dynamic: inbound messages

1 Staging of the semantic algebras

0 Static: operations on folder hierarchy

0 Dynamic: streams and operations on streams

1 Staging of the language constraints

0 Static: no loop (syntactic), no lost or duplicated message

0 Dynamic: no endless forwarding

" IRISA PLILP/ALP '98 - 40 -

Staged semantics

&~
Formal Definition (1) —rosratmenive

1 Determine semantic arguments.

0 Folder hierarchy, message being treated, streams...

1 Stage the semantic arguments.

0 Static: folder hierarchy, user’s name

0 Dynamic: message, folder files, streams, current date

1 Stage control.
— Possibly introduce dynamic control combinators

0 cond: for dynamic conditionals

" I RISA PLILP/ALP '98 - 41 -

Staged semantics

&~
Formal Definition (2) —rosratmenive

11 Vauation functions.

C : Command — StaticState — DynamicState — DynamicState

Cl[copy F]] p o =
let v = get-filename (F [[F]]) Prolder-hierarchy
¢ = add-msg (set-field “Del i very-Dat e” 0y, Gmessage)

| (read-folder V' Otgyger-iles)
N [fOIder-ﬁleSerite'f‘Older V q) Ofolder-files] 0)

B : BoolExpr — DynamicState — DynamicState

B[[match s, S| 0 = match (get-field (S[[S;]]) Opessage) (8 [[S:]])

" IRISA PLILP/ALP '98 - 42 -

Formal definition

&~
Abstract Machine (1) —[imererain

A A model of dynamic computations.
A Key to derive realistic implementation.

a Possibly shared between several DSLs.

> IRISA PLILP/ALP '98 - 43 -

Formal definition

&~
Abstract Machine (2) —[imererain

1 Single-threadedness:
— Globalization of dynamic semantic arguments

0 Globalize message being treated, folder files, streams...

1 Abstract machine entities (registers...)

0 Dedicated register for message being composed

(only one at a time)

P IRISA PLILP/ALP '98 - 44 -

Abstract Machine (3)

1 Semantic definitions.

Formal definition

| mplementation

C : Command — StaticState — AbsMachState — AbsMachState

Cllcopy F]] p o =

|et V = get'ﬁlename (F [[F]]) pfolder-hierarchy

In ((write-folder V) o
(add-msg) o

(set-field, “Del i very-Dat e” 0,,.) ©

tead-folder v)) o

|
> IRISA

PLILP/ALP 98

- 45 -

Abstract machine

¢ N\

Partial evaluation

|mplementation (1)

V aluation functions

1 Direct: interpretation.
— Close to denotational definition.
— Easy, flexible, slow.
— Rapid prototyping.
— Semantics-preserving extensions.
0 Indirect: compilation.
— Native code: expensive.
— Abstract machine code: still expensive.

" IRISA PLILP/ALP '98 - 46 -

Abstract machine

L2\

Partial evaluation

|mplementation (2)

Abstract machine

1 Little overhead.
— Each instruction = coarse-grain operation.
— Efficient compiler = efficient instruction.

1 API: several implementations
0 Folder as single file (Netscape, emacs)

0 Folder as directory, one file per mail (exmh)

" IRISA PLILP/ALP '98 - 47 -

Abstract machine

Partial evaluation

e
Partial Evaluation (1) —
Interpreter
‘ DSL
Program |~ —1 | | nterpretation Abstract
» Layer Machine
|
‘ DSL Program]
Program SpeCI alizer
Abstract Machine Program
Program Specializer

l

|
> IRISA

Compiled

: DSL Program

PLILP/ALP '98 - 48 -

o | mplementation
Partial Evaluation (2) —<—ps. comie >

If match “Subject” “DSL” then
forward “jake”;

cond (match (get-field, “Subject”) “DSL”)
(new-msg;
set-field _“Date” (date)
set-field _“To” “jake”;
set-field . “From” “bob™;
set-body . (msg-to-string 2);
set-field _ “Subject”
(concat “Fwd: " (get-field ; “Subject”));
set-field _ “Resent-by”
(concat “bob” (get-field . “Resent-by"));
send-msg;

> IRISA PLILP/ALP '98 - 49 -

e | mplementation

Partial Evaluation (3) —<os comile >

A Experiments with Tempo, a specializer for C.

1 GAL performance;
— As fast as existing hand-coded C drivers.

11 PLAN-P performance (runtime specialization):
— PLAN-PJIT twice as fast as a JavH.
— 100% of the throughput of hand-written C bridge.
— 100% of the bandwidth.

" IRISA PLILP/ALP '98 - 50 -

Sprint: Assessment

11 Based on well-studied ingredients.

1 Careful structuring.

— Design / definition / implementation.

— Analyzability: source / abstract-machine level.
11 Development cost.

— Interpretews compiler.

— Off-line orJIT.
11 Maintenance.

— Flexible, extensible.

" IRISA PLILP/ALP '98 -51 -

Conclusion:
A Revival

1 DSL # GPL: many things become possible.

1 Dig up your old theories.
— Paradigm.
— (Denotational) semantics.
— Implementation.
— Verification.
1 The programming language community can
(must) play an important role.

" IRISA PLILP/ALP '98 -52 -

More Information

Prototypes
— DSLs: GAL, PLAN-P
— Specializer: Tempo
ae

— described (papers),
— avallable (distribution).

al
http://www.irisa.fr/compose

> IRISA PLILP/ALP '98 -53-

Ce qui suit est du trash.

> IRISA PLILP/ALP '98 -54 -

| mplementation

Partial Evaluation (1) o e

-@ Interpreter
' Abstract

~ Interpretation |....., : . Output
= Machine N
‘ DSL | — Llayer ' f
Program
Program
Specializer
Abstract Maching Program
Program Specializer
ANIMATION [Compiles
A REFAIRE DS Program

>> 'RISA PLILP/ALP '98 - 55 -

Trash

Cl[if B then c, else CJ| p = cond (B[[B]]) (C[[C]]p) (C[[C]]P)

C [[pl pe S]] PO = [cmd-stream — pipe-msg Omessage (S [[S]]) O-cmd-stream] o

" IRISA PLILP/ALP '98 - 56 -

DSL Example (1)
nmake

A utility to maintain programs.
1 Small, mainly declarative.

— Expressive power: dependency updates.
— Actions delegated to a shell.

11 Domain abstractions:
— File suffixes, implicit compilation rules.

0 Verifications:
— No cycles in dependencies.

" IRISA PLILP/ALP '98 -57 -

DSL Example (2)
Shell

A command programming language.
11 Domain abstractions:

— stdin/stdout/stderr.

— Command line facilities.
1 EXpressive power:

— Run/control processes.

— Some string manipulations.

1 Interface to standard system libraries.

" IRISA PLILP/ALP '98 - 58 -

Current Approaches to Deal with
Program Family (2)

1 Patterns of programs: often unexploited
— Readabillity

» **???*'k

— Redundancy
» Development.
» Maintenance.

> IRISA PLILP/ALP '98 -59 -

Adaptation Process

DSL Programmable System
‘ Program | ——|
I
DSL Program]
‘ Program SpeCIallzer

v

Abstract Maching Program
Program Specializer
P DSL Program

> IRISA PLILP/ALP '98 - 60 -

Our Methodology: An Overview

Problem family

» Domain knowledge:

L anguage analysis

e Commanalities and variations

| nterface definition

* Definition of the syntax of the DSL.
* Informal semantics relating

e Svntactic conctriicte and

Staged semantics

Formal definition

 Splitting compile-time and run-time actions.
» Making explicit stages of configuration.

| P o e L 1 i L i

Abstract machine

 Dedicated abstract machine based on dynamig

cemantic aloneahrac

| mplementation

Partial evaluation

» Abstract machine implementation(s): library.
« Valuation function implementation: interpreter.

|
~ IRISA

DSL compiler

* From interpreted to compiled code.

PLILP/ALP 98

-61 -

Our Methodology: An Overview

Problem family <

L anguage analysis

| nterface definition

Staged semantics

Input: Domain Knowledge.

e Technical literature.

 Existing programs.

« Current and future requirements.
« Common patterns and variations.

Formal definition

Abstract machine

| mplementation

Partial evaluation

|
> IRISA

DSL compiler

Output:
» Description of objects and operatia
e Language requirements.
» Elements of design.

PLILP/ALP 98

ns

-62 -

Our Methodology: An Overview

Problem family >«—— Domain knowledge:

_ — Technical literature.

L anguage analysis — Existing programs.

— Current and future requirements.
— Common patterns and variations.

| nterface definition

Staged semantics

Formal definition

Abstract machine

| mplementation

Partial evaluation

DSL compiler

> IRISA PLILP/ALP '98 - 63 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

» Description of objects and operatigns

« Language requirements.
» Elements of design.

Staged semantics

Formal definition

Abstract machine

| mplementation

Partial evaluation

|
> IRISA

DSL compiler

PLILP/ALP 98

-64 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

p—)

Staged semantics

Formal definition

Abstract machine

e Definition of the syntax of the DSL
* Informal semantics relating

— syntactic constructs

— the objects and operations
e Signature of semantics algebras

| mplementation

Partial evaluation

|
> IRISA

DSL compiler

PLILP/ALP 98

- 65 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v

Staged semantics | « Djvision of compile-time and run-time actiops
 Staging of the language constraints

Formal definition

Abstract machine

| mplementation

Partial evaluation

DSL compiler

> IRISA PLILP/ALP '98 - 66 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v
Staged semantics

v

Formal definition = « Definition of valuation functions

Abstract machine

| mplementation

Partial evaluation

DSL compiler

> IRISA PLILP/ALP '98 - 67 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v
Staged semantics

v
Formal definition

v
Abstract machine | « Dedicated abstract machine baged
on dynamic semantic algebras

| mplementation

Partial evaluation

DSL compiler

> IRISA PLILP/ALP '98 - 68 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v
Staged semantics

v
Formal definition

v

Abstract machine

v
|mplementation — | « Abstract machine implementation(s): librar
 Valuation function implementation: interpreter

Partial evaluation

DSL compiler

> IRISA PLILP/ALP '98 - 69 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v
Staged semantics

v
Formal definition

v

Abstract machine

v

| mplementation

v

Partial evaluation ==| « From interpreted to compiled cogle

DSL compiler

" IRISA PLILP/ALP 98 - 70 -

Our Methodology: An Overview

Problem family

L anguage analysis

| nterface definition

v

Staged semantics

v

Formal definition

v

Abstract machine

v

| mplementation

v

Partial evaluation

|
> IRISA

DSL compiler

e DSL programming environment:

— efficient
— flexible

PLILP/ALP 98

-71 -

