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Binary energy minimization 

 We will first consider binary MRFs: 
 Graph is arbitrary (not necessarily a tree) 

 Only 2 labels per node 

 

 We will use graph-cut techniques to 
optimize their energy 
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Binary MRFs 

 We will consider each pairwise potential as 
a non-negative distance function between 
labels 
 Pairwise potential =  

 

 Energy for resulting binary MRFs: 

0 wpq 

wpq 0 



Vp (xp ) 
p

 wpq  (xp  xq )
pqN


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Binary MRFs 

 We will try to reduce this to a graph-cut 
problem 

 

 But first let’s take a look at what we mean 
by a graph-cut 
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Graph-cuts basics 
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s-t graph cut 

A graph with two terminals S and T 

“source” 

S T 

“sink” 

• Cut cost is a sum of severed edge weights  

• Minimum cost s-t cut can be found in polynomial time 

 Goal: divide the graph into two parts separating orange and green    

nodes 

Graph-cuts basics 
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Graph-cuts basics 
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Graph-cuts basics 

 
 All methods for solving min-cut actually rely 

on solving another problem, called max-flow 

 

 Max-flow problem can be shown to be 

equivalent to min-cut 
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The Maximum Flow Problem 

 Directed Graph G = (N, A). 

  Source s 

  Sink t 

  Capacities uij on arc (i,j) 

  Maximize the flow out of s, subject to:  

Flow out of i = Flow into i, for i  s or t. 

 

 

A Network with Arc Capacities and Flows 
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Residual network 

 Plays a central role in the development of 
maximum flow algorithms. 

 

 Defined with respect to a flow x. 

 

 Denotes how much flow can be sent on arcs with 
respect to a flow x. 
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u   - x 

x 
ij 

ij ij 

We let rij denote 

the residual 

capacity of arc (i,j) The Residual Network G(x) 

Residual network 
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Max-flow algorithms 

Two classes of algorithms exist for solving 
this problem: 

 

  Augmenting paths 

 

  Push-relabel 
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Augmenting Paths 

 An augmenting path is a path from s to t in the 
residual network. 

 The residual capacity  of the augmenting path P is  
(P) =  min{rij : (i,j)  P}. 

 To augment  along P is to send d(P) units of flow 
along each arc of the path.  We modify x and the 
residual capacities appropriately. 

 rij := rij - (P)  and   rji := rji + (P)    for (i,j)  P. 
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 Find an augmenting 
path from S to T 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 
this path until some 
edge saturates 

Augmenting Paths algorithm 



15 

 Find an augmenting 
path from S to T 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 
this path until some 
edge saturates 

 Find next path… 

  Increase flow… 

 

Augmenting Paths algorithm 
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 Find an augmenting 
path from S to T 

 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 
this path until some 
edge saturates 

               Iterate until …       

all paths from S to T have 

at least one saturated edge 
MAX FLOW  MIN CUT 

Augmenting Paths algorithm 
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Augmenting Paths algorithm 

 Max-flow saturates min-cut 

 

 Suppose we have solved the max-flow 
problem. How do we extract a min-cut? 

 To obtain a min-cut, we simply need to 
consider all nodes reachable from “source” 
in the residual network G(x)  
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The Ford Fulkerson Maximum Flow 

Algorithm 

 Begin 
 x := 0; 

 create the residual network G(x); 

 while there is some directed path from s to t in 
G(x) do 

 begin 

 let P be a path from s to t in G(x); 

  := (P); 

 send  units of flow along P;  

 update the r's; 

 end 

 end {the flow x is now maximum}. 
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Ford-Fulkerson Max Flow 
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This is the original network, 

and the original residual 

network.  



20 

4 

1 1 

2 

2 
1 

2 

3 

3 

1 

Ford-Fulkerson Max Flow 

Find any s-t path in G(x)   
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Ford-Fulkerson Max Flow 

Determine the capacity  of the path.    

Send  units of flow in the path. 

Update residual capacities.    
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Determine the capacity  of the path.    

Send  units of flow in the path. 

Update residual capacities.    
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Determine the capacity  of the path.    

Send  units of flow in the path. 

Update residual capacities.    
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Send  units of flow in the path. 

Update residual capacities.    
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Send  units of flow in the path. 

Update residual capacities.    
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There is no s-t path in the residual 

network.  This flow is optimal  
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Ford-Fulkerson Max Flow 
1 

1 

2 

2 

2 

1 

2 
s 

2 

4 

5 

3 

t 

Here is the optimal flow 
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Optimizing binary MRFs 

 Let us now return to our original goal, i.e., the 

minimization of the following binary MRF 

energy:  

 

 

 

 How can we reduce this to a min-cut 

problem? 

Vp (xp ) 
p

 wpq  (xp  xq )
pqN



 To understand how this can be done, we will  

concentrate on some simple cases first. 
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Special case 1: 

 Let us further assume that: 

 The MRF graph is a 2D grid with N nodes x1,…,xN  

 The unary potentials are defined as follows: 

  

 

 

All other unary potentials are assumed to be zero 



V1(x1) 
,     if xp  0

0,       if xp 1







VN (xN ) 
0,         if x p  0

,      if xp 1





 What does the resulting MRF problem 

represent? 

 How can we reduce this case to a graph-cut 

problem? 



C 
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Special case 2: 

 What about if we had (not just two) but multiple 

nodes with infinite potentials? 

 What is the corresponding weighted graph in 

this case? 
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Case 3: 

 Given how we reduced the binary MRF problem 

to a min-cut in the previous two simple cases,  

can we now do the same for our original binary 

energy? 

 What is the min-cut graph in this case? 



Vp (xp ) 
p

 wpq  (xp  xq )
pqN





Binary segmentation 
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Binary segmentation 
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 Simplest case is to just set the edge weights 

that define the pairwise potentials (boundary 

terms only) 



Binary segmentation 

 More generally, for the segmentation problem 

we can make use of: 

 

 the pairwise potentials (i.e., the edge weights) to 

model boundary terms 

 

 the unary potentials to model regional terms 

40 



Binary segmentation 

41 

 Boundary extraction (in 2D image space) 



Binary segmentation 
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 Boundary extraction (in 3D volume space) 



Binary segmentation 
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 Boundary extraction (in 3D volume space) 
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Binary segmentation 

 A simple toy case for the regional terms is if 

we know that foreground/background are 

assumed to have some “expected” intensities 

or colors.  

45 

Vp (xp ) 
| Ip  Ibackground |

| Ip  I foreground |







Binary segmentation 

 Of course, more complex intensity models 

can be used for the foreground/background 

 Histograms 
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

Vp(xp) lnPr(Ip | xp )

I



Pr(Ip | xp  0)



Pr(Ip | xp 1)

pI



Binary segmentation 

 Of course, more complex intensity models 

can be used for the foreground/background 

 Histograms 
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Binary segmentation 

48 

propagation in 3D 

space 



Binary segmentation 

49 

propagation in space and 

time 



Binary segmentation 

 Other types of intensity models for 

foreground/backround 

 Mixture of gaussians 
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 Adaptive estimation of intensity models 

 Iterative algorithms for image segmentation  

(iterated cuts) 

 E.g., GrabCut is one such example 
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Binary segmentation 
 One can also use more complex models for the 

pairwise interactions as well  


