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Binary energy minimization

We will first consider binary MRFs:
o Graph is arbitrary (not necessarily a tree)
o Only 2 labels per node

We will use graph-cut techniques to
optimize their energy



Binary MRFs

We will consider each pairwise potential as
a hon-negative distance function between
labels

o Pairwise potential =
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Energy for resulting binary MRFs:
ZV(x ) + prq olx,#x,)
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Binary MRFs

We will try to reduce this to a graph-cut
problem

But first let's take a look at what we mean
by a graph-cut



Graph-cuts basics




Graph-cuts basics

Goal: divide the graph into two parts separating orange and green
nodes

s-t graph cut
I

A graph with two terminals Sand T

« Cut cost Is a sum of severed edge weights



‘ Graph-cuts basics
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Graph-cuts basics

All methods for solving min-cut actually rely
on solving another problem, called max-flow

Max-flow problem can be shown to be
equivalent to min-cut



The Maximum Flow Problem

Directed Graph G = (N, A).

o Source s

o Sink t

o Capacities u; on arc (i,))

o Maximize the flow out of s, subject to:
Flow out of i = Flow into I, for i #s or t.

A Network with Arc Capacities and Flows



Residual network

Plays a central role in the development of
maximum flow algorithms.

Defined with respect to a flow x.

Denotes how much flow can be sent on arcs with
respect to a flow x.
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‘ Residual network

The Residual Network G(x)

We let r; denote
the residual
capacity of arc (i,])
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Max-flow algorithms

Two classes of algorithms exist for solving
this problem:

Augmenting paths

Push-relabel
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Augmenting Paths

An augmenting path is a path from s to t in the
residual network.

The residual capacity of the augmenting path P is
6(P) = min{r; : (1,)) € P}.

To augment along P is to send d(P) units of flow
along each arc of the path. We modify x and the
residual capacities appropriately.

=r1; +8(P) for(i)) € P.

/4/
6
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Augmenting Paths algorithm

Find an augmenting
path from Sto T

= Increase flow along
this path until some
edge saturates

A graph with two terminals
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Augmenting Paths algorithm

A graph with two terminals

Find an augmenting
path from Sto T

= Increase flow along
this path until some
edge saturates

= Find next path...
m Increase flow...
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Augmenting Paths algorithm

Find an augmenting
path from Sto T

“source !o o smk”
4 = Increase flow along

this path until some
edge saturates

_ _ Iterate until ...
A graph with two terminals all paths from S to T have

“ at least one saturated edge
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Augmenting Paths algorithm

Max-flow saturates min-cut

Suppose we have solved the max-flow
problem. How do we extract a min-cut?

To obtain a min-cut, we simply need to
consider all nodes reachable from "source”
in the residual network G(x)
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The Ford Fulkerson Maximum Flow
Algorithm
Begin

o X:=0;
o create the residual network G(x);

o while there is some directed path from stotin
G(x) do
o begin
let P be a path from s to t in G(x);
A = 3(P);
send A units of flow along P;
update the r's;
a end

end {the flow x iIs now maximum}.
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‘ Ford-Fulkerson Max Flow

This is the original network,
and the original residual
network.
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‘ Ford-Fulkerson Max Flow

Find any s-t path in G(x)

20




‘ Ford-Fulkerson Max Flow

Determine the capacity A of the path.

Send A units of flow in the path.
Update residual capacities.
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‘ Ford-Fulkerson Max Flow

Find any s-t path
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‘ Ford-Fulkerson Max Flow

Determine the capacity A of the path.

Send A units of flow in the path.
Update residual capacities.
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‘ Ford-Fulkerson Max Flow

Find any s-t path
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‘ Ford-Fulkerson Max Flow

Determine the capacity A of the path.

Send A units of flow in the path.
Update residual capacities.
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‘ Ford-Fulkerson Max Flow

Find any s-t path
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‘ Ford-Fulkerson Max Flow

Determine the capacity A of the path.

Send A units of flow in the path.
Update residual capacities.
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‘ Ford-Fulkerson Max Flow

Find any s-t path
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‘ Ford-Fulkerson Max Flow

Determine the capacity A of the path.

Send A units of flow in the path.
Update residual capacities.
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‘ Ford-Fulkerson Max Flow

There is no s-t path in the residual
network. This flow is optimal
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‘ Ford-Fulkerson Max Flow

These are the nodes that are reachable
from node s.
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‘ Ford-Fulkerson Max Flow

Here is the optimal flow
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Optimizing binary MRFs

Let us now return to our original goal, I.e., the
minimization of the following binary MRF

energy:

ZV(x)+ prq olx,#x,)

pPqgeN

How can we reduce this to a min-cut
problem?

To understand how this can be done, we will
concentrate on some simple cases first.
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Special case 1.

Let us further assume that:

o The MRF graph is a 2D grid with N nodes X;, ...y X
o The unary potentials are defined as follows:

” +oo, ifx, =0 V 0, ifx,=0
() = 0, if x, =1 ()= +oo, ifx, =1

All other unary potentials are assumed to be zero

What does the resulting MRF problem
represent?

How can we reduce this case to a graph-cut
problem?
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Special case 2:

What about if we had (not just two) but multiple
nodes with infinite potentials?

What is the corresponding weighted graph in
this case?
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Case 3:

Given how we reduced the binary MRF problem
to a min-cut in the previous two simple cases,
can we now do the same for our original binary
energy?

ZV(x)+ prq olx,#x,)

pqgeN

What is the min-cut graph in this case?
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Binary segmentation
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Binary segmentation

Simplest case Is to just set the edge weights

that define the pairwise potentials (boundary

terms only)
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Binary segmentation

More generally, for the segmentation problem
we can make use of:

o the pairwise potentials (i.e., the edge weights) to
model boundary terms

o the unary potentials to model regional terms
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‘ Binary segmentation

= Boundary extraction (in 2D image space)
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Binary segmentation

Boundary extraction (in 3D volume space)
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Binary segmentation

Boundary extraction (in 3D volume space)
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Binary segmentation

A simple toy case for the regional terms is if
we know that foreground/background are

assumed
or colors.

V,(x,)="1

to have
]p _Ibackground
]p _]foreground

S oOome
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Binary segmentation

Of course, more complex intensity models
can be used for the foreground/background

o Histograms

V (x,)=—InPr(l, |x,)

Pr(l, |x,=1) ¢
Pr(l, |x, =0) '/f\\—/ |

p
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‘ Binary segmentation

= Of course, more complex intensity models
can be used for the foreground/background

o Histograms




‘ Binary segmentation

propagation in 3D
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‘ Binary segmentation

propagation in space and
time "




Binary segmentation

Other types of intensity models for
foreground/backround

o Mixture of gaussians

Adaptive estimation of intensity models

0 Iterative algorithms for image segmentation
(iterated cuts)

o E.g., GrabCut is one such example
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Binary segmentation

o One can also use more complex models for the
pairwise interactions as well

Texture Feature

e Texture Gradient TG(x,y,r,0)
— %2 difference of texton histograms
— Textons are vector-quantized filter outputs
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