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Abstract

There has been recently a growing interest for implicit
shape representations. Contrary to explicit representations,
they have no resolution limitations and they easily deal with
a wide variety of surface topologies. To learn these im-
plicit representations, current approaches rely on a cer-
tain level of shape supervision (e.g., inside/outside infor-
mation or distance-to-shape knowledge), or at least re-
quire a dense point cloud (to approximate well enough the
distance-to-shape). In contrast, we introduce NeeDrop, an
self-supervised method for learning shape representations
from possibly extremely sparse point clouds. Like in Buf-
fon’s needle problem, we “drop” (sample) needles on the
point cloud and consider that, statistically, close to the sur-
face, the needle end points lie on opposite sides of the sur-
face. No shape knowledge is required and the point cloud
can be highly sparse, e.g., as lidar point clouds acquired
by vehicles. Previous self-supervised shape representation
approaches fail to produce good-quality results on this kind
of data. We obtain quantitative results on par with exist-
ing supervised approaches on shape reconstruction datasets
and show promising qualitative results on hard autonomous
driving datasets such as KITTI.

1. Introduction

Learning-based approaches for 3D reconstruction from
sparse 3D data have recently attracted of lot of interest. As
opposed to classical approaches [3], such as Poisson recon-
struction [37], these methods enable prior knowledge to be
used to enrich the representation of information-deficient
inputs, e.g., low density point clouds or partial scene views.

Most of the recent learning-based methods for shape re-
construction from point clouds fall into two categories. A
first category produces an explicit or parametric represen-
tation of the shape: point cloud, voxel or mesh. For in-
stance, some may deform a geometric primitive or a tem-
plate mesh [30, 31], e.g., a planar patch or a sphere. The
topology of both the template and the reconstruction are

thus identical, which is a significant limitation. The sec-
ond category of methods operates on an implicit formula-
tion of the shapes. These methods build a continuous func-
tion over the 3D space, either based on occupancies [46],
or on signed [48] or unsigned [13] distance functions. They
are not bound by the topology of a template but require an
extra-processing step for mesh extraction. Beyond shape re-
construction, several approaches also tackle the problem of
shape generation by encoding shapes in a low-dimensional
latent space with a constraint on the distribution of the la-
tent variables. All existing learning-based approaches use a
certain level of supervision during training, either using the
information of distance to the shape or using the knowledge
of which points fall inside or outside the shape.

In this work, we propose what we believe is the first self-
supervised approach for shape reconstruction from sparse
point cloud. It is self-supervised in the sense that it does
not need to learn from actual shapes, or even from densely
sampled point clouds; sparse, noisy, and even partial point
clouds are enough. And it reconstructs a shape in the sense
that an actual mesh can directly be produced from the oc-
cupancy field we predict, e.g., using a Marching Cubes al-
gorithm [44], as opposed to approaches that only produce
renderings or generate points on the underlying surface [8].

Like some other methods, we build a shape represen-
tation in a latent space and predict an implicit occupancy
field. An actual surface can then be easily extracted as the
zero-level set of the function. However, unlike most exist-
ing methods, we only use point clouds as input for learn-
ing, instead of meshes. We thus do not have to worry
about shape watertightness, which is a major concern for
occupancy-based methods training on meshes because most
shape datasets collect good-looking but actually ill-formed
meshes, thus requiring a significant preprocessing. Fur-
thermore, we show that our method can deal with highly
sparse input point clouds without surface supervision, such
as point clouds captured by Lidars on moving vehicles,
whereas all existing methods that use point clouds as in-
put (except [8]) assume that points are dense enough so that
the distance to the shape (supervision) can be closely ap-



proximated by the distance to the point cloud, which leads
to failures to learn from sparse inputs.

Our method is inspired by Buffon’s needle problem [41]
where one wants to compute the probability that a needle
dropped on a wooden floor with parallel strips lies across
two strips. Similarly, we drop (sample) needles on the
point cloud such that needles built on input points have a
high probability of crossing the surface, while needles con-
structed a bit away from input points have a low probability.
Our main contributions are:
• a new loss for self-supervised shape reconstruction for-

mulated via needle dropping on the point cloud;
• the use of this loss to learn only from point clouds how

to predict shape representations;
• a overall method that can intrinsically deal with highly

sparse and partial point cloud, at train and test time;
• the validation of our method on both synthetic data and

real point clouds for which no supervision is possible.
The paper is organized as follows: section 2 presents re-

lated work; section 3 describes the loss function and the
network used for shape reconstruction; section 4 presents
experiments showing the performance of our method and
its comparison with competing techniques.

2. Related work
Representing shapes, with applications such as recon-

struction and generation, has been widely studied. This sec-
tion only presents learning-based methods; classical (non-
learning-based) methods are surveyed in [3]. We classify
related work based on the type of shape representation used
and on the level of supervision used at training time.

Point clouds are a common way to represent a shape.
They can be obtained, e.g., directly from depth sensors, or
via photogrammetry. Pioneered by PointNet-based archi-
tectures [51, 53], learning-based methods have reached the
state of the art in multiple tasks such as classification and se-
mantic segmentation [6,42,61]. Point clouds have also been
successful for shape generation from images [23, 33, 50] or
from a prior distribution [68]. Yet, a point cloud remains a
sparse representation of the underlying surface and, when
generating points, their number is often a fixed parameter.

Voxels allow to directly adapt techniques developed on
2D pixels to 3D data. They are used in many tasks ranging
from classification and semantic segmentation [45, 52, 66]
to shape generation [60, 64], representation [34, 36, 55] or
completion [18, 59]. Represented as an occupancy grid, the
reconstructed surface however suffers from quantization ef-
fects, which can be mitigated using truncated signed dis-
tance functions [16, 18, 40, 57, 59].

Besides, using voxels may rapidly lead to a high memory
consumption as their number grows cubicly with the size of
the scene. A greater accuracy, with finer voxel grids, may be
obtained at the cost of a slow training process [15,63,66] or

by integrating surface extraction for occupancy [43]. Sparse
convolutions [14,27,28] or multi-resolution approaches [32,
64] such as octrees [56, 57, 60] can be used to reduce the
memory footprint and scale to a complete scene [69].

Meshes describe a shape as a set of vertices and faces.
They are the representation of choice in computer graph-
ics and computer-aided design as they are very memory ef-
ficient and easily allow geometric operations and render-
ing with texture. Geometric deep learning [7] exploits their
graph structure for classification and segmentation [20, 24].

A sub-category of methods operating on meshes deform
one or several shape templates [31, 49, 54, 65]. While giv-
ing good results when the templates and the shapes are rel-
atively similar, the resulting meshes necessarily have the
same topology as the templates, which limits the complex-
ity of the shapes that can be modeled. Besides, they may
suffer from self-intersections caused by wide deformations.
Template deformation can also be mixed with voxels, to re-
fine a coarse reconstruction [26]. Other approaches directly
predict sets of vertices and faces [17]. The result may not
be continuous and can require additional mesh fixing steps.

Implicit representations model a closed shape via a
continuous function of the 3D space. An actual surface is
then extracted as a levelset of the function (or its gradient).

Most existing approaches associate to each point x ∈ R3

a signed distance [1, 2, 11, 29, 35, 47, 48] or an occupancy
value [12, 21, 25, 46]. Such implicit representations lead
to the reconstruction of closed surfaces (with an inside and
an outside) without template-topology limitations. In this
work, the network is trained to output an occupancy value
indicating on which side of the shape a query point is.

Unsigned distance fields [8,13] have the advantage to be
able to model open surfaces too. But they do not directly
yield a mesh; they generate a dense point cloud, that is then
given to a meshing algorithm to generate an actual surface.

Some hybrid methods predict a set of convex polytopes
with one implicit function per polytope, to produce a piece-
wise representation of a shape [39, 62]. Others reconstruct
a globale mesh by predicting voxel occupancy as well as a
local mesh configuration [43].

Supervision level is key differentiating factor too. The
full supervision of the real, signed distance to the shape
(Fig. 1(a)) is typically tackled by a regression loss [43, 48].
Full supervision of the occupancy information (Fig. 1(b))
leads to networks predicting if a point is inside or outside
the shape [12, 46]. A weaker supervision only provides the
unsigned distance to the shape [13] (Fig. 1(c)). Finally, in
the fully self-supervised setting, which is used in this work,
only the distance to the input points is available, thus pro-
viding only an approximate distance to the shape (Fig. 1(d)).

Several methods fall in this last category. SAL [1] learns
a sign-agnostic distance and a specific network initialization
favors a sign change when crossing the surface, then allow-



(a) Signed distance to S (b) Occupancy of S

(c) Unsigned distance to S (d) Distance to nearest point
Figure 1. Different kinds of supervision.

ing surface extraction. But sign change is not guaranteed.
In contrast, needles enforce it at loss level. Besides, as un-
derlined in [13], SAL tackles single objects reconstruction
and often fails in multi-object reconstruction settings.

SALD [2] improves SAL by adding a term favoring su-
pervised gradients on the surface to enforce sign change.
However, it introduces an extra hyperparameter to balance
reconstruction and regularization, which can be hard to tune
because the balance depends on point density, whereas our
two loss terms are homogeneous and simply summed.

IGR [29], on the contrary, only supervises (a null) dis-
tance on the surface but favors a norm-1 gradient every-
where. Here again, a hyperparameter balances reconstruc-
tion and regularization, with the same caveat as SALD.

Point cloud sparsity. These methods use very dense
point clouds: 500k points for SALD [2], 16k for SAL [1]
and 8k for IGR [29]. Distance to the nearest point (Fig 1(d))
then becomes a very good approximation of the unsigned
distance (Fig. 1(c)). On the contrary, our method can cope
with very sparse point clouds (300 points in our experi-
ments), much more like in Fig. 1(d). Yet, the sparse point
cloud setting is investigated in SAL [1] for single shape
reconstruction. However, we observed in our experiments
(Tab. 1) that SAL [1] and IGR [29] fail to produce meshes
when trained on a collection of shapes with a very small
number of input points. (No code is available for SALD.)

Only ShapeGF [8] handles very sparse point clouds, but
although the paper talks of “surface extraction”, it does not
easily and directly produce a mesh. It actually predicts a
shape gradient field that can be used to sample points on
the underlying surface using stochastic gradient ascent (and
a number of extra parameters), with a density whose uni-
formity cannot be controlled though. A separate meshing

step of those noisy points is then required. (Ray-casting,
with extra parameters too, can also produce nice render-
ings directly from the gradient field, as it also yields nor-
mals, which soften noise in rendered pixels.) In contrast,
we generate an occupancy field, from which a mesh can be
easily extracted [46]. The authors, in their supplementary
material [8], mention failure cases coming from local min-
ima and saddle points (where gradients are close to zero),
as well as double surfaces arising when meshing, and they
leave the improvement of surface extraction to future work.

Reconstruction with partial point clouds. Most meth-
ods focus on complete shapes, for which a full supervi-
sion is possible, or at least can be approximated. Some
methods can deal with partial data as input, but still rely
on full shape supervision when training, as DeepSDF [48].
It is also the case of single-view reconstruction methods,
that take an RGB image as input and reconstruct the whole
shape [30,46]. In [58], a network is trained from volumetric
completion from RGBD data with supervision on the vol-
ume to be reconstructed. In contrast, our method does not
require any level of supervision beyond sparse points and
can use partial point clouds when training and testing.

Needles. OccNet [46] traces rays of possibly infinite
length to close shapes, while our needles are bounded.
DeepSDF [48] has a kind of needle to sign a distance (±η)
w.r.t. a viewpoint, whereas our needles have uniform orien-
tations and apply to self-supervised surface reconstruction.

3. Self-supervised reconstruction
3.1. Implicit shape representation

Like previous work aiming at predicting an implicit
shape representation, our goal is to approximate the ideal
function f0

S such that some α∈R level-set of f0
S is the sur-

face S of the target shape S:

S = {x ∈ R3|f0
S(x) = α} (1)

For signed distance estimation [1, 48], α= 0: negative
values are inside the shape (by convention), and positive
values are outside.

We consider here f0
S to be an occupancy function,

f0
S : R3 → {0, 1} (2)

such that f0
S takes value 0 outside the shape and 1 inside the

shape. The surface of the shape is defined as the location of
discontinuity between values 0 and 1.

Given an input point cloud PS sampled on the shape, the
objective is to estimate a function

fS : R3 → [0, 1] (3)

such that fS ≈ f0
S . We consider that fS belongs to the fam-

ily of function that can be predicted using a neural network.
Thus, fS is continuous and we consider that the surface is
the 0.5-level set of the function.



Figure 2. Needles as pairs of points.

3.2. Self-supervised learning from pairs of points

In other approaches, f0
S is known [12, 46, 48], or par-

tially known [1, 13] (known distance with great precision,
unknown sign) at each point x ∈ R3. The neural network
can thus be trained directly to approximate f0

S under super-
vision. On the contrary, in our self-supervised setting, f0

S
is not directly accessible and PS is the only available infor-
mation about S. To reconstruct f0

S given only PS , we take
inspiration from Buffon’s needle problem.

Buffon’s needle problem. In [41], Buffon estimates the
probability that the end points of a needle, dropped on a
floor made of parallel strips of wood, lie on different strips.

Needle droping for surface reconstruction. Inspired
by this probability problem, we base our reconstruction
strategy using needles (pairs of points), instead of points
as in previous works. Let x and y be the end points of a
needle ”dropped” in 3D space. We will construct our self-
supervised training loss based on the facts that if x and y lie
on the same side of S, then fS(x) and fS(y) shall be equal,
while if x and y lie on opposite sides of S, then fS(x) and
fS(y) shall be different. It is illustrated on Figure 2.

3.2.1 Needle-based formulation

Our goal is to estimate the ideal, but unknown, occupancy
function f0

S . As this function takes values in {0, 1}, we
can define a Bernoulli distribution B0

x at every position x ∈
R3. Similarly, we define the Bernoulli distribution Bx with
parameter bx = fS(x) at the same location x ∈ R3.

To reconstruct the surface, our goal is now to minimise
the distance between Bx and B0

x at every location x ∈ R3.
But this problem is ll-posed because B0

x is unknown in our
case. To overcome this issue, we propose to construct new
random variables out of Bx and B0

x for multiple pairs of dif-
ferent locations x and y. Let X and Y be two independent
Bernoulli variables at location x and y drawn according to
Bx and By. The probability that X = Y satisfies

bx,y = bx by + (1− bx)(1− by). (4)

We can thus define a new Bernoulli distribution Bx,y of pa-
rameter bx,y for needle (x,y). We similarly define the tar-
get Bernoulli distribution B0

x,y of parameter b0x,y using B0
x.

Then to estimate b0x, i.e., reconstruct the surface, we pro-
pose to minimise the binary cross-entropy BCE, i.e., the
log-loss, between bx,y and b0x,y

Lrecons(x,y) =
∑

(xi,yi)∈Q

BCE(bxi,yi , b
0
xi,yi

), (5)

for a finite set of well-chosen needles

Q = {(xi,yi) | i ∈ {1, . . . , |Q|}}. (6)

In practice, B0
x,y is unknown but it is enough to know if

the needles (xi,yi) traverse the surface or not to be able to
compute Lrecons in Eq. (5). Inferring if a needle crosses the
surface or not, when the needle is well chosen, is much eas-
ier than guessing if a point x is inside or outside the object.

3.2.2 Needle picking

We now describe our strategy to pick needles with end
points on opposite sides or on the same side of the surface.

Surface-crossing needles (opposite-side end points).
As the only information we have about the shape is PS ,
and considering that the surface is continuous and locally
planar in the neighborhood of p ∈ PS , which is true at arbi-
trarily small scales, we drop likely surface-crossing needles
as line segments centered at points of PS , thus with likely
opposite-side end points. The corresponding set Qopp is

Qopp = {(p + h,p− h) | p ∈ PS ,h ∼ N (0, σh)}, (7)

where h is randomly sampled from the multivariate nor-
mal distributionN (0, σh) ∈ R3 with standard deviation σh,
possibly depending on p. The high probability of crossing
the surface actually depends on curvature (see supp. mat.).
Empirically, exceptions are rare enough not to confuse
learning, as with datasets containing some erroneous labels.

Non-surface-crossing needles (same-side end points).
We also have to sample needles not crossing the surface. We
may note that if a 3D point p is not too close to PS and if PS
is dense enough (which is the case in practice for ordinary
objects sampled with as few as 300 points), then it is likely
that the line segment between p and its closest point p′ in
PS does not cross the surface S, unless possibly near to p′,
including due to noise in input point cloud sampling. To
simply take that into account, we consider closest points to
Popp, where Popp is the set of end points in Qopp, i.e., points
of PS with a slight offset in two opposite directions. To
create short-enough needles that are unlikely to cross the
surface and add variability in needle orientation w.r.t. the
surface, we actually consider the following set of needles:

Qsame = {(p,p′) | p∈Psame,p
′= nn(p, Popp ∪Psame)}.

(8)
where Psame are points sampled in 3D space and nn(p, P )
is the nearest neighbor of p in P (excluding p itself).



Reconstruction loss. It would be natural to define the
loss on Q = Qopp ∪ Qsame in Eq. (5). However, to account
for possibly different sizes of Qopp and Qsame, we apply
Eq. (5) independently on both sets. The loss is thus com-
posed of two terms: a “data” term Lopp defined on Qopp that
enforces the surface to be located near PS and a “regulariza-
tion” term Lsame ensuring side label consistency inside/out-
side the shape. The reconstruction loss satisfies

Lrecons = Lopp + Lsame (9)

where

Lopp =
1

|Qopp|
∑

(x,y)∈Qopp

BCE(bx,y, b
0
x,y), (10)

Lsame =
1

|Qsame|
∑

(x,y)∈Qsame

BCE(bx,y, b
0
x,y). (11)

Our loss, as [1, 2, 8, 29], does not ensure an occupied shape
interior and void remaining space; the reverse is a solution
too, yet yielding the same surface. Due to non determinism,
retraining on the same data may lead to either solution. Still,
emptyness can be imposed at bounding box boundary.

3.3. Learning shape representations

From a collection of shapes provided only as point
clouds, we learn a neural network Φ. Given a new point
cloud PS as input, Φ predicts an occupancy function fS :

fS(x) = S ◦ Φ(PS ,x) (12)

where S is the sigmoid function to ensure fS(x)∈ [0, 1].
Training Loss. Substituting Eq. (12) in the expression

of the log-loss in Eq. (5) yields:

BCE(bx,y, b
0
x,y)=log(eΦ(PS ,x) + 1) + log(eΦ(PS ,y) + 1)

−b0x,y log(eΦ(PS ,x)+Φ(PS ,y)+1) (13)

−(1−b0x,y) log(eΦ(PS ,x)+eΦ(PS ,y))

which can be further simplified by exploiting the fact
that b0x,y = 1 when (x,y)∈Qsame, and b0x,y = 0 when
(x,y)∈Qopp. In addition, the gradient expression (see
supp. mat.) is simple, benefiting from simplifications simi-
larly to the usual BCE loss for singletons.

4. Experiments
We conduct experiments on different datasets to validate

the loss we propose and its use for surface reconstruction.
We first describe the network used in our experiments and
the experimental setup. Then, we evaluate our ability to re-
construct shapes from point clouds sampled on the entire
surface (section 4.1). Finally, we show that our method can
be applied to real point clouds from automotive datasets,

either by direct transfer of previously learned models or
by training from scratch, justifying our ability to work on
highly sparse point clouds (section 4.2).

Network. We use the encoder/decoder network from
[46]. The encoder is a PointNet [51] with 5 residual blocks.
The decoder is a fully connected network conditioned via
batch normalization on the latent code [19, 22].

Parameters. Our method works both with sparse and
dense point clouds; yet it is in sparse regime that it makes
a difference. For all experiments, unless otherwise stated,
we use a point cloud size |PS | = |Qopp| = 300 and we
set |Qsame| = 2048. The parameter σh used to draw the
vectors h in the construction of Qopp is critical. A large
σh distributes well the end points of both sides of the sur-
face, increasing the chances that no needle inQsame actually
crosses the surface. However, too large a σh may lead to
needles crossing the surface twice, which we assume does
not occurs in our construction of the training loss. On the
contrary, too small a σh reduces the influence of Lopp to
a small neighborhood around the points in PS , preventing
a good surface coverage and also increasing the chance of
having needles in Qsame that accidentally cross the surface.
As a rule of thumb, we set σh(p) = dp/3, where dp is the
distance between a point p to its nearest neighbor in PS .

Training procedure. We train our model in an end-to-
end fashion, with Adam [38] and a learning rate of 5∗10−4.
During training, the points are either randomly sampled on
the shape if an input mesh is available or picked in the orig-
inal point cloud, e.g., for lidar scenes from KITTI. At test
time, we predict the occupancy values on a grid and use a
Marching Cubes algorithm [44] for shape extraction.

Metrics and dataset pre-processing. For each experi-
ment, and in order to compare with previous works, we use
the same dataset, same pre-processing and same metrics as
used in the compared papers, as mentioned in each table
caption (IoU, `1 and `2 Chamfer distance, worst Chamfer
distance of the best x% of points).

4.1. Synthetic point clouds

To compare with state-of-the art methods, we evaluate
our self-supervised formulation, named NeeDrop, on point
clouds sampled uniformly on closed shapes. Tab. 1 and
Fig. 3 show our results on ShapeNet [10] and DFaust [5].

Evaluation on ShapeNet. We train our model on two
configurations of ShapeNet. We first present results on the
car subset (Tab. 1(a)) as in [12, 13], where the raw meshes
are closed using the pre-processing of [67].

In Tab. 1(b), we extend the experiment to all ShapeNet
categories of [46]; qualitative examples are presented in
Fig. 3(a). For each compared method, we highlight its level
of supervision, on distance and/or sign/occupancy. Unlike
NeeDrop, all other methods (except ShapeGF) have a cer-
tain level of supervision. Despite the absence of supervision



Supervision Chamfer `2 ↓
Dist. Sign Mean Median

Input: 300 points - - 6.649 6.441

PSGN [23] Points 3 7 1.986 1.649
DMC [43] Explicit 3 3 2.417 0.973
OccNet [46] Implicit 7 3 1.009 0.590
IF-Net [12] Implicit 7 3 1.147 0.482
NDF [13] Implicit 3 7 0.626 0.371

NeeDrop Implicit 7 7 1.703 1.109
NeeDrop∗ Implicit 7 7 1.575 0.952
NeeDrop-FP Implicit 7 7 2.461 1.897

(a) ShapeNet cars, closed meshes [67], results ×10−4, cf. [13].

Supervision Eval. metrics
Input: 300 pts+noise Dist. Sign IoU ↑ Cha. `1 ↓
3D-R2N2 [15] Voxels 7 3 0.565 0.169
PSGN [23] Points 3 7 - 0.144
ShapeGF§ [8] Points 7 7 - 0.083
DMC [43] Explicit 3 3 0.674 0.117
OccNet [46] Implicit 7 3 0.778 0.079

NeeDrop Implicit 7 7 0.666 0.112
NeeDrop∗ Implicit 7 7 0.675 0.111
NeeDrop-FP Implicit 7 7 0.669 0.106

(b) ShapeNet subset of [15], all classes, results ×10−1, cf. [46].

No. points Superv. Chamfer `2 ↓
Method Train Test Dist. 5% 50% 95%

DeepSDF† [48] 16k 16k 3 3.45 45.03 294.15
DeepSDF‡ [48] 16k 16k 3 1.88 31.05 489.35
AtlasNet [31] 16k 16k 3 0.10 0.17 0.37
SAL [1] 16k 16k 3 0.07 0.12 0.35
IGR [29] 8k 16k 3 4.79 12.04 104.08

SAL§ [1] 300 300 3 0.086 0.134 0.421
SAL§ [1] 300 - 7 Failed to converge
IGR§ [29] 300 - 7 Failed to converge

NeeDrop 300 300 7 0.269 0.433 1.149
NeeDrop∗ 300 300 7 0.107 0.175 0.811
NeeDrop-FP 300 300 7 0.202 0.526 1.322
Here, 3denotes true distance to shape or distance computation from dense input

(c) DFaust, results ×10−3, cf. [1].
†‡: Implemented in [1], where the sign of the distance is computed from the ori-

ented normals provided with the scans (†) or locally with Jets [9] followed by
a consistent orientation based on minimal spanning trees (‡).

§: Trained by ourselves using original code made available.
∗: Model finetuned with σh/2 from the initial model.

-FP: Model trained on the same (not re-sampled) points at each epoch.

Table 1. Reconstruction from complete point clouds.

in NeeDrop, we obtain competitive results on both bench-
marks. We are on par with DMC [43], and only outper-
formed by OccNet [46] among those methods. ShapeGF

has a lower Chamfer distance but outputs noisy point clouds
(Fig. 3(a)) from which constructing a mesh in not straight-
forward. In contrast, the occupancy predicted by NeeDrop
allows for direct mesh extraction. (Trying to compare with
IGR [29] on ShapeNet failed because we could not find pa-
rameters to reconstruct acceptable surfaces.)

Evaluation on DFaust. When comparing on DFaust
(Tab. 1(c)), we include results for two variants of DeepSDF
[48] reported in SAL [1]. The problem is that DeepSDF
learns from a signed distance to a closed shape, whereas
DFaust meshes are open. In the first variant DeepSDF†,
the sign of the distance is computed based on the oriented
normals provided with the scans; in the second variant
DeepSDF‡, the normals are estimated locally with Jets [9]
and oriented consistently using minimal spanning trees [1].

All methods reported in [1] were trained on very dense
point cloud (16k points), while we target the much more
difficult case of learning from low resolution point clouds.
We thus also trained SAL [1] with the same amount of
point as NeeDrop (300 pts), with supervision on the dis-
tance to the shape as well as without supervision, i.e., re-
placing the distance to the surface by the distance to the
point cloud. Results in Tab. 1(c) with identical training set-
tings (batch size 32, 2048 query pts) show that, as long
as distances are measured w.r.t. the real surface, the per-
formance of SAL degrades gracefully when the number of
training points goes down from 16k to 300. However, when
the distance to the surface has to be approximated from the
training points, SAL fails to produce meshes when training
only on 300 pts (and even on 1k pts). In fact, SAL may yield
unsigned distance functions, which are also solutions to the
loss; Marching Cubes then produce no surface. The specific
network initialization of SAL tries to make it less likely, but
unsigned distances still seems to be preferred solutions for
sparse point clouds without exact distance supervision. The
likely reason is that SAL solves an ill-posed problem: both
the signed and the unsigned distance to the shape are solu-
tions to the optimization problem. Obtaining a signed func-
tion is only favored by a particular initialization of the net-
work, but not explicitly enforced during optimisation. In the
self-supervised scenario with sparse point clouds, no regu-
larisation prevents the implicit function to change sign be-
tween two points, where the actual surface should be, as the
actual distance to the surface is not available. In contrast,
NeeDrop enforces the surface to be supported by PS and
does not require any well-designed initialization.

SALD [2] does not offer code. Yet we expect sensitivity
to the regularization weight for sparse data as a higher value
is required to connect distant points with an iso-surface.

For IGR [29], we ran an experiment with 300 points as
input for training (default is 8k pts). After a good train-
ing start, we observed divergence around epoch 200. We
also used the the pre-trained model (trained with 8k points,
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Figure 3. Qualitative comparison of NeeDrop to state-of-the-art methods, in ShapeNet, DFaust and KITTI.



Figure 4. KITTI pedestrians: input point cloud and reconstruction.

tested with 16k) provided by the authors. IGR produces
artifacts around the shape (see Fig. 3), which explains its
worse quantitative performance in terms of Chamfer dis-
tance. However, we observe that it is the model which qual-
itatively recovers the best the details of the shapes.

Finetuning with a smaller σh. This parameter is critical
in our method. Its default value ensures a good convergence
for all datasets we experimented with. Yet, small details
may be lost with a too large σh. In the spirit of curriculum
learning, we finetune on some epochs the model previously
learned with σh/2, (named NeeDrop∗ in Tab. 1(c)) and ob-
serve a significant improvement. Fig. 3 visually illustrates
the improvement on a sample from the DFaust dataset. With
the initial model, hands and feet, i.e., thin surfaces, are es-
timated with surface blobs, which are reduced after finetun-
ing. We also observe the appearance of the belly button and
the eyebrows. Besides, our reconstruction with 300 pts is
almost on par with SAL with 16,384 pts. See the supp. mat.
for a study of needle crossing validity for varying σh.

Fixed-point training. For comparison purposes, we
sample new points on each shape at each epoch as in previ-
ous work. Yet, we also test our method with the same fixed
300 points sampled on each shape (NeeDrop-FP in Tab. 1).
We observed that fixed-point training is stable. Besides,
training with fixed points reaches almost the same perfor-
mance as training with point re-sampling, except when the
dataset is small (ShapeNet car subset vs the 13 ShapeNet
classes); but even in this case, we still outperform a few
supervised methods while not using exact distance or sign.

4.2. Real point clouds

Cars of KITTI. We perform a qualitative evaluation of
the proposed method on the KITTI dataset. The input data
are partial point clouds captured with lidars that either rep-
resent a car, a truck or a van, as extracted from the boxes of
the detection dataset. In Figure 3(c), we present a compari-
son of our method against two direct (non-learned) meth-
ods, Poisson meshing [37] and Ball Pivoting [4], and a

learning-based method, AtlasNet [31]. An image acquired
by a RGB camera along with the point cloud is showed on
Figure 3(c) for illustration purposes, but it is not used as in-
put. In this experiment, we take advantage of the car’s plan
of symmetry for all methods: as KITTI cars are given in 3D
boxes, with frame origin on the box center and axis y along
the car length, we use as input a symmetrized point cloud
w.r.t. the plane 0yz. For Poisson meshing and Ball Pivoting,
reasonable hyper parameters were estimated through a grid
search. AtlasNet was trained using a sphere primitive.

As expected, the direct methods fail to provide a proper
extrapolation of the shape far from the symmetrized in-
put point cloud. While Poisson meshing provides a closed
mesh, it barely contains any detail. Ball Pivoting however
produces a detailed mesh around the input point cloud but it
fails to reconstruct the hidden parts. AtlasNet is able to take
advantage of the symmetry but fails when the front or back
of the car is missing (see first and last row in Figure 3(c)).
In constrast to these methods, NeeDrop is able to take ad-
vantage of the existing symmetry, to produce a realistic car
shape, and to reconstruct hidden parts of the cars.

KITTI pedestrians. As a last experiment on KITTI,
we tried a very challenging target for shape reconstruction:
pedestrians. Unlike for cars, we cannot symmetrize the in-
put point cloud and must learn directly on the raw point
cloud. In addition, pedestrian shapes are much more diverse
than cars, which are globally convex. We see on Fig. 4 that,
despite the task difficulty, our method is able to recover the
coarse shape of a pedestrian. Our failure to capture human
limbs on KITTI is not due to σh, as our method works well
on DFaust. It is mostly due to partial views, that cannot
be symmetrized, unlike cars; it seems there are then many
solutions, centered around merged limbs. Other factors are
morphology variety, clothing and hand-carried items, while
DFaust only features 10 different people in underwear.

5. Conclusion
In this study, we investigate self-supervised shape recon-

struction and representation. To this end, we consider “nee-
dles” dropped in 3D space around the shape, for which we
are able to estimate if they cross the surface or not. We also
define a loss on these line segments suitable for neural net-
work training. The resulting approach, NeeDrop, is the first
totally self-supervised approach for learning an implicit oc-
cupancy function from a collection of shape available only
as sparse point clouds. We show that our method is compet-
itive with state-of-the-art supervised or partially supervised
reconstruction methods. We conduct qualitative compar-
isons on datasets with ground-truth meshes and qualitative
experiments on the challenging KITTI dataset. We success-
fully reconstruct plausible shapes from partial point cloud
of cars and show promising results on the very challenging
pedestrian category.
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[36] Abhishek Kar, Christian Häne, and Jitendra Malik. Learn-
ing a multi-view stereo machine. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, pages 364–375, 2017.

[37] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[38] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

[39] Florian Kluger, Hanno Ackermann, Eric Brachmann,
Michael Ying Yang, and Bodo Rosenhahn. Cuboids revis-
ited: Learning robust 3d shape fitting to single rgb images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13070–13079, 2021.

[40] Lubor Ladicky, Olivier Saurer, SoHyeon Jeong, Fabio Man-
inchedda, and Marc Pollefeys. From point clouds to mesh
using regression. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3893–3902, 2017.

[41] Georges-Louis Leclerc, comte de Buffon. Supplément à
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