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Abstract

Motivated by the need for estimating the 3D pose of
arbitrary objects, we consider the challenging problem
of class-agnostic object viewpoint estimation from images
only, without CAD model knowledge. The idea is to lever-
age features learned on seen classes to estimate the pose
for classes that are unseen, yet that share similar geome-
tries and canonical frames with seen classes. We train
a direct pose estimator in a class-agnostic way by shar-
ing weights across all object classes, and we introduce a
contrastive learning method that has three main ingredi-
ents: (i) the use of pre-trained, self-supervised, contrast-
based features; (ii) pose-aware data augmentations, (iii) a
pose-aware contrastive loss. We experimented on Pas-
cal3D+, ObjectNet3D and Pix3D in a cross-dataset fash-
ion, with both seen and unseen classes. We report state-of-
the-art results, including against methods that additionally
use CAD models as input. Code is available at https:
//github.com/YoungXIAOl3/PoseContrast.

1. Introduction

Object 3D pose (viewpoint) estimation aims at predict-
ing the 3D rotation of objects in images with respect to the
camera. Deep learning, as well as datasets containing a va-
riety of pictured objects annotated with 3D pose, have led
to great advances in this task [63, 56, 42, 67, 34].

However, they mainly focus on class-specific estimation
for few categories, and they mostly evaluate on ground-truth
bounding boxes. It is an issue when encountering objects of
unseen classes or with out-of distribution appearance, for
which no training data was available and no bounding box
is given, which is a likely circumstance for robots in uncon-
trolled environments, e.g., outdoors vs in factories.

Our goal is to address this issue. Given training data for
some known classes (images with bounding boxes of multi-
ple objects, class labels and 3D pose annotations), we want
to detect and estimate the 3D pose of objects of unknown
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Figure 1. Task Illustration. Given an RGB image picturing an
object, we aim to estimate its 3D pose (viewpoint) without know-
ing its class or shape. It is made possible by training a model for
all objects in a class-agnostic way and applying it to objects of
unseen classes having similar geometries as training objects and
similar canonical frames, e.g., an unseen desk being similar to a
seen table. (Red boxes are detections of a class-agnostic Mask R-
CNN and the 3D models here are only used to visualize the pose.)

classes, given only an RGB image as input (Fig. 1), vs also
using CAD models of objects as some methods do [75, 49].

This new task relies on two assumptions. First, it ap-
plies to unseen classes that share similarities with seen
classes. For example, one may expect to orient an unseen
bed when trained on seen chairs and sofas, but not a wrench.

The other assumption is that similar classes have a con-
sistent canonical pose, i.e., have aligned similarities (Figs. 2
and 5). It is somehow a weak assumption, satisfied by all
datasets we know of, probably because many objects are
used consistently w.r.t. verticality, and feature a notion of
left- and right-hand sides, or at least a main vertical sym-
metry plane, which is enough to define a “natural” canonical
frame, possibly up to symmetry. Besides, if similar classes
in a training set have inconsistent canonical poses, they can
be normalized by a systematic rotation; no 3D shape is
needed for that. In this first work, we only consider the
general case, disregarding the different forms of symmetry.

Overview. To detect arbitrary objects and estimate their
pose, although not in training data, we use a class-agnostic
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Figure 2. Pose-Aware Contrastive Loss. In usual self-supervised
contrastive training, the network learns to pull together in feature
space the query (e.g., chair) and a variant (e.g., flipped
image), while pushing apart the query from negatives (different
objects, e.g., sofa), ignoring pose information. Instead, we exclude
flipped , whose pose actually differ from the query, and
do not push apart negatives with similar poses (e.g., sofa).

approach for both object detection and pose estimation.

Approaches like [18, 78, 50] have already demonstrated
the effectiveness of this setting. They detect 2D keypoints
regardless of the class of the object, estimate 2D-3D key-
point correspondences, and use a PnP algorithm [32] to
compute the pose. But besides being indirect, these meth-
ods need a suitable design of class-agnostic keypoints on
various object geometries. In contrast, our approach es-
timates the 3D pose directly from the image embeddings,
without any intermediate representation.

Others assume a 3D model of the object is given at test
time (sometimes also at training time) [75, 47, 49, 8], either
provided by a human or retrieved automatically by an algo-
rithm, which is hard due to the image-shape domain gap and
to the number of classes to discriminate [55, 40, 70], and it
is limited by the database of possible 3D models to handle.
In comparison, our method relies only on RGB images both
at train and test time, without any CAD model as input.

To that end, we train a class-agnostic pose estimator by
sharing weights across all object classes. And we propose a
contrastive-learning approach to learn geometry-aware im-
age embeddings that are optimized for pose estimation.

Recent contrastive-learning approaches create discrim-
inative image features by learning to distinguish pairs of
identical objects with different appearances thanks to a
synthetic transformation (positives), from pairs of differ-
ent objects (negatives). Inspired by image-level discrimi-
nation [23, 4, 73], we adapt the common contrastive loss
InfoNCE [45] so that it discriminates poses rather than cat-

egories: we propose PoseNCE, a pose-aware contrastive
loss that pushes away in latent space the image features
of objects having different poses, ignoring the class of
these objects as we aim at class-agnostic pose estimation
(see Fig.2). Besides, departing from the binary separa-
tion between positives and negatives in classical InfoNCE,
PoseNCE takes into account the level of pose difference be-
tween two objects as a weighting term to reduce or stress the
negativeness of a pair, regardless of the class (see Fig. 5).

Concretely, we use both an angle loss and a contrastive
loss. We also curate the contrastive learning transforma-
tions to distinguish pose-variant data augmentations, e.g.,
horizontal flip, and pose-invariant data augmentations, e.g.,
color jittering. The former is used to actually augment the
dataset, while the latter is used to create similar variants to
construct positive and negative pairs. And rather than train-
ing from scratch on available datasets, that are relatively
small, we initialize our network with a contrastive model
trained on a large dataset in a self-supervised way.

Last, we propose a class-agnostic approach for both ob-
ject detection and pose estimation. For this, we train a Mask
R-CNN in a class-agnostic way for generic object detection,
and pipeline it with our pose estimator, thus addressing the
coupled problem of generic object detection and pose esti-
mation for unseen objects. It is a more realistic setting w.r.t.
existing class-agnostic pose estimation methods, that only
evaluate in the ideal case of ground-truth bounding boxes.

Our main contributions are as follows:

* We define a new task suited for uncontrolled set-
tings: class-agnostic object 3D pose estimation, possi-
bly coupled and preceded by class-agnostic detection.

* We propose a contrastive-learning approach for class-
agnostic pose estimation, which includes a pose-aware
contrastive loss and pose-aware data augmentations.

* We report state-of-the-art results on 3 datasets, includ-
ing against methods that also require shape knowledge.
(And code will be made public upon publication.)

2. Related Work

Class-Specific Object Pose Estimation. While instance-
level 3D object pose estimation has long been studied
in both robotic and vision communities [25, 2, 28, 53,
59, 54, 72, 58, 44, 31], class-level pose estimation has
developed more recently thanks to learning-based meth-
ods [56, 63, 62, 42, 30, 66, 18, 17, 67, 78, 61]. These
methods can be roughly divided into two categories: pose
estimation methods that regress 3D orientations directly
[63, 56, 42, 66, 75], and keypoint-based methods that pre-
dict 2D locations of 3D keypoints [18, 17, 67, 78, 61].
Still, annotating 3D pose for objects in the wild is a te-
dious process of searching best-matching CAD models and
aligning them to images [71, 70]. It does not scale to large
numbers of objects and classes. While good performance is



achieved on supervised classes, generalizing beyond train-
ing data remains an important, yet under-explored problem.

Class-Agnostic Object Pose Estimation. To circumvent
the problem of limited labeled object classes, a few class-
agnostic pose estimation methods have recently been pro-
posed [15, 18, 78,75, 8, 50, 49]. In contrast to class-specific
methods that build an independent prediction branch for
each object class, agnostic methods estimate the object pose
without knowing its class a priori, which is enabled by shar-
ing model weights across all object classes during training.

[15] trains on multiple views of the same object instance
on a turntable. [18, 50] use the 3D bounding box corners as
generic keypoints for class-agnostic object pose estimation.
However, [ 18] only reports performance on seen classes and
[50] focuses on cubic objects with simple geometric shape.
Instead of using a fixed set of keypoints for all objects, [78]
propose a class-agnostic keypoint-based approach combin-
ing a 2D keypoint heatmap and 3D keypoint locations in the
object canonical frame. These methods are robust on tex-
tured objects but fail with heavy occlusions and tiny or tex-
tureless objects. In contrast, our method ignores keypoints,
directly infers a pose and is less sensitive to texturelessness.

Rather than relying only on RGB images, another group
of class-agnostic pose estimation methods [75, 8, 49] use
3D models, in particular at test time to adapt to objects un-
seen at training time. [75] aggregates 3D shape and 2D
image information for arbitrary objects, representing 3D
shapes as multi-view renderings or point clouds. [8] pro-
poses a lighter version of [75] encoding the 3D models into
graphs using node embeddings [20]. [49] matches local
images embeddings with local 3D embeddings, then use
RANSAC and PnP algorithms to recover an object from a
database of CAD models, and a pose. In contrast, we need
no 3D shape, neither at training nor at testing time.

Pose Loss. 3D pose dissimilarity has been measured in-
directly, e.g., with a distance on reprojected features such
as keypoints (see above), or directly on pose parameters.
In the latter case, the chosen representation and penalty
may yield more or less artefacts due to, e.g., discontinuities
in the parameterization (Euler angles, quaternions [79]),
gimbal lock [19], anti-podal symmetry (quaternions), non-
uniform parameter distributions, classification discretiza-
tion [63, 56, 12], single-mode analysis as with regres-
sion [46, 48, 39], or parameter-space biases when penal-
izing with the L2-norm of the difference of pose param-
eters, including with the exponential twist representation
[80]. We use a combination of classification and regres-
sion [42, 21, 38, 33] of Euler angles similar to [75] (offset
regression from bin center), which better separates modes
in case of pose ambiguities, but we penalize a geodesic dis-
tance on the unit sphere rather than the Euclidean distance
of parameters, which does not have dimensional biases.

Contrastive Learning. Instead of designing pretext tasks
for unsupervised learning [10, 43, 77, 16], powerful image
features can be learned by contrasting positive and negative
pairs [69, 45, 60, 41, 3, 23, 6, 4, 5, 29]. Among the various
forms of the contrastive loss function [22, 64, 26, 69, 45],
InfoNCE [45] has become a standard pick in many methods.

While most contrastive-learning approaches work in the
unsupervised setting, [29] operates with full supervision.
Considering the class label of training examples, features
belonging to the same class are pulled together while fea-
tures from different classes are pushed apart.

Similar to [29], we also propose a contrastive loss that
works in the fully-supervised setting. However, instead of
focusing on semantic label information, we design it for our
geometric task, taking into account the pose distance be-
tween different examples. Moreover, we also curate data
augmentations as advocated in [73], leaving out those that
would be harmful for our pose estimation task.

Besides requiring 3D shapes at training time and operat-
ing on RGB-D data, [!] is not pose-aware: in the InfoNCE
spirit, it creates positive pairs from the same known shape
model and negative pairs from known different shapes, ig-
noring pose. Besides, it favors features whose L2-distance
is equal to their pose L2-distance, which is a heavy burden
for feature learning, especially for objects with large shape
variations. In comparison, we simply contrast features w.r.t.
pose dissimilarity. [68], which operates in a class-specific
way and also requires known 3D shapes or at least multiple
views or renderings of each object, uses a triplet loss whose
formulation can be related to our more general PoseNCE
loss, but it does not take into account the level of pose dis-
similarity nor pose-aware data augmentation.

Coupled Detection and Pose Estimation. Very few works
consider the realistic scenario of detecting unknown ob-
jects in images and inferring their pose. [49] trains a class-
agnostic Mask R-CNN and pipelines it with a pose estima-
tor, as we do, but it applies to industrial objects and requires
knowing the 3D shapes, including for novel instances. [15],
which trains with objects on a turntable, does not do any
detection but somehow also applies to ImageNet, i.e., with
well-centered, single-object images. None of these methods
is thus applicable to objects in the wild. And although [18]
predicts a 3D box size (not location) for PnP reprojection, it
operates on ground-truth 2D bounding boxes. We can only
compare in the class-specific detection and pose estimation
setting [66, 17] and, in the class-agnostic setting, against
methods also requiring an input 3D shape [75].

3. Method

Given an RGB image I containing an object at a given
(known or detected) image location, we aim to estimate the
3D pose R of the object with no prior knowledge of its class
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Figure 3. Pose Parameters (left). Network Architecture (right):

from an image crop, the encoder Enc produces an embedding,
which is given to the predictor Pred to produce pose angles.

Azimuth, a

or shape. To that end, we crop the image region contain-
ing the object, encode it to produce class-agnostic features,
from which the object 3D pose is directly predicted (Fig. 3).

3D Pose Parameterization. To predict the 3D rotation
matrix R of the pictured object, we decompose it into three
Euler angles as in [56, 75]: azimuth «, elevation /3, and in-
plane rotation «y, with v,y € [—m,7) and 8 € [—7/2,7/2].

Recent work on pose estimation shows a higher perfor-
mance with a more continuous formulation (cf. [79]) mixing
angular bin classification and within-bin offset regression
[75, 74]. Concretely, we split each Euler angle 6 € {«, 3, v}
uniformly into discrete bins 4 of size B (= 7/12 in our ex-
periments). The network outputs bin classification scores
po.i €10, 1] and offsets dg ; € [0, 1] within the bin.

Angle Loss. We use a cross-entropy loss for angle bin
classification and a smooth-L1 loss for bin offset regression:

[:ang = Z £cls (bineape) + A Ereg (oﬁsetg, 59) (1)
0e{a,B,v}

where bing is the ground-truth bin and offsety is the offset
for angle 6. The relative weight X is set to 1 in our experi-
ments. The final prediction for angle 6 is obtained as:

0= (j+0p;)B with j = argmaxpy; )
1

where i € [—12..11] for o, y, and 7 € [—6..5] for 3. The an-
gle loss is complemented by a contrastive loss (cf. Sect. 3).

Network Architecture. The architecture of our network
is depicted in Figure 3 (right). It consists of two modules:
an image encoder Enc(-) and a pose predictor Pred(-).
For feature extraction, we use a standard CNN, namely
ResNet-50. We crop the input image to the targeted ob-
ject and pass it through the encoder network until the max-
pooling layer. It provides a 2048-dimension feature vector.

Pose-Variant

Pose-Invariant

Figure 4. Pose-Aware Data Augmentations: while pose-
invariant data augmentations do not alter the pose, pose-variant
augmentations modify it and cannot be used as positives.

We then pass the image embedding through the pose pre-
dictor, which is a multi-layer perceptron (MLP) with 3 hid-
den layers of size 800-400-200, each followed by batch nor-
malization and ReLU activation. Contrary to class-specific
methods [56, 63, 34, 42] that use one prediction branch per
class, we use a single prediction branch for all objects.

Contrastive Features. Datasets of images with pose an-
notations are scarce and small. (One of the reasons is prob-
ably that pose is much harder to annotate than class, espe-
cially for images in the wild.) It makes it difficult to learn a
high-quality pose estimator. Rather than learning a network
from scratch, as most other methods do, or from an initial
ImageNet classifier, whose bias is not particularly suited
for pose estimation, we initialize our predictor using a pre-
trained contrast-based network [6]. We show that it plays a
significant role in our high performance (cf. Sect. 4.2).

Self-Supervised Contrastive Loss. In self-supervised
contrastive learning [4, 23], the contrastive loss serves as an
unsupervised objective for training an image encoder that
maximizes agreement between different transformations of
the same sample, while minimizing the agreement with
other samples. Concretely, we consider a batch (I}) kE[L..N]
of training samples, transformed into (1: k)ke[1..N] by data

augmentation, and encoded as f = Enc(I;). For any in-
dex k* €[1..N], we consider an alternative augmentation
fq of I+ (the query), with embedding f, = Enc(fq), and
we separate the positive pair (g, k™) from the negative pairs

(@, k7 )k—e1..N)\{k+} With the following InfoNCE loss:

exp(fq fu+/T)
Eke[l..N] exp(fq fi/T)

where 7 is a temperature parameter [4] (0.5 in experiments).

3)

Lintonce = — log



Figure 5. Pose-Aware Contrast. Instead of treating all negatives
(right images) equally, as for (left images), we give more
weight to negatives with a large rotation (rightmost) and less to
those with a small rotation, regardless of their semantic class.

Pose-Aware Data Augmentations. As illustrated in Fig-
ure 4, we divide data augmentations into two categories.
Pose-invariant augmentations transform the image without
changing the 3D pose of objects: color jittering, blur, crop,
etc. On the contrary, pose-variant augmentations change
the 3D pose at the same time: rotation and horizontal flip.
More precisely, an image rotation of angle ¢ corresponds
to an in-plane rotation of angle v + ¢ for the object, and a
horizontal image flip corresponds to a change of sign of az-
imuth « and in-plane rotation . (We assume mirror-imaged
objects are realistic objects with identical canonical frame.)
In our experiments, ¢ varies in [—15°,15°] since 95% of
the images in Pascal3D+ [71] fall in this range.

Unlike self-supervised learning methods that make use
of all data augmentation techniques at the same time, we
distinguish two augmentation times. At batch creation time,
we only apply pose-variant data augmentations, i.e., a small
rotation or a horizontal flip, and update the object pose in-
formation accordingly. At contrast time, i.e., when creating
positive and negative pairs, we only apply pose-invariant
data augmentations. The latter is motivated by [73]: a blind
use of any data augmentation could be harmful.

Pose-Aware Contrastive Loss. The contrastive loss in
Eq. (3) is designed for unsupervised learning with no an-
notation involved. While efficient for learning instance-
discriminative image embeddings, it is not particularly
suited for contrasting geometric cues towards pose estima-
tion: the query embedding is contrasted away from the em-
beddings of negative samples even if their pose is identical
or similar to the pose of the query object. While the case of

different views of identical or similar instances can be disre-
garded in usual contrastive learning because of its practical
rarity, similar and even identical poses are common in a sin-
gle batch. What we want, instead of contrasting the object
semantics, is to learn pose-variant image features.

We thus introduce a new pose-aware contrastive loss, il-
lustrated in Figure 5. It takes into account the level of sam-
ple negativeness: the larger the pose difference, the higher
the weight in the loss. (There is thus no need to define a no-
tion of pose similarity.) Concretely, for each pair (g, k), we
compute a normalized distance d(R4, Ry) € [0, 1] between
the associated 3D pose rotations R,, Ry and we use it as a
weight in our pose-aware contrastive loss PoseNCE:

exp(fq-fi+ /)
Zke[l..N} d(Rg, Ry) exp(fq-fi/T)
“)
with d(Ry, Ry+) =0 as R, = Ry+. Our distance is defined
as the normalized angle difference between the rotations,
which is akin to a geodesic distance on the unit sphere:

d(Rq, Ry) = ARy, Ry)/m  with
t(RIRy) —1, O

SOARS

Following [76], PoseNCE can be seen as softer or smoother
version of InfoNCE [45], which itself is softer than hard
pairwise or triplet losses. It can also be seen as a soft treat-
ment of easy and hard negatives [65].

Last, the total loss adds the angle and contrastive losses:

EposeNCE = - IOg

ARy, Ry) = arccos (

L= »Cang + K L:poseNCE (6)

The relative weight & is set to 1 in our experiments.

4. Experiments

In this section, we introduce our experimental setup, an-
alyze results on three commonly-used datasets, provide an
ablation study and discuss the limitations. The supplemen-
tary material include details on datasets, splits, training, im-
plementation, and more classwise results. It also provides a
study on the temperature parameter, and more visual results.

Datasets. We experiment with 3 commonly-used datasets
for object pose estimation. Pascal3D+ [71] contains the 12
rigid classes of PASCAL VOC 2012 [13], with approximate
poses. ObjectNet3D has slightly more accurate poses for
100 object classes. Pix3D [57] features 9 classes, two of
them (‘tool’ and ‘misc’) not appearing in Pascal3D+ nor
ObjectNet3D, with even more accurate poses.

Evaluation Metrics. Unless otherwise stated, ground-
truth object bounding boxes are used in all experiments. We
compute the most common metrics [63, 56]: Acc30 is the
percentage of estimations with rotation error less than 30
degrees; MedErr is the median angular error in degrees.



Method w/3D  PnP Backbone aero bike boat Dbottle bus car  chair table mbike sofa train tv mean
Grabner et al. [ 18] v ResNet-50 109 122 234 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5
—  StarMap [78] vT  ResNet-18* | 10.1 145 30.3 9.1 3.1 6.5 11.0 237 14.1 1.1 74 13.0 | 12.8
5 3DPoseLite [$] v ResNet-18 - - - - - - - - - - - - 13.4
3 PoseFromShape [75] v ResNet-18 11.1 144 223 7.8 32 5.1 124 13.8 11.8 8.9 5.4 8.8 10.4
p= PoseFromShape [75] v ResNet-50 109 145 215 7.5 33 5.0 112 142 11.6 9.2 55 9.0 10.3
PoseContrast (ours) ResNet-50 10.0 136 183 7.2 2.8 4.6 9.8 9.2 11.5 11.0 5.6 11.6 9.6
Grabner et al. [18] v ResNet-50 080 082 057 090 097 094 072 0.67 090 080 082 0.85 | 0.1
« StarMap [78] vT  ResNet-18* | 0.82 0.86 050 092 097 092 079 0.62 0.88 092 0.77 0.83 | 0.82
2 3DPoseLite [§] v ResNet-18 080 082 058 093 096 092 0.77 0.57 0.88 082 0.80 0.79 | 0.80
8  PoseFromShape [75] v ResNet-18 083 086 060 095 096 091 079 0.67 0.85 085 0.82 0.82 | 0.83
< PoseFromShape [75] v ResNet-50 083 086 061 095 096 092 0.80 0.67 084 082 082 0383 | 083
PoseContrast (ours) ResNet-50 085 084 064 094 097 095 0.86 0.71 0.91 090 0.82 0.85 | 085

Table 1. 3D Pose Estimation of Class-Agnostic Methods on Pascal3D+ [71] (all classes seen). All methods are evaluated with ground-
truth bounding boxes. *The authors observe similar or worse performance with ResNet-50 [78]. TStarMap actually obtains the rotation by
solving for a similarity transformation between the image frame and world frame, weighting keypoint distances by the heatmap value.

46 61 130 166 297 394 | 739 1092 2894 5818
Method w/3D 2D Bbox | tool misc b-case w-drobe desk bed | table sofa chair | mean global
3DPoseLite [8] v GT 009 0.10 0.62 0.57 0.66 058 | 040 094 050 | 050 0.58
g PoseFromShape [75] * v GT 0.07 028 071 0.65 071 054 | 053 094 079 | 058 0.75
< PoseContrast (ours) GT 009 0.18 0.81 0.68 078 0.68 | 0.54 097 086 | 0.62 0.80
Q
< PoseFromShape [75] v pred 0.07 0.23 0.68 0.55 071 051 ] 053 093 0.77 0.55 0.73
PoseContrast (ours) pred 0.09 0.16 0.72 0.58 077 0.65 | 053 097 0.85 0.59 0.79

Table 2. Cross-dataset 3D Pose Estimation of Class-Agnostic Methods on Pix3D [57]. The methods are trained on the Pascal3D+ [71]
train set and tested on Pix3D, where 6 classes are unseen (novel) and 3 classes are already seen (table, sofa, chair). As the classes are
heavily unbalanced, we also report the global average (instance-wise rather than class-wise). We consider two kinds of input: ground-truth
(GT) 2D object bounding box, and predicted (pred) bounding box by a class-agnostic Mask R-CNN detector. *3DPoseLite [8] reports

much worse figures for PoseFromShape [

4.1. Main Results

Upper Bound: Performance on Seen Classes. To check
our performance before considering unseen classes, we first
evaluate on seen classes. We follow the common protocol
[18, 78] to train our model on the train split of Pascal3D+
[71] and test it on the val split. Both train and val splits share
the same 12 object classes. In Table 1, we compare with
state-of-the-art class-agnostic object pose estimation meth-
ods, using ground-truth bounding boxes. As we leverage on
contrast-based features, we use the available MOCOV2 pre-
trained ResNet-50 model [6]. But no MOCO pre-trained
ResNet-18 is available for comparison (see also Table 4).
For most categories, our class-agnostic approach consis-
tently outperforms other class-agnostic methods [18, 78],
including those that leverage a 3D shape as additional in-
put [75, 8]. In particular, our direct pose estimation method
achieves a clear improvement for the class ‘chair’, which
features a higher variety and geometric complexity than
other classes. It suggests that keypoint-based methods as
[18, 78] may fail to capture detailed shape information for
accurate 2D-3D correspondence prediction, while model-
based methods as [75, 8] do not construct powerful-enough
embeddings despite their access to an actual 3D shape.
Overall, we achieve the best average performance in both
metrics. In fact, we even outperform class-specific methods
] except one [34], that reaches

[ k] ’ bl s t) s

] than what we got here with our own runs, probably due to a wrong experimental setting.

MedErr 9.2° and Acc30 88%, while we get 9.6° and 85%.

Stressing Class Agnosticism: Cross-Dataset Evaluation.
To show our generalization ability, we follow the recent
protocol proposed in [8] and conduct a cross-dataset object
pose estimation. We train on the 12 classes of Pascal3D+
(that has approximate pose annotations) and test on the 9
classes of Pix3D (with accurate poses), where only 3 classes
coincide with Pascal3D+. Hence, 6 classes are totally un-
seen while 3 are already seen. Besides, methods that report
cross-dataset results on Pix3D usually assume that ground-
truth bounding boxes and 3D object models are given for
testing [75, 8]. We compare here in that same setting (see
below for using detected objects). Results are in Table 2.
For the three seen classes (‘table’, ‘sofa’, ‘chair’), our
method outperforms all compared methods. It is consistent
with results on Pascal3D+ (Table 1), including for the dif-
ficult class ‘chair’. More interestingly, we achieve a signif-
icantly better performance for certain unseen classes, even
though there is no prior knowledge of the testing objects for
our network. As expected, it applies to unseen classes that
share a similar shape and canonical frame as seen classes,
e.g., ‘desk’ and ‘table’. By sharing weights across different
classes during training, our class-agnostic pose estimation
network learns a direct mapping from image embeddings to
3D poses and can apply to unseen objects when they have
a similar shape as the training objects. But when the target



Figure 6. Qualitative Results on Pix3D. For each sample, we first plot the original image, then we visualize the pose prediction obtained
from the ground-truth bounding box and the detected bounding box, respectively. The top two rows show results for seen classes that
intersect with training data in Pascal3D+ (‘chair’, ‘sofa’, ‘table’), while the bottom two rows show results for novel classes. Note that the
3D CAD object models are only used here for pose visualization purpose; our approach does not rely on them for object pose prediction.

Method Setting  w/3D  Acc301  MedErr |
StarMap [78] no-shot 0.44 55.8

_ PoseContrast (ours) _ moshot __ ( 055 ___426
PoseFromShape [75] no-shot v 0.62 42.0
MetaView [61] 10-shot 0.48 434

_ PoseContrast (ours) __10-shot 060 387
FSDetView [74] 10-shot v 0.63 32.1

Table 3. Few-Shot Object Pose Estimation on ObjectNet3D [70].

We report results on the 20 novel classes of ObjectNet3D as de-
fined in [78, 61]. We compare both in no-shot and 10-shot settings.

objects possess a geometry widely differing from the train-
ing ones, such as ‘tool’ and ‘misc’, our purely image-based
method usually fails; PoseFromShape does a bit better be-
cause it leverages a shape model, but accuracy remains poor.
Some failure cases of our method can be seen in Figure 8.

Few-Shot Regime on ObjectNet3D. We first follow the
no-shot setting proposed in [78]: we train on 80 seen classes
and test on 20 unseen (novel) classes, cf. Table 3 (top).
Compared to PoseFromShape [75], both our approach and
StarMap [78] do not rely on 3D object models at test time,
but exploit geometric similarities shared between seen and
unseen classes. However, while StarMap struggles to pre-
dict precise 3D object coordinates and depth values, our
simpler network achieve a higher performance.

We then evaluate in the 10-shot setting as in [61, 74]:
the networks are first trained on the 80 seen classes, and
then fine-tuned with a few labeled images from the 20 novel
classes. Results are shown in Table 3 (bottom). Compared
to MetaView [61], that relies on class-specific keypoint pre-

diction, we again find that our approach can obtain a better
performance by sharing weights across all object classes.
In both settings, the best performing methods addition-
ally use 3D object models [75, 74]. Such a prior knowledge
of the geometry makes sense, especially for unseen objects
with shapes widely different shapes from training classes.
Yet, our method nonetheless achieves promising results on
these unseen classes, even compared to using a 3D model.
Class-Agnostic Object Detection and Pose Estimation.
To evaluate the coupling of generic object detection and
generic pose estimation, we train a Mask R-CNN with back-
bone ResNet-50 on COCO in a class-agnostic way, merging
all classes into a single one, then apply it directly on Pix3D
without fine-tuning. All 9 Pix3D classes can thus be de-
tected by our network, whether they are in COCO or not. To
compare with other methods, we adopt the well-established
metric Accp, , [17], that computes the percentage of ob-
jects for which the Intersection-over-Union (IoU) between
the ground-truth and the predicted boxes is larger than 50%
(ignoring false positives), to focus on objects of interest.
Compared to class-specific methods that predict object
localization together with their class [60, 17], our class-
agnostic detector localizes objects without classifying them
into categories, relying less on semantic information for
prediction. As shown in Figure 7, it provides a better detec-
tion accuracy and, more importantly, it enables the efficient
detection of objects that are not included in COCO classes.
Qualitative results are shown in Figure 6. We find that
both our object detector and our pose estimator can gener-
alize to unseen objects (two bottom rows). Quantitative re-
sults are given in Table 2. We observe that our object pose



[66] [17] Ours

100

90 tool misc  b-case w-robe desk bed chair  sofa  table

Figure 7. Object Detection on Pix3D. Results are given in
Accp, 5 as defined in [17]. We compare with two methods
[66, 17] that train a class-specific Mask R-CNN on COCO, then
fine-tune on a subset of Pix3D containing the same classes as
COCO. In contrast, our agnostic Mask R-CNN is only trained on
COCO and can generalize to classes not included in COCO.

Initialization Method Pre-train data Epochs Acc30 1 MedErr |

from scratch random — 15% 0.76 12.8
from scratch random — 75 0.81 11.9
supervised  classification = ImageNet 15 0.83 10.7

unsupervised SimCLR [4]  ImageNet 15 0.83 11.0
unsupervised SWAV [3] ImageNet 15 0.84 10.2
unsupervised MOCOv1 [23] ImageNet 15 0.84 10.3
unsupervised MOCOvV2 [6] ImageNet 15 0.85 9.6

Table 4. Network Initializations Evaluated on Pascal3D+. We
compare different initializations, training until convergence (*ex-
cept for the first line), showing the number of epochs required.

estimation, evaluated using predicted boxes, can outperform
existing methods evaluated using ground-truth boxes only.
This promising results suggests it is possible to develop au-
tonomous systems that perform class-agnostic object detec-
tion and pose estimation on unknown objects in the wild.

4.2. Ablation Study

Pre-trained Features. We initialize our image encoder
network with MOCOvV2 [6] to transfer rich features to the
down-stream task of object pose estimation. Yet, other pre-
trained features could be used [23, 4, 3], or learning from
scratch. Table 4 reports results with various initializations.
Learning from scratch is suboptimal, probably due to the
small dataset size, hence the relevance of using a pre-trained
network. Convergence is also 5 times faster. Also, contrast-
based pre-trained networks tend to perform best. In compar-
ison, [18] also pre-trains on ImageNet while [75] has simi-
lar results with or without ImageNet pre-training. [78] uses
a ResNet-18 trained from scratch for its keypoint-based 2-
stack hourglass network. Pre-training is not known for [8].

Adding a Contrastive Loss. Table 5 shows the relevance
of adding a contrastive loss to the angle loss for pose es-
timation. However, adding the original InfoNCE loss only
brings a minor improvement. A larger performance gap is
obtained with our pose-aware contrastive loss of Eq. (4).

Alternative Pose Distances. Our contrastive loss relies
on a distance between two poses d(R,, Ry), defined as the

Pascal3D+ Pix3D
Loss d(R;,Ry-) Acc30 MedErr|Acc30 MedErr
Lang N/A 0.83 102 | 056 36.1
Lang+LinfoNCE 1 0.83 100 | 0.57 352

Lang+Loosexce (A(Ri,Ry-)/m)z | 0.84 98 | 061 313
‘Cang"r[’poseNCE (A(Rl, Rk—)/ﬂ')z 0.85 10.0 0.62 32.6
Lang+Loosexce ARi, Ry )/m | 085 9.6 | 0.62 293

Table 5. Adding a Contrastive Loss, Alternative Pose Distances.
table, 94

chair, 175 table, 180

tool, 78

Figure 8. Visualization of Failure Cases. We show input image
crops and predicted object poses, with class name and prediction
error displayed at the top. Common failures come from ambiguous
appearances of symmetrical objects, or shapes out of distribution.

normalized rotation difference A(R,, Ry) /7. Table 5 com-
pares this definition to two variants: square and square root
of this distance. All three perform better than the InfoNCE
loss of Eq. (3), but the linear distance performs best.

4.3. Discussion

To understand where prediction errors come from, we
show some common failure cases in Fig. 8. Many mistakes
originate from symmetric objects, as their symmetry is nei-
ther modeled explicitly nor taken into account for metric
evaluation (e.g., defining or measuring a table orientation
by 180°). See a more detailed study in the supp. mat.

In fact, a few other works specifically treat symmetries
[27, 11, 1,7, 51]. It is largely orthogonal to our proposal
and left for future work. Note that it concerns only about
10-15% of the classes (e.g., table, bottle in Pascal3D+) and
has little impact here as annotations generally assume the
orientation with the smallest angle(s) w.r.t. the viewpoint.

Our approach also fails on unseen objects with shapes
differing completely from training ones, e.g., ‘tool’ and
‘misc’ of Pix3D. But it actually is a problem to all the
RGB-only class-agnostic methods [78, 18], not specifically
to ours, as generalizing towards unseen objects mainly re-
lies on similarities. Even shape-based methods [75, §], that
exploit extra shape knowledge, nevertheless also struggle to
get a good performance on these two classes.

5. Conclusion

We presented a new class-agnostic object pose estima-
tion approach based on a pose-aware contrastive learning.



Our network is trained end-to-end, leveraging on existing
unsupervised contrastive features. We empirically show on
various benchmarks that our method constitutes a strong
baseline for class-agnostic object pose estimation. We also
pave the way to more practical applications by successfully
combining it with a class-agnostic object detector.
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This supplementary material to the “PoseContrast” paper
(3DV 2021) provides:
Implementation and training details,
Dataset information,
Details on hyper-parameters,
Visualizations of the latent space,
Class-wise results on ObjectNet3D,
Additional visual results.
Histograms of azimuth prediction errors.
Note: reference numbers for citations used here are not the
same as references used in the main paper; they correspond
to the bibliography section at the end of this supplementary
material.
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A. Implementation and Training Details

Our experiments are coded using PyTorch. Code will be
made available upon publication.

A.1. Training for 3D Pose Estimation

We train our networks end-to-end using Adam optimizer
with a batch size of 32 and an initial learning rate of le-4,
which we divide by 10 at 80% of the training phase. Unless
otherwise stated, we train for 15 epochs, which takes less
than 2 hours on a single V100-16G GPU.

A.2. Network and Training for Object Detection

We use a class-agnostic Mask R-CNN [24] with a
ResNet-50-FPN backbone [35] as our instance segmenta-
tion network. The Mask R-CNN is trained on COCO
dataset [36], which contains 80 classes and 115k training
images. We use the open source repo of Mask R-CNN and
follow the training setting of [24], except that we adopt the
class-agnostic architecture, where all 80 classes are merged
into a single “object” category.

Our backbone network is initialized with weights pre-
trained on ImageNet [©]. During training, the shorter edge
of images are resized to 800 pixels. Each GPU has 4 images
and each image has 512 sampled Rols, with a ratio of 1:3 of
positives to negatives. We train our Mask R-CNN for 90k
iterations. The learning rate is set to 0.02 at the beginning
and is decreased by 10 at the 60k-th and 80k-th iteration.
We use a weight decay of 0.0001 and momentum of 0.9.
The entire training is carried out on 4 Nvidia RTX 2080Ti
GPUs. During the training, mixed-precision training is used
to reduce memory consumption and accelerate training.

B. Datasets

We experimented with three commonly-used datasets for
benchmarking object pose estimation in the wild. Table 7
lists their main characteristics.

While all these datasets feature a variety of objects and
environments, Pascal3D+ [71] contains only the 12 rigid

Dataset year # classes #img train/val* quality

Pascal3D+ [71] 2014 12 28,648/ 2,113 +
ObjectNet3D [70] 2016 100 52,048 /34,375 ++
Pix3D [57] 2018 9 0/ 5,818 +++

Table 7. Experimented Datasets: images of objects in the wild,
with different qualities of pose annotation due to aligned shapes.
*Only non-occluded and non-truncated objects, as done usually.
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Figure 9. Parameter Study of Temperature 7 in L,osencE. We
report the performance on the dataset Pascal3D+ [71] with 30-
degree accuracy (Acc30 1) and median error (MedErr J).

classes of PASCAL VOC 2012 [13], with approximate
poses due to coarsely aligned 3D models at annotation time.
ObjectNet3D distinguishes 100 classes in a subset of Im-
ageNet [9], with more accurate poses as more and finer
shapes were used for annotation. Recently, Pix3D [57] pro-
poses a smaller but more accurate dataset with pixel-level
2D-3D alignment using exact shapes; although it only fea-
tures 9 classes, two of them (‘tool” and ‘misc’) do not ap-
pear in Pascal3D+ nor ObjectNet3D. We test all methods
only on non-occluded and non-truncated objects, as other
publications do.

C. Hyper-parameters

We use parameters A=1, k=1, 7=0.5, and the trans-

formation rotation ¢ varies in [—15°,15°], i.e., [~ 95, 57)-

Figure 9 shows the influence of temperature parameter 7
in the proposed pose-aware contrastive loss LyoseNncE. By
varying this parameter from 0.05 to 1.0, we obtain the best
performance on Pascal3D+ when 7 = 0.5. While training
without this pose-aware contrastive loss can still reach an
overall accuracy at 0.83 and an overall median error at 10.2,
we note that the performance can be improved using the
propose loss Lyosence With a temperature parameter be-
tween 0.2 and 0.6, which is quite robust.



D. Visualizations of the Latent Space

To better understand the effect of contrastive learning,
we use t-SNE to visualize the features obtained by different
backbones. Results are presented in Figure 10.

The features are extracted from val images of Pascal3D+.
Considering the fact that the distributions of elevation and
inplane-rotation are highly centered around a specific value
compared to that of azimuth, we split the visualized features
into different clusters, with each cluster corresponding to
objects with similar azimuth angles. More specifically, we
divide the 360 degrees of azimuth angle into 24 bins, and
objects within the same azimuth bin are shown by the same
color.

As seen in Figure 10 (left), the features extracted using
a randomly-initialized network are more or less uniformly
distributed across different locations in the latent space, and
regardless of their 3D poses. On the contrary, the features
extracted using networks trained with contrastive learning
(MOCOV2 and PoseContrast) tend to form clusters, where
each cluster groups objects with similar azimuth angles. Ar-
guably, feature clusters are less spread with PoseContrast,
compared to MOCOV2, and actual azimuths are more con-
sistent within clusters.

When doing the same kind of visualization on Pix3D,
as shown in Figure 10 (right), we observe more or less
the same kind of distribution for the random initialization.
However, MOCOV2 has a harder time clustering the fea-
tures of Pix3D images, including regarding pose. Yet,
PoseContrast manages to produce clusters, and with a better
pose consistency.

E. Class-Wise Results on ObjectNet3D

In this section, we present the class-wise quantitative re-
sults on the dataset ObjectNet3D [70]. As detailed in Ta-
ble 8, we follow previous work [78, 61] and split the 100
object classes of ObjectNet3D into 80 base classes and 20
novel classes. We conduct both no-shot and 10-shot view-
point estimation, as described in the paper, and report the
performance on each novel classe in Table 9.

We see that our method, that only relies on RGB images,
significantly outperforms all other RGB-based methods [78,

] on both tasks and both metrics.

The best overall performance is however achieved by
methods that additionally make use of 3D models. It was
expected since these methods are designed to extract in-
formation regarding geometry and canonical frame from
the aligned 3D object models. In fact, the performance of
methods using CAD models can somehow be regarded as
an upper bound with respect to RGB-based methods. Nev-
ertheless, we outperform CAD-model-based methods on a
few classes, e.g., ‘filling_cabinet’, ‘guitar’ and ‘wheelchair’.
Besides, the relative gap between our method and these

CAD-model-based methods is mostly due to a few classes,
such as ‘rifle’, ‘iron’ or ‘shoe’, for which base classes offer
limited help in terms of geometrical cue or canonical frame.
In fact, if we put aside ‘iron’ and ‘shoe’, our method is on
par with FSDetView [74] on 10-shot viewpoint estimation,
despite not using any extra shape information.

Moreover, our class-agnostic network directly estimates
the viewpoint from image embeddings, without relying
on any keypoint prediction. This direct estimation net-
work thus can predict the viewpoint for all classes, while
keypoint-based methods struggle to get a reasonable pre-
diction for certain classes, e.g., ‘door’, ‘pen’, and ‘shoe’.

F. Additional Visual Results

We present in Figure 11 some additional visual results of
our class-agnostic method on the cross-dataset 3D pose es-
timation, training on Pascal3D+ and testing on Pix3D [57].

G. Histograms of Azimuth Prediction Errors

Finally, we present in Figure 12 the histograms of az-
imuth angle prediction errors on Pascal3D+ [71]. As shown
in the figure, the largest viewpoint prediction errors come
from the ambiguity caused by the symmetric objects, e.g.,
two-fold symmetric for ‘boat’ and four-fold symmetric for
‘diningtable’.



Base classes

Novel classes

aeroplane ashtray
bottle bucket
chair clock
eraser eyeglass
hair_dryer = hammer
laptop lighter
pencil piano
road_pole satellite_dish
sofa speaker
toothbrush train

backpack
bus
coffee_maker
fan
headphone
mailbox
pillow
scissors
spoon
train_bin

basket
cabinet
comb
faucet
helmet
microphone
plate
screwdriver
stapler
trophy

bench
camera
cup
file_extinguisher
jar
motorbike
printer
shovel
suitcase
tvmonitor

bicycle
can
desk_lamp
fish_tank
kettle
mouse
racket
sign
teapot

vending_machine washing_machine

blackboard
cap
diningtable
flashlight
key
paintbrush
refrigerator
skate
telephone

boat bed bookshelf
car calculator  cellphone
dishwasher computer door
fork filling_cabinet  guitar
keyboard iron knife
pan microwave pen
remote_control pot rifle
skateboard shoe slipper
toaster stove toilet
watch tub wheelchair

Table 8. Dataset split of ObjectNet3D [70]: 80 base classes (left) and 20 novel classes (right). Some novel classes share similar geometries
and canonical frames as base classes, e.g., ‘door’/‘blackboard’, ‘filling_cabinet’/‘cabinet’, ‘wheelchair’/’chair’.

Method Acc30(1)/MedErr(|) bed bookshelf calculator cellphone computer door filling_cabinet
8 StarMap [78] 0.37/45.1 0.69/18.5 0.19/61.8 0.51/29.8 0.74/15.6 -/ - 0.78 /14.1
Qz{: PoseContrast (ours) 0.62/17.4 0.89/ 6.7 0.65/17.7 0.57/15.8 0.85/14.5 091/ 2.7 0.88/10.4
2 "PoseFromShape [75] ~ ~ ~ 0.65/15.7 ~ 7 090/ 69 ~ " 088/12.0 ~ 0657105 ~ 0847112 T T 093/23 T 084/127"
. StarMap* [78] 0.32/42.2 0.76 / 15.7 0.58/26.8 0.59/22.2 0.69/19.2 -/ - 0.76 / 15.5
é MetaView [01] 0.36/37.5 0.76 /17.2 0.92/12.3 0.58/25.1 0.70/22.2 -/ - 0.66/22.9
& PoseContrast (ours) 0.67/13.9 090/ 7.0 0.85/11.0 0.58/15.2 0.85/10.9 091/ 25 0.89/ 8.4
~ "FSDetView [74]~ ~ T T T T 0.64/147 "~ 089783 " T 0907 83~ T 0.637127 ~ ~0.847105 ~~0.90/09 ~ 0847105

Method Acc30(1)/ MedErr(|) guitar iron knife microwave pen pot rifle
B StarMap [78] 0.64 /20.4 0.02/ 142 0.08 /136 0.89/12.2 —/- 0.50/30.0 0.00/ 104
7 PoseContrast (ours)  073/144  0.03/124  025/122  093/75  045/398  076/92  0.00/102
2 PoseFromShape [75] 0.67/20.8 0.02/ 145 0.29/138 094/ 7.7 0.46/37.3 0.79/13.2 0.15/110
. StarMap* [78] 0.59/21.5 0.00/ 136 0.08 /117 0.82/17.3 —/- 0.51/28.2 0.01/100
é MetaView [01] 0.63/24.0 0.20/76.9 0.05/97.9 0.77/17.9 —/- 0.49/31.6 0.21/80.9
& PoseContrast (ours) 0.73/14.7 0.03/126 0.23/116 0.94/ 6.9 0.45/41.3 0.78/10.6 0.04/90.4
™ "FSDetView [74] ~ T T T 072/17.1 7 T 0377577 T 0267139 T 7094773 T T0457440° ~ 0747123 T T 029/884 "

Method Acc30(1)/MedErr(]) shoe slipper stove toilet tub wheelchair TOTAL
B StarMap [78] -/- 0.11/ 146 0.82/12.0 0.43/35.8 0.49/31.8 0.14/93.8 0.44/55.8
% PoscConrast(ous)  023/589  025/138 _ 091/120 _ 043/308  03/240  042/434 _ 056/426
g PoseFromShape [75] 0.54/28.2 0.32/158 0.89/10.1 0.61/21.8 0.68/17.8 0.39/57.4 0.62/42.0
. StarMap* [78] -/ - 0.15/128 0.83/15.6 0.39/35.5 0.41/38.5 0.24/71.5 0.46/50.0
% MetaView [01] -/- 0.07/115 0.74/21.7 0.50/32.0 0.29/46.5 0.27/55.8 0.48/43.4
< PoscConast(ours)  024/567  023/155 _ 092/8.1 _ 0.64/222  055/186  045/367 _ 0.60/387
~ "FSDétView [74] 0.51/29.4 0.25/96.4 092/ 9.4 0.69/17.4 0.66/15.1 0.36/64.3 0.63/32.1

Table 9. Few-shot viewpoint estimation on ObjectNet3D [

]. All models are trained and evaluated on ObjectNet3D. For each method,

we report Acc30(T) / MedErr(]) on the same 20 novel classes of ObjectNet3D, while the remaining 80 classes are used as base classes.
*StarMap network trained with MAML [
3D object models are shown in gray.

] for few-shot viewpoint estimation, with numbers reported in [

]. Methods additionally using
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Figure 10. Feature Visualization. We visualize image features from the val set of Pascal3D+ [71] (left) and Pix3D [57] (right) by t-
SNE (preceded by PCA) for three different ResNet-50 backbones: (a,b) randomly initialized network (top); (c,d) network pre-trained on
ImageNet by MOCOvV2 [6] (middle); and (e,f) network trained on Pascal3D+ with PoseContrast (bottom). We divide the 360 degrees of
azimuth angle into 24 bins of 15° and use one color for each bin. The figure is better viewed in color with zoom-in.



Figure 11. Additional qualitative results on the 9 object classes of Pix3D [57]. The network is trained on the 12 object classes of
Pascal3D+ and directly tested on Pix3D. From top to bottom: ‘chair’, ‘sofa’, ‘table’, ‘bed’, ‘desk’, ‘wardrobe’, ‘bookcase’, ‘misc’, and
‘tool’. 3D object models here are only used to visualize the pose.
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Figure 12. Histograms of azimuth angle prediction errors on the 12 object classes of Pascal3D+ [71].




