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Abstract

Semantic segmentation networks trained under full supervision for one type of lidar
fail to generalize to unseen lidars without intervention. To reduce the performance gap
under domain shifts, a recent trend is to leverage vision foundation models (VFMs)
providing robust features across domains. In this work, we conduct an exhaustive study
to identify recipes for exploiting VFMs in unsupervised domain adaptation for semantic
segmentation of lidar point clouds. Building upon unsupervised image-to-lidar knowledge
distillation, our study reveals that: (1) the architecture of the lidar backbone is key to
maximize the generalization performance on a target domain; (2) it is possible to pretrain
a single backbone once and for all, and use it to address many domain shifts; (3) best
results are obtained by keeping the pretrained backbone frozen and training an MLP head
for semantic segmentation. The resulting pipeline achieves state-of-the-art results in four
widely-recognized and challenging settings. The code will be made publicly available.

1 Introduction

Understanding scenes at 3D level is key for applications like autonomous driving or robotics.
In particular, the semantic segmentation of lidar scans is valuable high-level information that
autonomous vehicles can rely upon, e.g., for trajectory planning. However, state-of-the-art
networks for semantic segmentation require a large amount of costly annotated training data to
achieve good performance, limiting their deployment in new environments or when changing
sensors. Domain adaptation (DA) addresses this problem by adapting a network trained on a
labeled source domain to a new target domain. Unsupervised domain adaptation (UDA), in
particular, conducts this adaptation without using any label on the target domain.
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Vision foundation models (VFMs), trained on web-scale datasets, provide features that
can be used off-the-shelf for a wide variety of tasks, and are robust to strong domain shifts
[33, 52]. In addition, recent works like [25, 27, 40, 48, 57] show that knowledge distillation
of VFMs into 3D backbones can provide robust 3D features. In this work, we build upon these
distillation methods and conduct an exhaustive study to identify key recipes for exploiting
VFMs for 3D UDA on autonomous driving datasets in the best possible way. Notably, our
study identifies practices that allow us to outperform by more than 15 mloU points the
previous state of the art in multimodal unsupervised domain adaptation for 3D lidar semantic
segmentation.

We structure our study along four axes. First, we analyze the effect of architectural choices
in the 3D backbone to improve its robustness to domain gaps. Second, we benchmark different
VEMs to identify the most appropriate for our task. Third, we evaluate different downstream
training recipes on source datasets to get the best models on target datasets. Finally, we study
how the pretraining datasets used for distillation influence performance under domain shifts.

Our insights are listed below.

* Backbone. While we are able to surpass competing methods with MinkowskiUNet [10]
(MUNet), which is the default choice of backbone in the DA literature, we advocate the
use of more recent networks, which compete with the best adapted MUNet without even
leveraging any domain adaptation technique. Further improvements can be achieved by
scaling the capacity of the backbone. We also notice that the choice of normalization
layers has a high impact on the generalization capabilities of the lidar backbone, where
layernorms perform better than batchnorms. Besides, we observe that the use of lidar
intensity as input feature is most often detrimental for adaptation.

* Pretraining by distillation. We note that ViTs pretrained with DINOv2 provide more
robust features than those provided by SAM [65]. Moreover, we show that distillation
can be performed once for all on a combination of multiple datasets. This contrasts
with existing techniques where a new full training is done for each new pair of source
and target datasets.

* Downstream training. Generalization capabilities are preserved when the backbone
is kept frozen after distillation and a classification head is trained for the downstream
task of semantic segmentation. Better results are obtained when the distillation and
semantic segmentation training are done consecutively, rather than jointly.

The best technique resulting from this study obtains SOTA results with large margins. We call
it MuDDoS, for Multimodal Distillation for 3D Semantic Segmentation under Domain Shifts.

2 Related work

Monomodal UDA for semantic segmentation. Taking inspiration from the problem of
UDA for images, several works adapted these techniques to lidar scenes such as adversarial
training via projection of the points to image-like representations [2, 12, 19, 22, 63], mixing
source and target data [21, 43], or using both adversarial training and mixing strategies [59].
Geometric methods target the specificity of the domain gap induced by different sensors,
e.g., variable acquisition patterns or location on the vehicle. For example, the source point
clouds can be up/down-sampled to resemble the target point clouds [51], possibly with self-
ensembling [49]. Along the same line, a reconstruction of the underlying sensor-agnostic
surface can be used as a unified representation space [58] or as a regularization loss [29].
In addition to the vanilla UDA settings, several others have studied source-free UDA [30],


Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, et~al.} 2024

Citation
Citation
{Wei, Chen, Jin, Ma, Liu, Ling, Wang, Chen, and Zheng} 2024

Citation
Citation
{Liu, Kong, Cen, Chen, Zhang, Pan, Chen, and Liu} 2023

Citation
Citation
{Mahmoud, Hu, Kuai, Harakeh, Paull, and Waslander} 2023

Citation
Citation
{Puy, Gidaris, Boulch, Sim{é}oni, Sautier, P{é}rez, Bursuc, and Marlet} 2024

Citation
Citation
{Sautier, Puy, Gidaris, Boulch, Bursuc, and Marlet} 2022

Citation
Citation
{Xu, Kong, Shuai, Zhang, Pan, Chen, Liu, and Qingshan} 2024{}

Citation
Citation
{Choy, Gwak, and Savarese} 2019

Citation
Citation
{Zou, Yang, Zhang, Li, Li, Wang, Wang, Gao, and Lee} 2023

Citation
Citation
{Barrera, Beltr{á}n, Guindel, Iglesias, and Garc{í}a} 2021

Citation
Citation
{DeBortoli, Fuxin, Kapoor, and Hollinger} 2021

Citation
Citation
{Jiang and Saripalli} 2021

Citation
Citation
{Li, Kang, Wang, Wei, and Yang} 2023

Citation
Citation
{Zhao, Wang, Li, Wu, Gao, Xu, Darrell, and Keutzer} 2021

Citation
Citation
{Kong, Quader, and Liong} 2023

Citation
Citation
{Saltori, Galasso, Fiameni, Sebe, Ricci, and Poiesi} 2022{}

Citation
Citation
{Yuan, Zeng, Su, Liu, Cheng, Guo, and Wang} 2024

Citation
Citation
{Wei, Wei, Rao, Li, Zhou, and Lu} 2022

Citation
Citation
{Shaban, Lee, Jung, Meng, and Boots} 2023

Citation
Citation
{Yi, Gong, and Funkhouser} 2021

Citation
Citation
{Michele, Boulch, Puy, Vu, Marlet, and Courty} 2024{}

Citation
Citation
{Michele, Boulch, Vu, Puy, Marlet, and Courty} 2024{}


MICHELE ET AL.: IMPROVING MULTIMODAL DISTILLATION FOR 3D SEM. SEG. UDA 3

online-adaptation [44] and generalization [18, 20, 35, 45, 46, 47, 62].

Multimodal UDA for semantic segmentation. Automotive datasets are usually acquired
with several synchronized sensors, including lidars and cameras [3, 13, 14, 15, 55]. Using the
sensor calibration and their relative position, points can be projected in the accompanying
images. Thus, it makes it possible to do a multimodal domain adaptation that leverages the
image as well as the lidar modalities.

Training the image features extractor. The pioneering work of XMUDA [16, 17] introduced
the task of multimodal domain adaptation for semantic segmentation using both lidar and
image data. Their approach involved training separate classifiers for each modality — one for
images and one for point clouds — while enforcing consistency through a KL-divergence
loss between the semantic predictions of corresponding lidar points and image pixels. At
inference, the best performance was achieved by fusing the predictions of both classifiers,
leveraging the complementarity of 2D and 3D data. Though effective, this approach requires
precisely calibrated lidar-camera data at test time and limits predictions to regions visible
in both modalities. For example, in SemanticKITTI [3, 15] only a front-view image is
available, in Waymo [13] the rear part of the lidar scan is not covered by the images, and in
nuScenes [5], even though using a complete ring of cameras, only 48% of the points have
a reprojection in 2D [34]. Several works have built upon xXMUDA to enhance multi-modal
domain adaptation [7, 24, 36, 60]. Furthermore, multimodal information has been leveraged
for test-time adaptation [50, 53].

Using a vision foundation model. VFMs are trained with distinct objectives, resulting
in unique characteristics. SAM [65] generates high-quality masks of objects instances
in image space. DINOvV2 [33] focuses on extracting high-quality semantically-coherent
features. In multimodal domain adaptation, methods leverage these models’ specific strengths.
Several works [6, 38, 56] rely on the ability of SAM to extract object instances. Adapt-
SAM [38] uses it to produce instance masks in each domain, selecting some instances in each
domain, and adding these instances in the point cloud of the other domain. An image-to-lidar
distillation loss using SAM features is also used while training the lidar backbone for semantic
segmentation. This approach is the closest to ours as it leverages image-to-lidar distillation
during training and performs inference using only the lidar data and predicts semantic labels
for the entire 360° point cloud (and not only for points with an image projection).

Image-to-lidar distillation. Our method leverages image-to-lidar distillation techniques.
Among such techniques, a first set of techniques distill the knowledge of vision language
models such as CLIP [41] to make open-vocabulary tasks on lidar data possible [9, 37, 61, 64].
Another set of techniques uses VFM as teacher such as [8, 33] to pretrain lidar backbones
without supervision [26, 27, 28, 48, 57]. This pretraining stage permits to reach better
performance on downstream tasks such as semantic segmentation or object detection. In this
paper, we build upon ScalLR [40] which detailed several techniques to improve knowledge
distillation.

3 Study: How to get the best out of VFMs for 3D UDA?

Experimental setup. We conduct our study using three datasets: nuScenes [14] (N), Se-
manticKITTI [3, 15] (K) and Waymo Open Dataset [13] (W). The pairs of source and target
datasets considered, which are common in the literature, are: N-K, K-N, N-W and W-N.
A different lidar sensor is used in each dataset. In nuScenes, the lidar used has 32 beams,
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Figure 1: Overview of the multimodal distillation pipeline for 3D domain adaptation.
With MuDDoS, adapting from an annotated source dataset to an unannotated target dataset,
operating in three steps. Step 1 is a 2D-to-3D distillation using a frozen visual foundation
model (DINOV2) to obtain aligned 3D representations on all datasets. Step 2 trains a classifi-
cation head with source labels. The backbone is frozen to prevent the 3D representations from
drifting away and to maintain a good performance on the target dataset. Step 3 is a prediction
refinement using self-training obtained via a classical teacher-student scheme.

vs. 64 beams in SemanticKITTI and Waymo. All 3 sensors also have a different horizontal
resolution. These variations make the settings especially difficult. The precise class mappings
between the source and target datasets are provided in the supplementary material, as well as
the training protocols (augmentation, losses and optim. parameters). See supp. mat. B and A.

3.1 Choice of lidar backbone architecture

A common choice of backbone in the lidar UDA literature is MinkowskiUNet [10] (MUNet).
We show that this default choice actually limits our ability to reach high performance. We
advocate for the use of other architectures that are more robust to domain shifts.

We study different choices of lidar backbone architecture. The architectures considered
are MinkowskiUNet [10] (MUNet) and WaffleIron [39] (WI, with 256 and 768 channel
variants). We also use the MUNet from [38, 43] in Tab. 6. In this first part of the study, all
backbones are trained from scratch for semantic segmentation on source datasets without
any pretraining phase. After training, the backbone is directly tested on target datasets. We
monitor the effect of: (a) using the intensity as input feature; (b) changing batchnorms to
layernorms; (c) increasing the capacity of the backbones. The results are presented in Tab. 1.

Effect of intensity. We notice in Tab. 1 that using intensity as input feature is detrimental
for MUNet with both batchnorms or layernorms, and for WI-256 with batchnorms. This
result is in line with the conclusions drawn in [46]. For WaffleIron with layernorms, the
outcome is dependent on the setting: removing the intensity leads to a large gain on N-K,
a drop on N-»W, and no effect in the two other settings. The average mIoU over all dataset
pairs is nevertheless better when intensity is not used. In the rest of the paper, we do not use
intensity as input feature as this is the most robust strategy overall.

Effect of normalization layers. Due to sensor differences, the distribution of points in
each dataset widely differs. It impacts feature distribution when going from the source to the
target dataset, altering target segmentation performance. When using batch normalization
layers, one way to address these changes, at least partially, is to adapt the batchnorm statistics
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Backbone Int. Norm | N-K K->N N-W W-N Backbone VFM | N-K K+N
/BN |30.1 220 283 309 WIL256 SAM ViT-L 25 48.6
MUNet X BN |[323 499 319 462 DiNOV2 ViT-L 46.6 59.7
¢ / LN |359 216 279 315
X LN |381 495 331 447
Table 2: Effect of the VFM used for feature
/ BN | 160 480 202 597 et . ]
Wiase X BN | 338 529 199 601 distillation with ScalLR.
3 / LN | 222 506 409 632
X LN 41.1 498 353 618 Downstream training Intensity ‘ N-K K-N
WI-768 X LN | 446 551 371 64.6 Frozen Back. + Linear (a) X 34 601
State of the art in lidar multi-modal UDA. Frozen Back. + MLP (b) X 47.5 621
MUNet w. [38] v/ BN ‘ 48.5 429 449 482 Frozen Back. + MLP (b) v 369 58.7
Full finetuning (c) X 50.5 589
Table 1: Generalization capability of dif-  Joint distill. & classif. as in [38] X 449 56,0

ferent backbones and architecture choices,
intensity (Int.) or normalization layer (BN, Table 3: Downstream training recipe using
LN). Trained on source, evaluated on target. ~WI-768 backbone.

to the target dataset [23, 32]. We study here an alternative: replacing all batchnorms (BNs)
with layernorms (LNs). Averaging the mloUs over all dataset pairs in Tab. 1, we notice
that layernorms improve the performance for both backbones considered: +1.4 mloU pts for
MUNet, +5.3 for WI-256. Unlike batchnorms that use training feature statistics at inference,
layernorms center and normalize the features using the actually seen statistics at inference.
To maximize performance, we use layernorms in the rest of the paper.

Effect of backbone and capacity. WI-256 performs better than MUNet in all four pairs of
datasets (Tab. 1). For WaffleIron, we study the effect of increasing its feature size from 256 to
768. While increasing the number of parameters could have led to overfitting to the source
dataset, we notice (Tab. 1) that WI-768 actually generalizes better and surpasses WI-256.
Interestingly, WI-768 trained on source without adaptation outperforms the current SOTA
in two settings out of four. This advocates for more studies in UDA on architectural choices.

3.2 Choice of a visual foundation model for pretraining

For the remaining part of our study, the backbones are pretrained by distilling a VFM. The
choice of VFM is key to get a good performance for downstream semantic segmentation.
Several VFMs are studied in [40] and the best results are obtained with DINOv2 [33].
SAM [65] is another powerful model also leveraged in, e.g., [38] for robust point cloud
segmentation across domains. We test whether SAM is a better choice.

Pretraining protocol. The lidar backbones are pretrained using ScalLR [40]. This VFM-
based pretraining method requires calibrated and synchronized cameras and lidars to establish
correspondences between points and pixels. It does not need manual annotations. The training
loss, optimization parameters and augmentations are described in the supp. mat. A.

SAM vs DINOv2. We distill the knowledge from SAM ViT-L and DINOv2 ViT-L into
WI-256 on nuScenes and SemanticKITTI jointly (the datasets are merged). Then, we freeze
the weights of the pretrained backbone and train an MLP classification head on nuScenes and
test the performance of the overall network on SemanticKITTI (and vice versa). We present
the results in Tab. 2. We notice a better performance after distillation of DINOv2, showing
that the features of DINOv2 are more suited for semantic understanding than those of SAM.
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For images, let us mention that a study of the properties of DINOv2 and SAM features was,
e.g., conducted in [42]. The results showed that SAM performs worse than DINOv2 for
“high-level object description” and for “combining the semantics of multiple objects.”. Our
results indicate that this conclusion remains valid after distillation into lidar backbones.

3.3 Downstream training

After pretraining, the downstream training recipe is also important to get competitive results.
We should make sure to exploit at best the features distilled from the chosen VFM and avoid
scenarios where the backbone degenerates to the source-only performance.

Downstream training recipes. We study three different ways for downstream training on
semantic segmentation. (a) We keep the lidar backbone weights frozen and train a linear
classification head, with a batchnorm followed directly by a linear layer (note that these two
layers can be combined into a single linear layer at inference). (b) We keep the lidar backbone
weights frozen and train a 2-layer MLP with ReL U activation. (c) We finetune the backbone
weights along with the linear classification head (full finetuning). Implementation details,
such as epoch number and learning rates, are described in the supplementary material A.

MLP classification head performs the best. We present in Tab. 3 the results obtained with
the three considered recipes. First, we notice that training only a linear classification head is
underperforming compared to the other alternatives. Second, training an MLP classification
head leads to similar results on average than finetuning the whole backbone. Yet, training an
MLP is simpler and faster: full finetuning needs a careful choice of the learning rates applied
on the pretrained backbones and on the classification head, and requires a full backward pass
in the backbone. We also notice that the performance on the target dataset, after a first phase
of improvement, keeps decreasing with full finetuning. Instead, when using a simple MLP
head, the performance stabilizes both on the source and target datasets. This makes it an easy
and practical method to use, as one just need to monitor the performance on the source dataset
to stop the training.

Effect of intensity when pretraining. Again in Tab. 3, one can notice that the use of the
intensity as input feature remains detrimental, even when pretraining on the source and target
datasets and training a simple MLP head. This result stays in line with our design choice
made in Sec. 3.1, to disregard intensity when having to change domain.

Joint distillation and semantic segmentation. Instead of first pretraining the source and
target datasets, and then finetuning the backbone for semantic segmentation on the source
dataset, one can naturally wonder if optimizing for both tasks at the same time (distillation +
semantic segmentation), as done in [38], is a better choice or not.

We test this design as follows. Two different heads are added at the end of the lidar
backbone: one for distillation and one for classification. The backbone sees both source and
target point clouds. The distillation loss is computed for both source and target point clouds.
The classification loss (cross-entropy plus Lovasz loss) is applied on source point clouds. We
present the result of this strategy in the last row of Tab. 3. We observe that the strategy is the
worst on K+N and is the second worse on N-K.

3.4 Choice of pretraining datasets

Finally, we study the choice of pretraining datasets. A few results in [40] suggest that the
generalization capabilities of the lidar backbone improves when combining multiple datasets
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. Pretrain ~ Frozen "

%f;i ————— back- INK KN NaW WaN Back- Prewain  self | N,k KoN NoW WoN

S T E  bone | bone  g.T S+T+E train |

X X X X |4L1 498 353 618

446 551 371 646

wiase Y X X 7/ [310 390 302 3238 i f 457 556 300 629

o/ X/ 466 597 613 597 v Y | 475 21 661 705

WI-768 : : : .

X X X X |446 551 371 646 v - v 495 665 698 69.6
WI-768 v v X/ | 475 621 66.1 705 - v X 521 634 671 718

v/ / 7/ |521 634 671 718 - v v/ | 521 664 69.1 705
Results of ScaLR [40] with intensity. *w/o Waymo. ..

X X X X |286 - - - Table 5: Effect of self-training. We present
WI-768 ; 5 f ;‘ gzg i ) ) the consistent benefit of self-training whether

the backbone is not pretrained, pretrained

Table 4: Adaptation performance depend-  ©On both the source and target dataset (S+T),
ing on the backbone, pretraining datasets (S, ~ ©F pretrained on all the considered datasets
T, E), and backbone freezing status. (S+T+E).

for pretraining. In this section, we analyze this behavior much more thoroughly by testing
exhaustively different dataset combinations. We specialize this study to the best setup we
have constructed so far for UDA.

Pretraining dataset configurations. We study three different settings (in Tab. 4).
* Source pretraining (S): it corresponds to a source-only setting.
* Source & Target pretraining (S+T): pretraining is done on both source and target.
* Source & Target & External datasets pretraining (S+T+E): pretraining is done combin-
ing nuScenes, SemanticKITTI and Waymo, to which we also add PandaSet [55].
For each experiment, we pretrain the backbone using Scal.R, the weights of the backbone are
then frozen, and the classification head (a 2-layer MLP) is trained using the source labels.

Impact of pretraining on both source and target. First, we observe that the results
obtained for WI-256 with source pretraining and downstream training of the classification
head are worse than those obtained when training WI-256 from scratch on source datasets. The
quality of the features after source pretraining is not good enough to reach a high performance
on the target datasets using only an MLP classification head. Nevertheless, as soon as the
network is pretrained on both the source and target datasets, tuning the classification head on
the source datasets is enough to surpass the results obtained in Tab. 1 in 3 out of 4 settings.
This demonstrate that pretraining on Source & Target produces features: (a) that are well
aligned between the source and target domain, and (b) that can be used as is by just training
an MLP on top of them. As previously, we still observe better results with WI-768 vs WI-256.

Impact of pretraining on more datasets. Recent works [40, 54] highlight that training
jointly with multiple datasets can improve feature quality. We show in Tab. 4 that this
observation also holds for domain adaptation. Indeed, the performance of WI-768 improves
by at least 1.0 mIoU point and up to 4.6 points when pretrained on the mix of all datasets,
compared to pretraining only on the source and target datasets.

From a practical point of view, besides obtaining better performances, this result shows
that one can pretrain a single backbone to address multiple domain shifts, rather than one
pretraining for each pair of source and target datasets. In fact, it is possible to pretrain a single
backbone that addresses all UDA settings together, and only train one classification head per
source dataset. This linear number of trainings contrasts with methods in which the network
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Method Back. Mod. | N>K  K-N N>W W-N | Avg.
Target oracle MUNet 703 783 799 783 | 76.7
Target oracle WI-768 ‘ 724 838 834 838 ‘ 80.9
Adapt- | MuDDoS
Source only? MUNet ‘ 277 281 294 218 ‘ 26.8 ‘SAM [38]| (ours)
Source only WI-768 44.6 55.1 37.1 64.6 50.4 . - N
Distillation Joint Sequential
PL' [31] MUNet U 300 290 319 223 | 283 Ext. Data X v
CosMix' [43] MUNet U | 306 297 315 300 | 305 Finetuning Full Head
MM2D3D" [7] MUNet M | 304 319 313 335 | 318 VEM SAM | DINOv2
MM2D3D*" [7]  MUNet M | 329 337 341 375 | 346 Backbone MUNet | WI-768
Adapt-SAM' [38] MUNet M | 485 429 449 482 | 46.1 Scaled backbone | X v
MuDDoS (ours)  MUNet M | 418 533 541 530 | 50.6 Intensity v X
Norm BN LN
Self-Training WI768 U | 457 556 276 480 | 442
MuDDoS (ours) ~ WI-768 M | 521 664 69.1 705 | 64.5

(b) Main differences with Adapt-SAM,
previous SOTA.

(a) Comparison to existing approaches. The results for methods marked
with " are reported from [38]. The current absence of code for [38] prevents
us from testing it with our architecture choices.

Table 6: Comparison to the state of the art. (a) We compare quantitatively our best
setting (MuDDoS) to both unimodal (U) and multimodal (M) UDA methods for 3D semantic
segmentation of lidar point clouds. (b) We highlight the main changes introduced by our
study with respect to the previous state of-the-art method, i.e., Adapt-SAM [38].

has to be retrained for each dataset pair, thus with a quadratic number of trainings. Besides,
training only a 2-layer MLP in our case is more efficient than training a complete network.

We also remark that our results are much better than those in [40] on N-K despite similar
pretrainings. It highlights the importance of our architectural choices (no use of intensity)
and downstream training recipe (training a simple MLP head instead of full finetuning).

3.5 Self-training for further improvements

A classical recipe to improve results is to do a final round of self-training using a teacher-
student mechanism. We complement our study by checking if this stage is also beneficial in
our case. We train only the MLP head and keep the backbone frozen. We present results in
Tab. 5. We notice that it improves the performance in all cases for WI-768, except for W-N
where we observe a slight decrease. See supplementary material A for training details.

4 Comparison to SOTA methods

In this section, we compare our method to state-of-the-art methods in unsupervised domain
adaptation across lidars. We recall the final setup for our method.

* Backbone. We use WI-768 or MinkUNet as in [38, 43]. In both cases, we exploit the
findings in our study: we use layernorms and remove intensity from the input.

* Pretraining datasets. The distillation is done on the combination of nuScenes, Se-
manticKITTI, Waymo and Pandaset (N&K&W &P). The same pretrained backbone is
re-used for all cross-domain settings.

e Downstream training. After distillation, the backbone weights are frozen and we train
an MLP classification head on the source dataset.
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Figure 2: Qualitative results on N-K (Top) and N+-W (Bottom). The label colors corre-
spond to ground truth label assigned color. Points with a ground-truth not belonging to the
shown class are grayed out. The source only model tends to over predict vegetation and
sometimes mistakes dense partially occluded object with other classes, e.g., pedestrian instead
of motorcycle in the second example. MuDDoS is able to partially or completely recover the
correct classes.

MuDDoS

High-level comparisons. We present the results in Tab. 6. First, we remark that our
technique with MinkUNet performs better than Adapt-SAM with significant margin on three
out of the four pairs of dataset considered. We also notice that our best discovered setup with
WI-768 outperforms former results with very significant margins (up to 24.2 mloU pts on
N->W, and 18.4 mloU pts on average). It shows the interest of optimizing each stage of the
training pipeline from the choice of the backbone to the downstream training recipes, by way
of the pretraining datasets.

In Tab. 6(b), we contrast directly which of our findings differ from what has been used in
the current SOTA method Adapt-SAM [38]. At the time of submission, no code is available
for [38] to integrate our findings in their method.

Per class comparisons. The main comparisons in Tab. 6 are extracted from [38], which,
unfortunately, does not provide per class results. To get hints about the classes which perform
well or not with our method, we compare it to results reported in [29]. Please refer to Tab. 12
in the supplementary material for numbers. None of the methods in this comparison uses
intensity as input features. We notice that easy classes such as car, vegetation and drivable
surface perform well with all methods. The most notable differences (also to the source-only
models) are on bicycle, motorcycle, truck and pedestrian, where our approach performs
significantly better.

Qualitative results. We present in Fig. 2 qualitative results on challenging classes. While
not perfect, our method is able to correctly segment part of objects that are completely
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mislabeled with the source-only model.

5 Conclusion

The main messages of this work are that: (1) the choice of the backbone architecture is a key
part in the design of domain adaptation methods: simple changes can significantly improve
the performance; (2) it is possible to pretrain a single backbone to address many domain
shifts thanks to the distillation of VFM features; (3) the downstream training recipe should be
designed with care to avoid degrading the quality of the pretrained features.

Looking ahead, this study opens several interesting perspectives. Indeed, as the distillation
process does not require any annotation, scaling the backbone and the size of the pretraining
dataset even more could lead to improved generalization capabilities, offering foundation
models for lidar point clouds that are as powerful as for images. Future research directions
include combining several VFMs, e.g., to benefit from the quality of DINOv?2 features for
semantic understanding and of SAM features for instance augmentations.
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Appendix

In this supplementary material, we describe the training protocols in Appendix A, provide
additional information about the used datasets in Appendix B and show per class results
in Appendix C.

A Experimental setups, and implementation details

For further research, the code will be made publicly available. Here we list out the training
details.

Training protocol for supervised training (3.1).

For the supervised training we use standard augmentations on the point cloud: random rotation
around the z-axis, random flip of the x or y axes, and scaling of the coordinates by a factor
chosen uniformly at random within [0.9, 1.1]. The loss is the sum of the cross-entropy and
the Lovasz loss [4]. We use AdamW as optimizer. The backbones are trained for 45 epochs,
using a batch size of 8, a weight decay of 0.003, a base learning rate of 10~ with linear
warmup during 4 epochs and a cosine decay towards 0.

Training protocol for multimodal distillation (3.2).

The lidar backbones are pretrained using ScalLR [40]. This pretraining method requires
calibrated and synchronized cameras and lidars to establish correspondences between points
and pixels. It does not require manual annotations. The backbone is pretrained by minimizing
the ¢, distance between normalized pixel-features (coming from the VFM) and normalized
point-features (coming from the lidar backbone). The pretraining hyperparameters are adapted
from ScalLR. The weights of the lidar backbone are optimized using AdamW, a batch size
of 2, a weight decay of 0.03, and a base learning rate of 5- 10" with a linear warmup phase
followed by a cosine decay. The images are resized to 224 x 448. No augmentations are used
on the images. We use the the point cloud augmentations of Sec.3.1.

Training protocol for downstream training (3.3).

For (a), (b) and (c), the weights are optimized for 10 epochs of the source dataset, using a
batch size of 8, a base learning rate of 10~ with linear warmup during 1 epoch and a cosine
decay reaching O at the end of the last training iteration and a weight decay of 0.03. For full
finetuning (c), we also use a layerwise learning rate decay of 0.99 [1, 11] and do not apply
weight decay on the pretrained weights, as done in [40].

Training protocol self-training (3.5).

For the self-training we continue to train only the MLP head and keep the weights of the
backbone frozen. The teacher weights are a moving average of the student weights with
momentum 0.99. We alternate between a batch made of source point clouds and a batch made
of target point clouds. The teacher provides pseudo class labels to the student for target point
cloud. We keep the pseudo-label only when the corresponding softmax value is above 0.9.
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The loss is the sum of the cross-entropy and Lovdsz loss on source point clouds, and the
cross-entropy on target point clouds.

B Datasets.

We conduct our study using four datasets in total: nuScenes [14], SemanticKITTI [3, 15],
Waymo Open Dataset [13]. The pairs of source and target datasets considered are: (nuScenes,
SemanticKITTI) denoted by N-K, (SemanticKITTI, nuScenes) denoted by K+N, (nuScenes,
Waymo) denoted by N»W, (Waymo, nuScenes) denoted by W-»N. It should be noted that for
each dataset a different lidar sensor is used. In nuScenes the lidar used has 32 beams, whereas
both lidars in SemanticKITTI and Waymo have 64 beams. This difference makes the settings
especially difficult. The details of the used datasets are outlined in Tab. 8. The performance is
evaluated by computing the mloU after re-mapping the original classes in each dataset to 10
common classes: ‘car’, ‘bicycle’, ‘motorcycle’, ‘truck’, ‘bus’, ‘person’, ‘road’, ‘sidewalk’,
‘vegetation’, and ‘terrain’.
The exact class mapping, as also used in [38], can be seen in Tab. 9 and Tab. 10.

C Per class results.

The per class results corresponding to the class mappings of Tab. 9 and Tab. 10 and the results
in Tab. 6 are presented in Tab. 11.

In Tab. 12, we also report the results of MuDDoS with the class mapping from [29], this
allows to compare to AdaBN [23], PTBN [32], CoSMix [43] and SALUDA [29]. Consistently
with the results of the main paper, our method (the only one to be multimodal) surpasses the
other approaches by a large margin (+5.9% mloU) on N-K.
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Beams/ Nb. Train/
Dataset Lidar Channels | Cameras | cls.| Val. Frames |Region of the world
nuScenes [5] (N) |HDL-32E 32 6 16 {28,130/ 6,019 | Boston, Singapore
SemanticKITTI[3] (K) |HDL-64E 64 1 19 119,130/4,071 | Karlsruhe
Waymo Open [13] (W)|L.B.H. 64 5 23| 23,691/5976 |3 US cities
PandaSet [55] (P) |Pandar64/-GT | 64/150 6 37 3,800 2 US cities

Table 8: Datasets used in our domain adaptation experiments. ": Only used for distillation.

Original Shared Original
nuScenes set of |SemanticKITTI
classes classes classes
Car ‘ Car ‘ Car
Bicycle ‘ Bicycle ‘ Bicycle'

Motorcycle ‘ Motorcycle ‘ Motorcycle’

Truck ‘ Truck ‘ Truck
Bus ‘ Bus ‘ Bus

Pedestrian ‘ Pedestrian ‘ Person
Driveable | Driveable Road,

Surface surface | Lane marking
Sidewalk | Sidewalk |  Sidewalk

Terrain ‘ Terrain ‘ Terrain
Vegetation ‘ Vegetation ‘ Vegetation

Table 9: Class mapping used for N-K
and K>N used in [38] and our work. ':
the classes ‘bicycle’ and ‘motorcycle’ do
not include the original classes ‘motorcyclist’
and ‘bicyclist’, respectively, which are both
mapped to ‘ignore’, like all official classes
not mentioned in this table.

Original | Shared Original
nuScenes set of Waymo
classes classes classes
Car ‘ Car ‘ Car
Bicycle | Bicycle | Bicycle
Motorcycle ‘ Motorcycle ‘ Motorcycle
Truck ‘ Truck ‘ Truck
Bus ‘ Bus ‘ Bus
Pedestrian ‘ Pedestrian ‘ Person
Driveable | Driveable Road,
Surface surface Lane marking
Sidewalk | Sidewalk | Sidewalk
Terrain ‘ Terrain ‘ Walkable

Vegetation ‘ Vegetation ‘Vegetation, Tree Trunk

Table 10: Class mapping used for N-W
and W-N in [38] and our work. All official
classes in the original datasets not mentioned
in this table are mapped to ‘ignore’.


Citation
Citation
{Caesar, Bankiti, Lang, Vora, Liong, Xu, Krishnan, Pan, Baldan, and Beijbom} 2020

Citation
Citation
{Behley, Garbade, Milioto, Quenzel, Behnke, Stachniss, and Gall} 2019

Citation
Citation
{Ettinger, Cheng, Caine, Liu, Zhao, Pradhan, Chai, Sapp, Qi, Zhou, Yang, Chouard, Sun, Ngiam, Vasudevan, McCauley, Shlens, and Anguelov} 2021

Citation
Citation
{Xiao, Shao, Hao, Zhang, Chai, Jiao, Li, Wu, Sun, Jiang, et~al.} 2021

Citation
Citation
{Peng, Chen, Qiao, Kong, Liu, Sun, Wang, Zhu, and Ma} 2024

Citation
Citation
{Peng, Chen, Qiao, Kong, Liu, Sun, Wang, Zhu, and Ma} 2024


MICHELE ET AL.: IMPROVING MULTIMODAL DISTILLATION FOR 3D SEM. SEG. UDA 19

¥ s & s

R

PN R S Q&v O

S R f & & g &
s ) S S 4 : X 50

Method Backbone | § & & & & & & QQ g & ¥
N-K
Source only WI-768 446189.9 4.1 255 183 1.7 538 758 472 45 84.7
Ours WI-768 52.1189.7 19.7 480 26 49 632 762 43.6 61.3 88.4
K->N
Source only WI-768 55.11759 5.1 484 382 38.9 552 90.0 53.2 56.5 89.8
Ours WI-768 66.4 832 105 744 57.0 58.8 67.9 91.6 60.0 70.1 91.0
N-W
Source only WI-768 37.11495 2.1 173 21.5 9.2 41.3 723 43.1 39.7 754
Ours WI-768 69.1 | 85.1 49.5 489 41.1 759 81.2 88.9 61.8 66.6 92.2
W-N
Source only WI-768 64.6 | 81.7 142 389 65.8 749 68.1 91.8 59.8 61.2 89.5
Ours WI-768 70.5|80.8 29.7 75.8 71.1 71.7 689 91.1 550 69.2 91.8

Table 11: Classwise IoU % for N-K, K-N, N-W and W-N. The class mapping is the one
used in Tab. 6 of the main paper.

Q

& g5 & 3
. & S
$ FEsIFISETSS
Back- UDA S & @ S §’ Sy & ¥ & &
Method bone Modal. Norm.| § & & < & O Q & & X
Source Only]L MUNet. - Batch |35.9|73.7 8.0 17.8 12.0 7.4 49.4 50.2 27.0 31.6 82.1
Source only  WI-768 - Layer |44.6/89.8 4.2 25.6 18.3 1.6 53.8 75.8 47.2 45.0 76.8

AdaBNT [23] MUNet.
PTBN? [32] MUNet.
CoSMix " [43] MUNet.
SALUDA [29] MUNet.

Ours WI-768

Batch |40.1[84.1 16.5 240 7.6 3.5 19.2 76.0 35.6 51.0 83.1
Batch |39.4(80.0 14.7 27.0 7.3 5.5 23.2 71.3 35.4 48.8 80.6
Batch |38.3(77.1 10.4 20.0 15.2 6.6 51.0 52.1 31.8 34.5 84.8
Batch [46.2{89.8 13.2 26.2 15.3 7.0 37.6 79.0 50.4 55.0 88.3

Layer ‘52.1‘88.9 19.8 48.1 26.0 5.0 63.2 76.2 43.6 61.3 88.5

L|lccacc

Table 12: Classwise IoU% for N-K. The results are obtained from [29] for all methods
marked with ¥, and from [30] for those marked with *. Note that the class mapping in this
table is the one used in [29], which has minor differences with the one used in Tab. 6.
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