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A. Complementary Results
A.1. Visual Inspection

We present in Fig. 4 and Fig. 5 additional feature sim-
ilarity maps such as those presented in Fig. 3 in the main
paper. We continue to observe the segmentation ability of
our pre-trained model: a query point on a tree, road, vehi-
cle, bike is mostly correlated with other points or pixels on
trees, road, vehicles, bikes, respectively.

We also notice some spurious correlations with points
or pixels around the objects. These spurious correlations
seem more apparent in the image feature similarity maps.
This can be due to the reduced resolution of the image fea-
ture maps (1/4 in each spatial direction) or that the ResNet-
50 features are intrinsically imprecise near object bound-
aries, which prevent the network to learn accurate near ob-
ject edges in the 3D point cloud. Increasing the image res-
olution as well as adding additional constraints leveraging
the 3D structures observed in the point cloud can help us to
prevent such leakage in future works.

Backbone gω̄bck Pretrain mIoU

ResNet-50 Full sup. 39.2
ResNet-50 MoCov2 [4] 39.2
ViT-S/16 DINO [3] 39.5

Table 5. Performance of SLidR on nuScenes semantic segmen-
tation with using different image backbone architectures or pre-
training methods. We consider two architectures, ResNet-50 or
ViT-S/16, and pretraining under full supervision on ImageNet or
by self-supervision (MoCov2, DINO). The scores are obtained by
linear probing of the pre-trained backbone. We report the mIoU
on our mini-val split.

We also provide in the supplementary material a video il-
lustrating the capacity of our pre-trained model in doing se-
mantic segmentation on a sequence of point clouds, without
fine-tuning. The video is generated as follows. We choose
a scene from the validation set of nuScenes [2]. We collect
all the point features along with the class labels in the first
frame of the sequence. This set constitutes our annotated
database. We consider three classes: ‘vegetation’, ‘car’ and
‘pedestrian’. The points in the following frames are clas-
sified by using a binary k-NN classifier (k=20) for each of
these class. We display the predicted probability for each
class in all subsequent frames: red for ‘car’, blue for ‘pedes-
trian’, green for ‘vegetation’.1 We notice that we are able
to classify correctly several points in of each of the consid-
ered classes throughout the whole sequence. In particular,
we detect correctly pedestrians at the beginning of sequence
and cars at the end of the sequence. Some points are mis-
classified but we recall these results are obtained without
any fine-tuning of the backbone.

A.2. Choice of the Image Backbone

We present in Tab. 5 the performance reached with
SLidR on nuScenes semantic segmentation when using a
ResNet-50 pre-trained under full supervision on ImageNet

1A mix of these colors corresponds to predictions with non-zero prob-
ability in two or more of these classes.
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Image feature similarity map Point feature similarity map

Figure 4. Cosine similarity between the SLidR’s feature of a query point (displayed as a red dot) and: (a) the pixel features of an image in
the same scene (left column - image feature similarity map); (b) the features of the other points projected in the same image (right column
- point feature similarity map). The colormap goes from violet to yellow for respectively low and high similarity scores. We show these
maps for two scenes in the validation set of [2].

or under self-supervision using MoCov2. We notice that
there is no loss of performance because of the use of self-
supervision to pretrain gω̄bck .

We also report in the same table the performance ob-
tained when using a self-supervised transformer [3] as im-
age backbone. The performance is slightly higher than
when using a ResNet-50, showing that our method is
compatible with this type of image network architectures.
SLidR can exploit the higher capacity of transformers in
learning image representations, which can in turn yields
better 3D networks.

A.3. Choice of the Superpixels Method

We present in Tab. 6 the impact of the choice of the
number of superpixels or of the superpixels algorithm on
the performance of SLidR. For Felzenszwalb’s [5] method
(called FH), we used a scale parameter of 300, a gaussian
pre-processing of standard deviation 0.35 and a superpixels
minimal size of 4000 pixels, which yield at most 143 super-
pixels per image on nuScenes’ training set. For SLIC, we
tested 100, 150 or 200 superpixels per image. We see that it
is important to adjust the number of superpixels correctly to
avoid too much over-segmentation and under-segmentation
which both impact negatively the performance. The results
in the main paper are obtained with SLIC and 150 superpix-
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Figure 5. Cosine similarity between the SLidR’s feature of a query point (displayed as a red dot) and: (a) the pixel features of an image in
the same scene (left column - image feature similarity map); (b) the features of the other points projected in the same image (right column
- point feature similarity map). The colormap goes from violet to yellow for respectively low and high similarity scores. We show these
maps for two scenes in the validation set of [2].

els per image. Finally, we notice that SLidR is less sensitive
to the choice of superpixel algorithm (e.g., using FH instead
of SLIC) once its parameters are set correctly.

A.4. Few-Shot Semantic Segmentation

We report in Tab. 7 and Tab. 8 the per-class perfor-
mance of SLidR and the different baselines when pretrain-
ing on 1% of the available annotations. We notice that
PPKT† and SLidR are the two best methods on the major-
ity of the classes with SLidR achieving the highest mIoU.
On nuScenes, SLidR is ranked first on 9 classes vs 6 for
PPKT†. On SemanticKITTI, SLidR is ranked first on 11 of
the classes vs 5 for PPKT†.

B. Data Augmentations

As mentioned in Sec. 4, we apply two sets of strong data
augmentations: the first on point clouds, the second on im-
ages. We highlight that implementing these augmentations
is not trivial as they impact the list of point-pixel correspon-
dences, which needs to be updated appropriately.

Regarding point clouds, we apply a random rotation
around the z-axis and flip the direction of the x and y-axis
with 50% probability for each axis. As in [10], we also
drop points that lie in an axis-aligned random cuboid. Con-
cretely, the cuboid center is placed on a randomly-selected
point in the point cloud P and the length of each side cov-
ers at most 10% of the range of point coordinates on the



corresponding axis. We make sure that this dropped cuboid
preserves at least 1024 pairs of points and pixels, otherwise
another new cuboid is selected.

The images are flipped horizontally 50% of the time, and
cropped-resized to 416 × 224. The random crop covers at
least 30% of the image area with a random aspect ratio be-
tween 14/9 and 17/9 before resizing. We make sure that
this random cropping preserves at least 1024 or 75% of the
pixel-point pairs, otherwise another crop is selected.

C. Baselines’ Implementations Details
C.1. PPKT for Autonomous Driving.

PPKT [6] was originally proposed for RGB-D data cap-
tured indoor. As, up to now, there is no publicly released
code, we propose our best adaption of this method in an
autonomous driving setup, referred as PPKT†. PPKT†

uses the same data augmentations, voxel-based 3D network
backbone, and cylindrical coordinate voxels as our method.

PPKT† is obtained by: using Q = M in Sec. 3, i.e.,
each superpixel contains one pixel; using strided convolu-
tions in the image backbone gω̄bck(·); the same image head
hωhead as ours but with a bilinear upsamling layer from a res-
olution 1/32 in each spatial direction to the original size of
the input image. Furthermore, as computing the loss (3) is
intractable when considering all possible point-pixel pairs
P ∈ {(f c

m, gc
m) : c = 1, . . . , C, m = 1, . . . ,M}, a ran-

dom subset of P is selected to compute it. In practice, as
multiple scenes are available in a batch at train time, the set
P also contains the point-pixel pairs of all scenes in our im-
plementation. This sampling is not required in our method
thanks to the use of superpixels which reduces the number
of matching pairs. We use exactly the same parameters for
pre-training a network with PPKT† or SLidR.

The noticeable differences between PPKT and PPKT†

are the following:

1. the use of cartesian coordinates vs. cylindrical coordi-
nates for fθ;

2. direct pixel-point correspondences in RGB-D data vs
indirect correspondences computed via a projection
matrix in autonomous driving;

3. the absence of randomly drop cuboids in PPKT and
the absence of random rescaling and elastic distorsion
in PPKT†.

C.2. PointContrast

We retrained PointContrast [9] on nuScenes after study-
ing several setups to optimize its performance. PointCon-
trast requires pairs of point clouds acquired from different
viewpoints in the same scene with a list of matching points
in these two views. To provide a fair baseline, we tested

Algorithm
None

SLIC [1] FH [5]

#Superpixels 100 150 200 ⩽143

mIoU 36.6 37.7 39.2 36.3 39.2

Table 6. Sensitivity of SLidR to the superpixel algorithms and su-
perpixel parameters. The semantic segmentation scores (mIoU)
are obtained by linear probing and computed on our nuScenes
mini-val split. We compare the performance of SLidR when using
(a) no superpixels; (b) SLIC [1] with different number of super-
pixels per image; and (c) the Felzenszwalb’s [5] algorithm (FH)
with parameters that produce at most 143 superpixels per image.

different strategies to create this training dataset. Among
the tested strategies, the best one consists in creating all
possible pairs of keyframes within a scene, then removing
pairs of point clouds which are less than 10 m apart, and re-
moving those which have less than 1024 pairs of matching
points.

The list of matching points in a pair of point clouds is
computed as follows. We first register both point clouds
using the ground truth pose of the Lidar. Then, for each
point in one point cloud, we search for the nearest point
in the second point cloud and consider that it is a pair of
matching points if the points are less than 10 cm apart.

PointContrast† is trained on 1 GPU, with a batch size of
8, using SGD with the same parameters as for SLidR, ex-
cept for a initial rate set at 1, and cosine annealing scheduler.
We selected the learning rate using our mini-val split in or-
der to optimize the performance of PointContrast†. As point
cloud augmentations, we used a random rotation around the
z-axis, random flip of the x or y-axis and dropped points in
cuboids whose sides cover at most 20% of the range of point
coordinates in each axis. Finally, one can note that the size
of the pre-training dataset is different for PointContrast† and
SLidR. For fairness, we set the number of iterations for pre-
training with PointContrast† as follows: we compute the to-
tal number of point clouds used in SLidR over the 50 train-
ing epochs and use the same number of pairs of point clouds
in PointContrast†.

C.3. DepthContrast

The last baseline is DepthContrast [10] which pre-trains
simultaneously two 3D network backbones, a point-based
network, e.g., [7] and a voxel-based network, e.g., [11], us-
ing a contrastive task between the global point-cloud rep-
resentations of the two networks. Among the three base-
lines, it is the only one which has already been used on a
autonomous driving dataset: the Waymo Open Dataset [8].
To make it comparable with the rest of the methods in
our study, we re-used the point-based network used in [10]
while changing the voxel-based network to the same sparse
residual U-Net that processes cylindrical coordinate vox-
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Random 0.0 0.0 08.1 65.0 0.1 06.6 21.0 09.0 09.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3
PointContrast† 0.0 1.0 05.6 67.4 0.0 03.3 31.6 05.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6 32.5
DepthContrast† 0.0 0.6 06.5 64.7 0.2 05.1 29.0 09.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0 31.7
PPKT† 0.0 2.2 20.7 75.4 1.2 13.2 45.6 08.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9 37.8
SLidR 0.0 3.1 15.2 72.0 0.9 18.8 43.2 12.5 14.7 33.3 92.8 29.4 54.0 61.0 80.2 81.9 38.3

Table 7. Per-class performance on nuScenes using 1% of the annotated scans for fine-tuning. We report the IoU for each class and highlight
the best and second best scores with dark blue and light blue backgrounds, respectively.
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Random 91.2 00.0 09.4 08.0 10.7 21.2 00.0 00.0 89.4 21.4 73.0 01.1 85.3 41.1 84.9 50.1 71.4 55.4 37.6 39.5
PointContrast† 90.1 04.6 05.4 08.1 09.5 21.9 30.8 00.0 90.7 25.6 73.3 00.3 86.4 39.3 83.7 51.2 70.6 53.6 34.9 41.1
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SLidR 92.2 03.0 17.0 22.4 14.3 36.0 22.1 00.0 91.3 30.0 74.7 00.2 87.7 41.2 85.0 58.5 70.4 58.3 42.4 44.6

Table 8. Per-class performance on SemanticKITTI using 1% of the annotated scans for fine-tuning. We report the IoU for each class and
highlight the best and second best scores with dark blue and light blue backgrounds, respectively.

els as in SLidR. After DepthContrast pre-training, we only
evaluate on the downstream tasks the voxel-based network.

We trained DepthContrast† on 1 GPU, with a batch size
of 8, using SGD with a momentum of 0.9, weight decay of
0.0001, and an initial learning rate of 0.001 (tuned on our
mini-val split) that drops to 10−6 with a cosine annealing
scheduler. We used queues of 60K negatives for the con-
trastive loss.

D. Additional Training Details
D.1. Linear Probing

In this experiment, the pretrained network fθ is com-
bined with a pointwise linear classification head which is
trained for 50 epochs with a learning rate of 0.05 for all
methods.

D.2. Few-Shot Semantic Segmentation

On SemanticKITTI, the networks are fine-tuned for 100
epochs and a batch size of 10. On nuScenes, we use a
batch size of 16 and for 100 epochs. We use different
learning rates on the classification head and the backbone
fθ, except when the backbone is initialized with random
weights. We recall that these learning rates are optimized
for each method and each dataset, using our mini-val split

for nuScenes and the validation set for semanticKITTI.

D.3. Annotation Efficiency on nuScenes

As in the previous section, we use different learning rates
on the classification head and the backbone fθ and optimize
these learning rates for each method and each subset size,
using our mini-val split. The network is fine-tuned for 100
epochs when using 1% of annotated data and 50 epochs for
the other percentages.

E. nuScenes mini-val Split
The training set of nuScenes contains 700 scenes in total,

including:
• 137 raining scenes,
• 84 night-time scenes,
• 310 scenes in Singapore,
• 390 scenes in Boston.
We construct our mini-val split by selecting 100 scenes

from this training set so that it contains each type of scenes
in the same proportion. Our mini-val split contains:

• 20 raining scenes,
• 12 night-time scenes,
• 44 scenes in Singapore,



• 56 scenes in Boston.
We will provide the list of selected scenes along with the
implementation of SLidR.

F. Societal and Environmental Impact
Self-supervision enables the use of large and uncurated

datasets with performance often increasing with the dura-
tion of the training schedule and the size of the model, at
the cost of using much more computational resources with
possibly negative environmental impacts. Yet, pre-trained
models also reduce the training time needed on multiple
downstream tasks, hence reducing the environmental cost
of training downstream models. In fact, we distribute our
pre-trained models.

G. Public Resources Used
We acknowledge the use of the following public re-

sources, during the course of this work:
• KITTI object detection . . . . . . . . . . CC BY-NC-SA 3.0
• MinkowskiEngine . . . . . . . . . . . . . . . . . . . . MIT License
• nuScenes . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit . . . . . . . . . . . . . . . Apache License 2.0
• OpenPCDet . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Pytorch Lightning . . . . . . . . . . . . . . Apache License 2.0
• Semantic KITTI . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
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