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Abstract— 3D scene reconstruction has important applications
to help to produce digital twins of existing buildings. While
the community has mostly focused on surface reconstruction or
semantic segmentation as separate problems, the joint reconstruc-
tion of both volumes and semantics has little been discussed,
mostly due to the lack of large scale volume datasets with
semantic annotations. In this work, we introduce a new dataset
called VASAD for Volume And Semantic Architectural Dataset.
It is composed of 6 building models, with full volume description
and semantic labels. It approximately represents 62,000 m’> of
building floors, making it large enough for the development
and evaluation of learning-based approaches. We propose several
methods to jointly reconstruct both geometry and semantics and
evaluate on the test set of the dataset. We show that the proposed
dataset is challenging enough to stimulate research. The dataset
is available at https://github.com/palanglois/vasad,

I. INTRODUCTION

In recent years, the construction industry has developed a
new type of digital model called Building Information Model
(BIM), for a better conception, construction and maintenance
of buildings. While 3D models have already been used for
building design, BIMs include a richer information: the seman-
tic class of each building component (e.g., windows, walls), as
well as other technical information. BIM creation and update
of existing buildings require reconstructing both the volumetric
geometry and the semantics of the current building state [T].

To reconstruct 3D models, buildings are first scanned, often
using a lidar. This sensor provides accurate depth measure-
ments, that can then be used to produce high-quality basic
geometric features, such as normals [2]. Although not as
accurate, depth cameras are also used for building scanning.
Nevertheless, both kinds of sensors suffer from inherent weak-
nesses: noise depending on depth and surface inclination, miss-
ing or wrong measurements due to reflecting or transparent
surfaces. Moreover, measurements are often taken from fixed
viewpoints, which generates a non-uniform surface sampling.
Last, and as is the case for any sensor, building parts may be
missing because of occlusions or inattention from the operator.
3D reconstruction from such incomplete, inhomogeneous and
possibly noisy data necessitates strong priors, that are better
learned automatically from existing data.

Many learning-based approaches have been developed for
the 3D semantic segmentation of point clouds [3], [4], [3], and
a few for 3D scene reconstruction [6], [[7]], [8]. However few
methods tackle the semantic volume reconstruction [9]] and for
full building reconstruction, related work is even scarcer [10].
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The main reason, we argue, is the lack of suitable datasets.
Indeed, most existing datasets address one or the other task,
and those that hold both geometric and semantic information
feature objects (e.g., furniture), not building components. Be-
sides, these objects are often given as open surfaces instead of
closed volumes, which is however required for BIM modelling.

Our work intends to help to fill this gap, both in terms of
dataset and methodology, towards the reconstruction of full
digital mockups. Our contributions are twofold.

First, we introduce a new dataset called VASAD for Vol-

ume And Semantic Architectural Dataset, aimed at building


https://github.com/palanglois/vasad

reconstruction from point clouds. It is composed of 6 complete
building models, with volume description and semantic labels
for each building component. It represents over 62,000 m? of
building floors, making it large enough for the development
and evaluation of learning-based methods. In fact, we believe
this dataset can be particularly valuable to train and evaluate
methods that generate BIM models from raw Lidar scans.
Second, we present a deep neural network for joint semantic
and geometric reconstruction. It is built over of a semantic
feature extractor followed by a dense voxel-reconstruction
network. At any location in space, we predict both the oc-
cupancy (in or outside matter) and the semantic label of the
component. Quantitative evaluations on VASAD show that it
outperforms a baseline method that we created from a state-of-
the-art reconstruction method [7]] to also include semantics.

II. RELATED WORK
A. Methods

1) Surface Reconstruction from Point Clouds: Assuming
that points are sampled densely enough and without much
noise, proven methods allow meaningful mesh reconstruction
[L1]. When points are noisy, a smoothness prior is required,
also to handle outliers [12], [13]]. As man-made environments
have specific geometric features, e.g., planarity and orthog-
onality, similarly-specific reconstruction methods have been
proposed with piecewise-planar [[14], [[15] or Manhattan-world
assumptions [16], producing idealized models, possibly with
remaining free-form parts [[17]. However, to avoid such hand-
crafted priors, recent methods learn priors by leveraging large
datasets of 3D objects [18]] and scenes [19]], [20]. Common
data representations for learning-based 3D reconstruction are
voxels [21], meshes [22], [23], and implicit functions [24],
[25], including for large scenes [6], [7], [8], [26]]. Piecewise
planarity may also be integrated as an extra prior [27].

2) Semantic Segmentation of Point Clouds: Early meth-
ods [28] have formulated the point cloud segmentation prob-
lem as region growing [29]], model fitting [30], clustering [31]
or graph-cut optimization [32]. These formulations allow
handcrafted priors, e.g., underlying basic shapes such as planes
or cylinders [30], or local properties as descriptors [32]] . While
these methods can be effective in particular cases, they fail at
handling semantic classes that involve complex priors.

Recent methods directly learn complex priors from large
datasets. A pioneering work is PointNet [4], possibly in a
multi-scale architecture [33)], which use a multi-layer percep-
tron (MLP) with a pooling operation to get an invariance
to point ordering. To obtain translation invariance and to
better scale to large scenes, convolution was extended to point
clouds [341, [S0, [33], [3], or applied (sparsely for efficiency)
to a regular 3D grid after point voxelization [36f], [37], [38].

3) Joint Reconstruction and Semantic Segmentation: Intu-
itively, geometric reconstruction and semantic segmentation
should help each other. Pioneering work in this direction [9]
simultaneously completes and labels voxels obtained from
a single depth image. Recent work try to directly leverage
the synergy between both tasks by affinity learning [39]], by

supervising the reconstruction task thanks to a pre-trained seg-
mentation network [40], by introducing a content-consistency
constraint [41], or by independently estimating the geometry
on the segmented classes and adding a merging step [42]], [43].

Implicit representations are a major tool to achieve both
tasks, because they allow the problem to be formulated as an
optimization task over the whole 3D space, whose data term
can be handcrafted [44]] or learned [45]. Yet, very few projects
aim at analyzing and reconstructing whole buildings [46].
Most works stay essentially at the scale of a room and its
furniture, focusing more on surface than volume. The reason is
mainly the lack of data for learning to model the full structure
of a volumetric building geometry with semantics.

B. Datasets

Existing datasets mainly focus on a single aspect, either
geometry or semantics, and with little emphasis on volumes.
1) Semantic information: Besides object detection with
bounding boxes, recovering semantics in 3D often takes the
form of point cloud segmentation, either in automotive en-
vironments (e.g., SemanticKITTI [47], [48] NuScenes [49]),
outdoors (e.g., Semantic3D [50], NPM3D [51]), or indoor
scenes (e.g., S3DIS [52], MatterPort3D [53]], ScanNet [20]).
2) Surface information: Except a few unsupervised meth-
ods that can learn surface information from raw points clouds
[54], most learning-based reconstruction methods rely directly
or indirectly on supervision from mesh datasets, synthetic
(CAD-based) like ShapeNet [18] or SceneNet [19], or real
(based on actual scans) like DFaust [55] or MatterPort3D [53].
3) Volume information: Though many reconstruction needs
do not require watertight meshes, a number of approaches,
including methods based on implicit functions, necessitate the
supervision of closed meshes (i.e., volumes) as they sample
points and label them as inside or outside the shape. However,
due to their creation process, whether it is manual (for CAD-
based datasets) or algorithmic, many mesh datasets have
poor topological properties (e.g., self-intersection) and feature
open meshes. Consequently, a substantial preprocessing step
is required to close the meshes and create volumes [S6], [S7].
4) Semantic and volume information: Datasets associating
both volume and semantics are very rare, generally limited
to single rooms or flats with furniture [58]], [[19], [59], [60],
or to building exteriors [61]]. S3DIS [52] contains semantics
and volumetric information at building level, but the (coarse)
volume data is also mostly focused on furniture; it does
not properly represents the building structure. In particular,
volumes are independently built for each room, and floors and
walls are given an arbitrary thicknesses, cf. Fig.2] Reliably
creating consistent building volumes from semantized surfaces
would be extremely difficult due to numerous special cases.
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Fig. 2. Empty columns, holes and hollow structural parts in S3DIS [52].



III. VASAD DATASET

To address the lack of data covering both volume and
semantics at building level, we introduce a new dataset, called
VASAD for Volume And Semantic Architectural Dataset. This
synthetic dataset aims at leveraging machine-learning tech-
niques for architectural reconstruction, towards BIM creation.

A. Overview

As opposed to other datasets, our primary goal is to create
a realistic database for building reconstruction, focused on the
structure and components of the building instead of furniture.

VASAD is derived from six BIM models made by architects
that can be freely used for research purposes. The buildings
vary from a villa to a large-scale hospital, totalling more than
62,000 m2. They are listed in Tab.[l] and illustrated in Fig.[1}
together with the semantic classes of their components (door,
pillar, etc.). A few common inconsistencies in BIM modelling
remain, e.g., a slab being used both as floor and flat roof.

These classes were obtained by filtering the component
names in the BIM models. We strove to create classes that
are relevant to properly model arbitrary building structures,
avoiding overlap between classes, though some of them can
be challenging to tell apart, e.g., partition vs bearing wall, slab
vs flat roof, partition vs pillar. As opposed to S3DIS [352],
the dataset contains full and accurate structure information. In
particular, the volumes represent the complete structure com-
ponents and are not limited to a few-millimeter thick envelope.
Furniture present in a few original BIMs was discarded.

B. 3D Representation of Closed Shapes

We provide access to volume and semantic information via a
function that returns the class of an arbitrary query point in 3D
(including full or empty), like an implicit representation does.
Explicit semantized 3D representations can then be generated
from this function, including point clouds, voxels and meshes.

In order to build this function, the input shapes (i.e., the
various building components in the BIM model) have to be
closed, as discussed above. It is almost the case for our cured
VASAD models, though some construction errors still remain.
To nevertheless create a consistent oracle, we built on the idea
that any ray starting from a point inside a shape intersects its
surface an odd number of times (before going to infinity).
To be robust with respect to the construction errors such
as meshes not well closed, we cast 3 axis-aligned rays to
determine the label of a point. A majority vote on the label
of the first intersected surface decides on the correct label.

C. Point Cloud Scanning Simulation

Rather than consider input points uniformly sampled on the
surface, as if often the case with synthetic data [7]], we more
realistically do virtual scans, shooting rays from viewpoints.

1) Generation of Viewpoints: To be realistic, besides being
in empty space, viewpoints should be spread across the model
so that most surface pieces are visible from at least one
viewpoint. Enforcing this kind of constraint is difficult because
it could require shooting many rays, which is computationally

Fig. 3. Fully-automated virtual scanning of the ground-truth mesh (test set).

TABLE 1
BUILDING COMPOSITION IN THE VASAD DATASET

Id Building name Building type split area(m?) #compon.
1 NBU-OfficeBuilding office train 3,700 1,241
2 Sextant residential (villa) train 228 1,444
3 WestRiverSideHospital hospital train 29,600 23,661
4 Trapelo office train 18,400 5,500
5 OTC-ConferenceCenter conference center train 5,800 3,657
6 NBU-MedicalClinic medical clinic test 4,500 3,094

expensive. Our heuristics is to iteratively add new viewpoints
as long as they are not visible from viewpoints already placed.
While it does not guarantee that every bit of surface is
visible from a viewpoint, it empirically produces a fair surface
covering and is much more tractable computationally.

2) Ray Shooting: For virtual scanning, we do not try to
comply to a particular lidar type. From each viewpoint, we
shoot rays uniformly in all directions. The scanned point is
the first intersection with the mesh. We save the semantic label
of the intersected object instance (building component) of the
mesh, and surface normal (which could also be estimated [2]]).

While not fully realistic, this automated virtual scanning is
still significantly more realistic than the usual uniform mesh
sampling. It takes into account sampling density variations due
to view incidence on the surface, and it prevents sampling on
surfaces pieces that are invisible in practice (see Fig.[).

(Creating more realistic scans taking into account the shoot-
ing geometry and resolution of different lidar models, as well
as depth and incidence-based noise, is future work.)

D. Train/Test Split

S3DIS features 6 areas from 3 different buildings. Its
train/test split is made to avoid that similar parts are seen in
both sets. We leverage the diversity of buildings in VASAD to
propose a train/test split where the test set consists of a full
building. As our buildings have different sizes, we choose as a
test building Medical Clinic, whose size is average, cf. Tab.m

IV. SEMANTIZED RECONSTRUCTION

We present our method, that extracts point-level semantic
features and does semantic reconstruction with a voxel net-
work. As volume-and-semantic reconstruction at building scale
is a new task, there is no method to compare to. Therefore,
we also define a baseline, that is a direct extension of a state-
of-the-art reconstruction method to also handle semantics.
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Fig. 4. PVSRNet extracts semantic features via U-Net point convolution, aggregates them into voxels, and infers semantic volume occupancy via a 3D U-Net.

A. Point-Voxel Semantic Reconstruction Network (PVSRNet)

The voxel representation is a natural way to operate in 3D,
allowing a direct transposition of proven methods used for
images. In particular, the U-Net architecture [[62], first used for
image segmentation, has been successfully generalized to 3D
for dense volume segmentation from sparse annotations [63].
However, one of the main drawbacks of voxels is memory
consumption, that may impose coarse resolutions and/or small
analysis contexts. Methods have thus been proposed to exploit
input sparsity [36], [37], [38]. It is however little inappropriate
for volume reconstruction from surface points, where empty
voxels at input may turn out to be inferred as full, unless using
a recently-proposed sparse voxel completion method [[64].

1) Our method: We chose to first leverage a point convo-
Iution network, which is able to process a large space region
at once, and therefore to exploit a wide context. And only in
a second stage, a voxel-based network performs semantized
reconstruction. Having access to a large context is particularly
important for the semantic analysis of buildings. For instance,
while ceilings and slabs are locally similar, their relative
position in a building can help to disambiguate them.

This method, called Point-Voxel Semantic Reconstruction
Network (PVSRNet), is illustrated in Fig.[] The input point
cloud, possibly with normals, is first processed at large scale
by a U-Net based on FKAConv [3]], computing a feature vector
per point. Point features are then averaged to form voxel
features. At this stage, only voxels close to the surface, where
points are sampled, receive information. Last, a voxel-based
3D U-Net propagate this information into the whole volume.

2) Scaling to Entire Buildings: The input is split into ad-
jacent cubic chunks of size 2.40 m, each chunk corresponding
to 483 voxels of size 5 cm. However, the point convolution for
semantic feature extraction has access to a larger context: a
6 m-diameter ball centered on each chunk.

Regarding supervision, voxels are labeled with a strategy
biased towards full space, as to balance the fact that 70% of the
models is made of void. We split each voxel into 3* subvoxels
and randomly sample (at most) one point in each subvoxel, that
gets the label of the point, if any. If all 27 subvoxels are labeled
with void, then the voxel gets a void label. Otherwise, the
voxel gets the label of the most represented full class among
the subvoxels. This allows us to recover thin objects such as
windows, which otherwise often would fail to be represented
by a majority vote of 27 subvoxels, dominated by void.

This model is trainable end-to-end. However, as it consumes
too much memory for middle-range GPUs, we first train the

FKAConv U-Net with point label supervision, using a cross-
entropy loss; the point features are the raw logits, just before
the softmax layer. Then we train the 3D U-Net with voxel
label supervision (see above), using a cross-entropy loss too.

B. Semantic Convolutional Occupancy Network (SemConvONet)

Our baseline, called SemConvONet, is a direct extension of
ConvONet [7]] to semantics. ConvONet reconstructs a volume
from a point cloud via an implicit occupancy function, from
which a mesh is created via the Marching cubes [65]. Scaling
to scenes requires using ConvONet in sliding-window mode.

1) Method: We use the 3D-grid variant of ConvONet, that
performs best on scenes [7]]. Feature vectors are first extracted
on a regular 3D grid with a local PointNet [4]], then refined
using a 3D U-Net [63] into latent vectors. Last, the latent
vector of a query point is trilinearly interpolated from nearby
grid latent vectors, and fed into an MLP to yield an occupancy.

To obtain a semantic information on top of geometry, we
modify the prediction occupancy function: given a point, possi-
bly with normal, instead of just predicting a binary occupancy
(full or empty), we predict a semantic class, including void.
The network is trained with a standard cross-entropy loss.

At inference time, ConvONet directly applies the Marching
cubes on the output logits, which allows a smooth interpolation
between Marching cube voxels. In our case, we apply a hard
argmax on the logits, and the Marching cubes are applied for
each non-void semantic class against all other classes. There-
fore, the global reconstructed mesh includes one mesh per
class, although possibly split into disconnected components.
Using a hard argmax does not allow a smooth interpolation
(hence the voxelized aspect of the output), but it allows to
perfectly stitch two volumes of different class, without an in-
between void or overlap. This is essential for BIM modelling.

2) Scaling to Entire Buildings: The input is split into
adjacent cubic chunks of size 4 m (randomly rotated along the
z-axis at training time). To allow comparison to PVSRNet,
each chunk is similarly split as a 5cm-voxel grid and one
point is sampled in each 33-subvoxels. As it would result in
too many points for a sliding window to see enough context,
we further downsample the voxel points, making sure to have
at least one point per class that is represented in the voxel. This
typically yields more than 500k points. We complete them to
IM by randomly sampling among the remaining points.



TABLE 11
QUANTITATIVE RESULTS ON VASAD.
Method Input Output | Super- | Volume metrics
Nor- Surface vision ToU TIoU
mals  sem. Sem.?T Geom. T
Pure geometric reconstruction
ConvONet ‘ X X ‘ points ‘ geom. ‘ - 0.31
Joint geometric and semantic reconstruction
SemConvONet X X points sem. 0.25 0.29
v X points sem. 0.23 0.28
3D U-Net X X voxels sem. 0.37 0.49
v X voxels sem. 0.41 0.55
PVSRNet | v v/ | voxels | sem. | 0.53 0.59

V. EXPERIMENTS
A. Evaluation Metrics

Volumetric semantic reconstruction is twofold. We evaluate
joint geometry and semantics, as well as pure geometry. (It
make no sense to assess semantics alone.) Evaluation is carried
out by uniformly sampling 3D points in the union of the
ground-truth bounding box and of the predicted 3D model.
For each point, we compare the ground-truth label (obtained
with the procedure from Sect[[II-B) to the predicted label.
We evaluate the volume quality of the reconstruction with the
intersection over union (IoU), either averaged over all semantic
classes (IoU Sem.), or computed over empty/full labels (IoU
Geom.), all non-void predictions being then considered as full.
10M points per model ensure stable metrics.

B. Results

We evaluate our PVSRNet method and the SemConvOnet
baseline on VASAD. We present quantitative results in Tab.[TI]
and qualitative results in Fig.[5]

We first consider pure geometric reconstruction, where a
vanilla ConvONet is trained on VASAD by aggregating all
the non-void semantic labels into a full label. The relatively
low IoU, while ConvONet is among the state-of-the-art recon-
struction methods, illustrates the difficulty of the task.

We then train two versions of SemConvONet: with raw
point coordinates as input, and with the addition of normal
information (extending the input size of the PointNet encoder).
The requirement, at loss level, to also predict semantics seems
to be a heavy burden for the (Sem)ConvONet architecture, that
does not succeed in leveraging the semantic supervision to
eventually also improve the geometry. The slight performance
decrease when inputting normals, which is within the variance
margin of model training, could be due to the difficulty, for
this architecture, to interpret the area of influence of normals
in a point cloud with very high variations of sampling density.

As an ablation study for PVSRNet, we also train a model,
reported as “3D U-Net” in Tab.[ll] that corresponds to the
second stage only of PVSRNet, i.e., without semantic features
as input. Like with SemConvONet, we train two variants, with
or without normals as input. In spite of voxel discretization that
inherently restricts the accuracy of the reconstructed surface

(see differences in floor reconstruction on Fig.@), our method
does better than any version of SemConvONet regarding both
in IoU Sem. and in IoU Geom. Experiments also show that
SemConvONet is very sensitive to input sampling (see Fig.[3]
row 4). A reason could be that ConvONet was developed with
uniform sampling in mind, whereas our dataset features high
variations of sampling density, as is the case with real scans.
We also observe that 3D U-Net largely benefits from normals,
which shows that the architecture is much more appropriate
than SemConvONet to make use of this kind of information.

Finally, we evaluate the full-fledged PVSRNet method,
that leverages both normals and rich semantic features. We
observe that it outperforms all the other methods by a large
margin, including SemConvONet. Compared to 3D U-Net
alone, PVSRNet gains +12 IoU Sem. pts (semantic classes)
and +4 IoU Geom. pts (void/full status). Note that the building
semantic classes are distributed in a highly non uniform way.
Structural classes such as bearing walls, partitions and slabs
are more represented than smaller components such as beams,
doors, pillars, railings, stairs or windows. Looking at actual
reconstructions, we observe that SemConvONet strives to
recognize less-represented classes, the prediction being then
biased toward void, walls or floors. On the contrary, PVSRNet
better recovers classes such as beams, stairs and windows, with
less holes in thin surfaces. For instance, on Fig. E} one can
notice the windows in rows 1, 4, 5, 6, the door and the beams
in row 2, and the railings in row 3.

C. Discussions and Perspectives

1) Dataset Ambiguities: Architects that create BIM models
commonly make different design choices, reflecting the same
global geometry but using different semantic components, or
different subdivisions. For instance, given that some flat roofs
can be accessed, there is an intrinsic ambiguity between slabs
and roofs. Such components should have both labels, not to
penalize learning and evaluation. Also, there are many ways
to pave the wall volume of a building into cuboids.

2) Lack of Information: Sometimes information is missing
to recover some building elements. For example, a closed door
can be hard to distinguish from the partition in which the open-
ing is made, in particular if there is no door frame. A possible
perspective is to enrich representations with texture and/or
material, and to model more realistic lidar scans featuring
returned intensity or even lower-level signal shapes. Textures
would enable the complementary use of virtual pictures too.

3) Inherent ambiguities: Some components are hard to
distinguish from others. For instance, partitions tend to be
thinner than bearing walls, and bearing walls tend to be mainly
on the building envelope. However, there are still exceptions,
which can make these classes hard to distinguish.

4) Small Details: One of the main limitations of PVSRNet
is the voxel size, which prevents us from properly representing
classes with small details, such as railings (see Fig.[5] row 3).
A low resolution may also introduce ambiguities, e.g., win-
dows being hard to distinguish in walls, as doors in partitions.
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Fig. 5. Qualitative results of SemConvONet and PVSRNet on the test set of VASAD.

5) Voxels vs Implicit: In our experiments, PVSRNet out-
perfoms SemConvONet by a huge margin, including for less-
represented classes, and we suspect it is partly due to the sensi-
tivity of ConvONet to non-uniform sampling. It is future work
to understand the pros and cons of voxel-based representations
vs implicit functions, except that implicit functions can also
be computed based on a 3D grid, as in ConvONet.

VI. CONCLUSION

We introduced VASAD, a novel and freely available dataset
for the task of semantized building reconstruction. The dataset
(https://github.com/palanglois/vasad) features both the volu-
metric geometry and the semantics of building components,
which is key towards reconstructing BIM models of existing
constructions. While our work focuses on volume occupancy

and semantics, VASAD can also be used for instance seg-
mentation, except for large components like walls, that can be
partitioned in many different ways. To facilitate the creation
of more data from other BIM models, we make our tools
available too. They include our point labeling method, that is
robust to mesh defects, and our procedure for lidar simulation,
that features an automated viewpoint positioning. More details
are provided in the supplementary material. Last, we proposed
a “natural” baseline method to address the task, and a more
sophisticated approach that largely outperforms the baseline.
Yet there is still room for improvement: VASAD is challenging
dataset for modern semantized-reconstruction methods.

We hope these contributions can pave the way towards fully
automatic, so-called scan-to-BIM methods.
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