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VII. LABELING POINTS IN SPACE FROM BIM MESHES

BIM data include individual meshes for each building com-
ponent (or building “object”), together with their semantics.
In practice, although (or because) they are made by humans,
these meshes often have defects: they may be non-watertight,
self-intersecting, overlapping, etc.

Section III.B of the main paper describes an algorithm to
transform this kind of data into a volumetric function that
gives a semantic label (including void for emptyness) to any
3D point in space. We provide here, on Figure 6, a pseudo-
code for this point labeling algorithm.

The notation Ray(p, ex) designates the infinite ray starting
from point p, and parallel to the x-axis ex. For a perfectly
closed surface, this ray intersects the surface an odd number of
times if and only if p is in the surface interior. Since a minority
of meshes are not perfectly closed in the original source BIM
models of VASAD, we make use of of only three axis-aligned
rays per point and use a majority vote to decide whether p is
in the interior of an object. In practice, we also noticed little to
no overlap between the different BIM components. Therefore,
we assign an interior p with the label of the first mesh for
which p is decided to be in the interior of.

VIII. GENERATION OF VIEWPOINTS

Section III.C of the main paper describes how to automati-
cally choose viewpoints to create artificial scans. We provide
on Figure 7 a pseudo-code for this viewpoint generation.

This algorithm is based on the observation that a set of
viewpoints that are invisible from each other are likely to scan
different parts of the surface; they thus have good chances to
be well distributed in space to scan the building.

Our procedure is iterative and greedy. We set a budget of
Niter trials to find a new viewpoint which is in the void space
and which is not seen from already positioned viewpoints. If
we are not able to find such a new location after Niter trials,
the algorithm stops. Otherwise, we keep on adding viewpoints
until we select Nmax viewpoints.

Please note that, even if two viewpoints do not see each
other, they may see a few building parts that are the same.
Scans from such a set of viewpoints may thus have overlapping
areas, as is the case in practice for human-based acquisition

3The publication was written prior to the employee joining Amazon.

campaigns in real buildings, that try to minimize the number
of scans while ensuring a maximum coverage of the building
surface.

As said in the main paper, this procedure does not ensure
that every bit of surface is visible from some viewpoint. To
reduce the likeliness of having parts of the building that are
not seen by any viewpoint, one can increase Niter and Nmax.
However, because of the heuristic nature of the procedure, it
becomes “asymptotically” harder to sample a point in empty
space that is not visible from previous points. In this case,
it could make more sense to generate a few full sets of
viewpoints and to merge them, although it would most likely
break the sensor reciprocal invisibility rule. Complementary
viewpoint candidates could also be created by sampling points
uniformly on the surface and offsetting them from the surface
along the normal direction, but it remains time consuming.

In any case, it is unrealistic to try to ensure that every
bit of surface is visible from at least one viewpoint; there
would be too many of them, and in unpractical locations.
For instance, in real life, no actual scan sees or tries to see
behind or below banister rails, or every part of a ceiling with
exposed beams. Learned priors have to be robust to input data
incompleteness, thanks to a supervision that, on the contrary,
operates on complete data. It is the case for VASAD as
supervision provides exact answers to any point query (exact
up to the vote heuristics of point labeling in case input meshes
have defects, see Section VIII).

IX. METRICS

In this section, we provide a more detailed formulation of
the metrics used in the main paper.

Our metrics measure volumetric information. Evaluation
is carried out by uniformly sampling points P in space in
the union of the bounding box of the ground truth and the
predicted 3D models. In practice, we sample 10M points and
we observe that increasing this number of points does not
affect the metrics noticeably. (It is similar to point sampling
to estimate Chamfer distances.) For each point p ∈ P , we
then find the ground-truth label lgtp thanks to the algorithm in
Section VII, and we consider the predicted label lpredp .

As most points in space are void (typically 70%), we do
not want to the metrics to be dominated by a measure of
correct empty space labeling. The metrics is thus computed



INPUT: a 3D point p and a mesh M of the BIM model, structured as a set of object meshes Ms with a semantic label
label = label(void) // Initialize the point label to void (i.e., empty)
queries ← {Ray(p, ex), Ray(p, ey), Ray(p, ez)} // Consider 3 orthogonal directions
for Ms ∈M do // For every semantic instance Ms in the global mesh
nodd-inter ← 0 // Initialize the counter of rays having an odd number of intersections with the object mesh Ms

for query ∈ queries do
if | query ∩Ms | mod 2 = 1 do // Count one for each query ray having an odd number of intersections with Ms

nodd-inter ← nodd-inter + 1
end if

end for
if nodd-inter ≥ 2 do // If at least two rays vote for being inside Ms

label ← label(Ms) // Assign the label of Ms

break
end if

end for
OUTPUT: label for point p

Fig. 6. Algorithm to label points in space from possibly defect-laden BIM meshes.

INPUT: mesh M representing the whole BIM model.
V ← ∅ // Initialize the set of viewpoints as empty
while | V | < Nmax do

repeat Niter times
//// Sample a candidate viewpoint in void
Pick v ∈ bbox (M) // Uniform sampling
while label(v) = void do // Using the algorithm described in Figure 6

Pick v ∈ bbox (M)
end while
is valid ← true
for vc ∈ V do // Compare the current viewpoint to those we already have

if segment(v, vc) ∩M = ∅ then // If the viewpoints ”see” each other
is valid ← false // Then the candidate viewpoint is discarded
break

end if
end for
if is valid then
V ← V ∪ {v}
break

end if
end repeat

end while
OUTPUT: set of point of views V

Fig. 7. Algorithm to generate synthetic viewpoints.

over all material points in P , i.e., all points in P whose label
corresponds to full (i.e., non void), either in the ground truth
or in the prediction. The metrics are defined as follows, where
∅ denotes the void label.

A. Semantic Intersection over Onion (Sem. IoU)

The semantic IoU is the proportion of points that have the
same label among the set of points labeled as non empty in

either the ground truth and the prediction.

IoUsem =

∣∣ {p ∈ P | lpredp = lgtp 6= ∅}
∣∣∣∣∣ {p ∈ P | lpredp 6= ∅ or lgtp 6= ∅}
∣∣∣ (1)

B. Geometric Intersection over Onion (Geom. IoU)

Some methods can predict a correct occupancy of the 3D
space (i.e., a correct partition into binary labels void and non
void) while they misclassify the full space (e.g., mistake a
window for a wall). In this case, even if the semantics is



Fig. 8. Confusion matrix for SemConvONet (with normals as input).

Fig. 9. Confusion matrix for our PVSRNet method (with normals as input).

wrong, the geometry still makes sense. We evaluate it thanks
to the following geometric IoU (which is the standard IoU in
dense 3D):

IoUgeom =

∣∣ {p ∈ P | lpredp 6= ∅ and lgtp 6= ∅}
∣∣∣∣∣ {p ∈ P | lpredp 6= ∅ or lgtp 6= ∅}
∣∣∣ (2)

C. Object Instance Evaluation

There are numerous ways to split most semantic materials
into individual parts, e.g., dividing walls into different cuboids
where two or more walls “encounter”. In fact, there is no
convention. Architects differ widely in their choices. A few
of them sometimes thus hint at the underlying structure of
the building, or the intended construction. Therefore, assessing
an instance-based decomposition quality for these semantic
classes is ill-defined.

Consequently, in VASAD, we decided we would not try to
evaluate any instance segmentation of building components,

even for classes as doors or windows for which connected
components can easily create instances. We thus do not assess
either any relationship between building components, as exists
in real BIM files. We only evaluate the presence of the right
volume with the right label.

X. CONFUSION MATRICES

To better compare the SemConvONet baseline method to
our PVSRNet approach, we study here classwise results.

As classification errors are usually not evenly spread across
the different classes, we quantitatively represent these errors
by building a confusion matrix C whose terms Ci,j count the
number of points in p ∈ Pvol whose ground-truth class is i,
and whose predicted class is j, including the void class.

Ci,j =
∣∣ {p ∈ P | lgtp = i and lpredp = j}

∣∣ (3)

A perfect classification would therefore yield a diagonal con-
fusion matrix.

Concretely, we show on Figure 8 the confusion matrix
for SemConvONet and, on Figure 9, the confusion matrix
for PVSRNet. For the sake of visualization, each row Ci is
normalized by the total number of points whose ground-truth
class is i, i.e.,

∑
j Ci,j .

The confusion matrices highlight the fact that, in spite
of achieving a reasonable recovery of the major building
components (bearing walls, slabs, partitions), SemConvONet
fails at recovering smaller classes, which are not reconstructed
(points wrongly labeled as void).

Conversely, PVSRNet is able to properly classify most of
the classes. Yet, we observe remaining errors. Most of them
come from:

• small or little-represented classes, i.e., railings or beams,
• classes that are hard to separate, e.g., windows on walls,
• architectural ambiguities (which may be labeled differ-

ently from one BIM model to another one, sometimes
even inconsistently within the same model), e.g., deciding
between a flat roof and a slab, or between a pillar inside
a building and a wall (including partitions).

XI. SEMANTIZED RECONSTRUCTION METHODS

Very few methods can reconstruct both volume and seman-
tics. We forgot to cite in the main paper the pioneering of
work of Häne and colleagues [1], [2], [3], although we cite
their survey [4]. Another very recent (yet unpublished) and
interesting approach is [5], but it take as input single images.

In this paper, we introduce two methods (with variants) for
the task of volumetric and semantic reconstruction from point
clouds, that are the first to operate at large scale and with
available code (upon publication).

• SemConvONet is an extension of ConvONet [6] to also
provide semantics.

• PVSRNet, which we put forward, pipelines point convo-
lution for semantics [7] and a 3D U-Net [8]. The 3D
U-Net that we use is actually a modern, more powerful
and scalable variant of SSCNet [9] (whose code relied
on obsolete pycaffe).
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Fig. 10. Additional visuals of the VASAD dataset

XII. THE VASAD DATASET

A. Empty vs furnished rooms.

Some initial BIM files of VASAD were featuring some
furniture, but the room contents and distribution was little
realistic, and we could not gather a large-enough dataset of this
kind anyway. We thus decided to remove this clutter to have a
homogeneous dataset. Populating it automatically afterwards
with furniture, as in Synthetic Rooms [6] or using a similar
approach as SceneNet [10]), is doable, but making it realistic
is substantial future work.

Even without furniture, VASAD remains anyway valuable
for training and evaluating methods reconstructing volume
and semantics. It is also valuable for the renovation industry,
when a building is fully cleaned up before being restructured.
Besides, most scan-to-BIM methods start by removing clut-
ter using point cloud semantic segmentation; VASAD-based
learned methods are then applicable to the cleaned-up point
clouds.

B. Dataset Diversity

VASAD buildings are very different one from another, in
purpose and in design (from a residential villa to a large
hospital). Besides inter-model variety, the intra-model diversity
is also high, as illustrated in Figure 1 of the main paper and in
Figure 10 of this supplementary material: room sizes, irregular
configurations, wall types, window shapes, staircases, etc.

Dataset S3DIS CVBE-3D VASAD

Scan real real simulated
Rooms with furniture 3 3 7
No. buildings 3 ? 6
No. floors 6 8 24
Size (m2) 6,000 ? 62,000
Volume information 7 3 3
3D reconstruction type - abstract actual
No. sem. classes (build. compon.) 7 7 11
Evaluation auto. human auto.

TABLE III
COMPARISON OF SEMANTIZED 3D BUIDLING DATASETS.

XIII. OTHER DATASETS

A few publications use homemade data with volume and
semantics, that are not publicly available.

The recent (June 2021) CVPR workshop on Computer
Vision in the Built Environment proposed a challenge with
a dataset (CVBE-3D) [11]. We did not succeed in getting it
(never hearing back from our account creation request) and it
looks like it has not been available since the workshop took
place. Yet, given what can be known from this dataset [11],
VASAD is notably larger and more complex than CVBE-3D,
as can be seen from Table III, where we include also S3DIS
[12]. Besides the dataset itself, VASAD also includes tools to
create more training and testing data from BIM files.

Concretely, CVEB-3D offers real scans of furnished build-
ings, while VASAD provides simulated scans with empty
rooms. It is significantly smaller than VASAD (8 vs 24 floors)



and features less semantic classes: no difference between
bearing walls and partitions; no roof, staircases, or railing.
(CVBE-3D actually is a subset of the larger CVBE dataset
used for the 2D challenge, which is made of 91 floors from
31 buildings.)

Besides, the evaluation has to be done by a human expert.
In fact, the evaluation is not possible anymore now that the
challenge is finished (assuming training and testing data could
be downloaded).

Another difference is that the 3D ground truth in CVEB-3D
may abstract away from the actually-scanned geometry, giving
a high-level, simplified representation of reality, whereas our
volumes are closely aligned with the scans, since the scans
are synthetically made from the volumes. While abstraction is
good for visualization and planning, faithful geometry is better
for actual renovation work.

XIV. DATA AND CODE RELEASE

At https://github.com/palanglois/vasad, we provide not only
the VASAD dataset but also the full implementation of the
methods and the data preparation tools. These tools produce
usable volumetric and semantic data from raw IFC files. It will
also allow the dataset to be enriched by more BIM models.

In fact, it could even be applicable to other contexts like
interior reconstruction with furniture, based on datasets such
as 3D-FRONT [13].
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