Fast and Robust Normal Estimation for Point Clouds with Sharp Features

Alexandre Boulch & Renaud Marlet

University Paris-Est, LIGM (UMR CNRS), Ecole des Ponts ParisTech

Symposium on Geometry Processing 2012

ヘロア ヘロア ヘビア ヘビア

Normal estimation for point clouds

Our method

Experiments

Conclusion

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 2/37

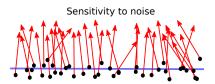
Normal estimation for point clouds

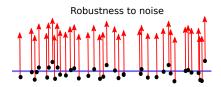
Our method

Experiments

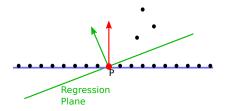
Conclusion

may be noisy



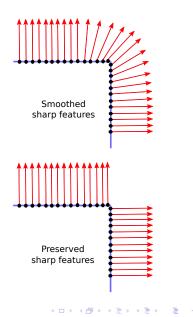


- may be noisy
- may have outliers

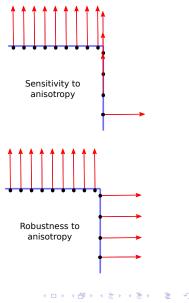


◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

- may be noisy
- may have outliers
- most often have sharp features



- may be noisy
- may have outliers
- most often have sharp features
- may be anisotropic



- may be noisy
- may have outliers
- most often have sharp features
- may be anisotropic
- may be huge (more than 20 million points)

Normal estimation for point clouds

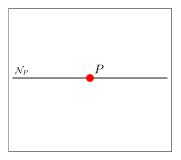
Our method

Experiments

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let P be a point and \mathcal{N}_P be its neighborhood.

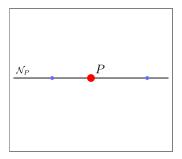


□▶ < ∄ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ 6/37

Let P be a point and \mathcal{N}_P be its neighborhood.

We consider two cases:

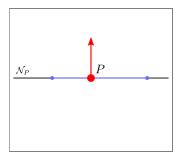
P lies on a planar surface



Let P be a point and \mathcal{N}_P be its neighborhood.

We consider two cases:

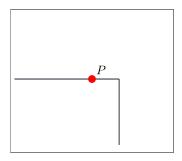
P lies on a planar surface



Let P be a point and \mathcal{N}_P be its neighborhood.

We consider two cases:

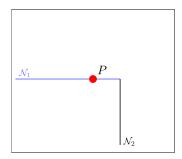
- P lies on a planar surface
- P lies next to a sharp feature



Let P be a point and \mathcal{N}_P be its neighborhood.

We consider two cases:

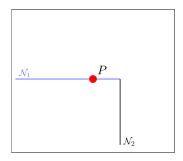
- P lies on a planar surface
- P lies next to a sharp feature



Let P be a point and \mathcal{N}_P be its neighborhood.

We consider two cases:

- P lies on a planar surface
- P lies next to a sharp feature

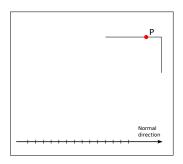


If $Area(\mathcal{N}_1) > Area(\mathcal{N}_2)$, picking points in $\mathcal{N}_1 \times \mathcal{N}_1$ is more probable than $\mathcal{N}_2 \times \mathcal{N}_2$, and $\mathcal{N}_1 \times \mathcal{N}_2$ leads to "random" normals.

Main Idea

Draw as many primitives as necessary to estimate the normal distribution, and then the most probable normal.

Discretize the problem

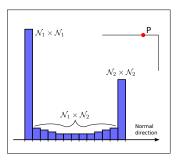


N.B. We compute the normal direction, not orientation.

Main Idea

Draw as many primitives as necessary to estimate the normal distribution, and then the most probable normal.

- Discretize the problem
- Fill a Hough accumulator

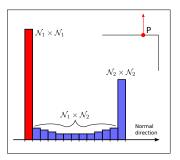


N.B. We compute the normal direction, not orientation.

Main Idea

Draw as many primitives as necessary to estimate the normal distribution, and then the most probable normal.

- Discretize the problem
- Fill a Hough accumulator
- Select the good normal



N.B. We compute the normal direction, not orientation.

Robust Randomized Hough Transform

- ► *T*, number of primitives picked after *T* iteration.
- T_{min} , number of primitives to pick
- M, number of bins of the accumulator
- \hat{p}_m , empirical mean of the bin m
- p_m , theoretical mean of the bin m

Robust Randomized Hough Transform Global upper bound

 T_{min} such that:

$$\mathbb{P}(\max_{m \in \{1, \dots, M\}} |\hat{p}_m - p_m| \le \delta) \ge \alpha$$

From Hoeffding's inequality, for a given bin:

$$\mathbb{P}(|\hat{p}_m - p_m| \ge \delta) \le 2\exp(-2\delta^2 T_{\min})$$

Considering the whole accumulator:

$$T_{\min} \ge \frac{1}{2\delta^2} \ln(\frac{2M}{1-\alpha})$$

Robust Randomized Hough Transform

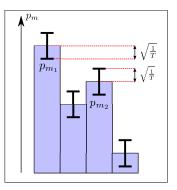
Confidence Interval

Idea: if we pick often enough the same bin, we want to stop drawing primitives.

From the Central Limit Theorem, we can stop if:

$$\hat{p}_{m_1} - \hat{p}_{m_2} \ge 2\sqrt{\frac{1}{T}}$$

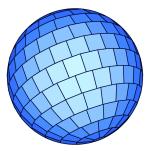
i.e. the confidence intervals of the most voted bins do not intersect (confidence level 95%)



(日)

Our primitives are planes directions (defined by two angles). We use the accumulator of Borrmann & al (*3D Research*, 2011).

- Fast computing
- Bins of similar area

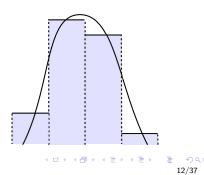


イロト イヨト イヨト

11/37

Discretization issues

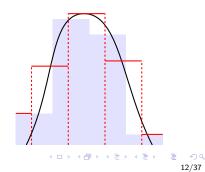
The use of a discrete accumulator may be a cause of error.



Ρ

Discretization issues

The use of a discrete accumulator may be a cause of error.



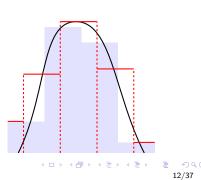
Ρ

Discretization issues

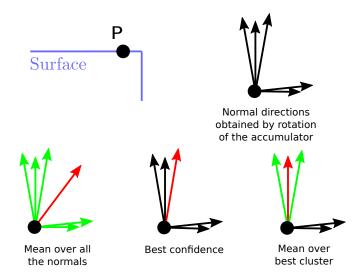
The use of a discrete accumulator may be a cause of error.

Solution

Iterate the algorithm using randomly rotated accumulators.



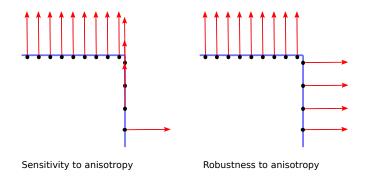
Normal Selection



<ロト < 部ト < 言ト < 言ト こ の < で 13/37

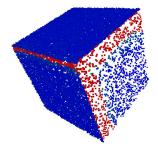
Dealing with anisotropy

The robustness to anisotropy depends of the way we select the planes (triplets of points)



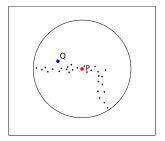
Random point selection among nearest neighbors Dealing with anisotropy

The triplets are randomly selected among the K nearest neighbors.

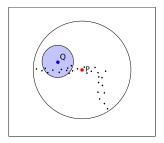


Fast but cannot deal with anisotropy.

 Pick a point Q in the neighborhood ball



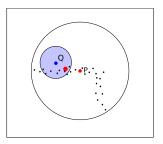
- Pick a point Q in the neighborhood ball
- Consider a small ball around Q



・ロト ・ 一下・ ・ 日 ト ・

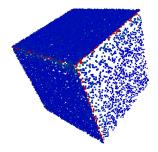
. ⊒ →

- Pick a point Q in the neighborhood ball
- Consider a small ball around Q
- Pick a point randomly in the small ball



(日)

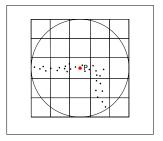
- Pick a point Q in the neighborhood ball
- Consider a small ball around Q
- Pick a point randomly in the small ball
- Iterate to get a triplet



Deals with anisotropy, but for a high computation cost.

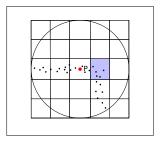
Dealing with anisotropy

Discretize the neighborhood ball



Dealing with anisotropy

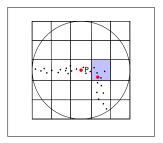
- Discretize the neighborhood ball
- Pick a cube



17/37

Dealing with anisotropy

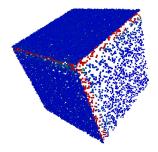
- Discretize the neighborhood ball
- Pick a cube
- Pick a point randomly in this cube



<ロト < 同ト < 三ト < 三ト

Dealing with anisotropy

- Discretize the neighborhood ball
- Pick a cube
- Pick a point randomly in this cube
- Iterate to get a triplet



Good compromise between speed and robustness to anisotropy.

Normal estimation for point clouds

Our method

Experiments

Conclusion

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ 18/37

Methods used for comparison

- Regression
 - Hoppe & al (SIGGRAPH,1992): plane fitting
 - Cazals & Pouget (SGP, 2003): jet fitting

	Plane fitting	Jet fitting	
Noise	\checkmark	\checkmark	
Outliers			
Sharp fts			
Anisotropy			
Fast	\checkmark	\checkmark	

(日) (四) (日) (日) (日)

Methods used for comparison

- Regression
 - Hoppe & al (SIGGRAPH,1992): plane fitting
 - Cazals & Pouget (SGP, 2003): jet fitting
- Voronoï diagram
 - Dey & Goswami (SCG, 2004): NormFet

	Plane fitting	Jet fitting	NormFet	
Noise	\checkmark	\checkmark		
Outliers				
Sharp fts			\checkmark	
Anisotropy			\checkmark	
Fast	\checkmark	\checkmark	\checkmark	

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

Methods used for comparison

- Regression
 - Hoppe & al (SIGGRAPH,1992): plane fitting
 - Cazals & Pouget (SGP, 2003): jet fitting
- Voronoï diagram
 - Dey & Goswami (SCG, 2004): NormFet
- Sample Consensus Models
 - Li & al (Computer & Graphics, 2010)

	Plane fitting	Jet fitting	NormFet	Sample Consensus
Noise	\checkmark	\checkmark		\checkmark
Outliers				\checkmark
Sharp fts			\checkmark	\checkmark
Anisotropy			\checkmark	
Fast	\checkmark	\checkmark	\checkmark	

<ロト < 同ト < 三ト < 三ト

Precision

Two error measures:

Root Mean Square (RMS):

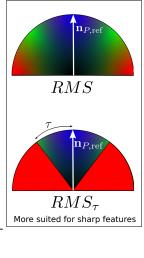
$$RMS = \sqrt{\frac{1}{|\mathcal{C}|}\sum_{P \in \mathcal{C}} \mathbf{n}_{P, \mathrm{ref}} \mathbf{n}_{P, \mathrm{est}}^{2}}$$

► Root Mean Square with threshold (RMS_*τ*):

$$RMS_\tau = \sqrt{\frac{1}{|\mathcal{C}|}\sum_{P\in\mathcal{C}}v_P^2}$$

where

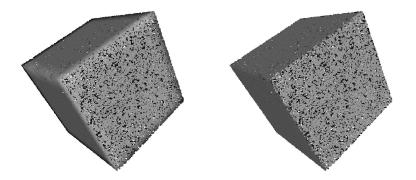
$$v_{P} = \begin{cases} \widehat{\mathbf{n}_{P, \text{ref}} \mathbf{n}_{P, \text{est}}} & \text{if } \widehat{\mathbf{n}_{P, \text{ref}} \mathbf{n}_{P, \text{est}}} < \tau \\ \frac{\pi}{2} & \text{otherwise} \end{cases}$$



ヘロト 人間 とくほ とくほとう

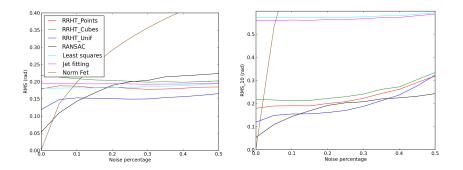
э

Visual on error distances



Same RMS, different RMS_{τ}

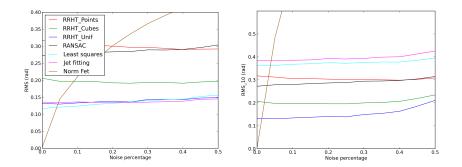
Precision (with noise)



Precision for cube uniformly sampled, depending on noise.

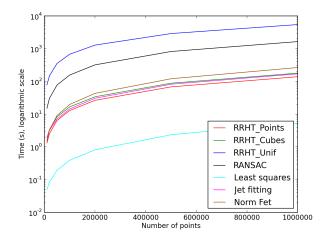
<ロト < 部ト < 言ト < 言ト 言 の < (や 22/37

Precision (with noise and anisotropy)



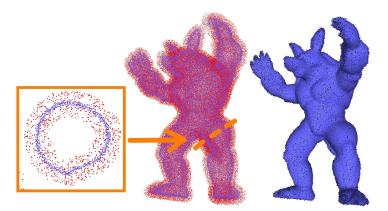
Precision for a corner with anisotropy, depending on noise.

Computation time



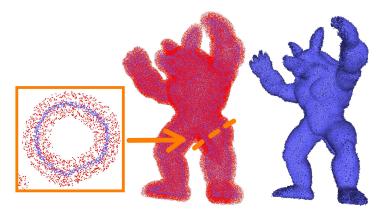
Computation time for sphere, function of the number of points.

Robustness to outliers



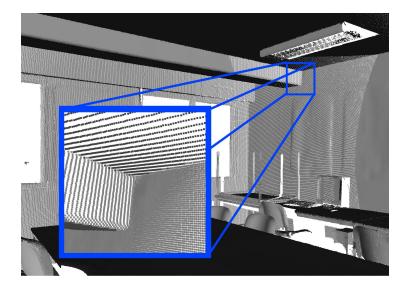
Noisy model (0.2%) + 100% of outliers.

Robustness to outliers

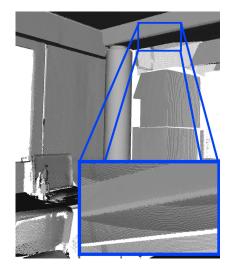


Noisy model (0.2%) + 200% of outliers.

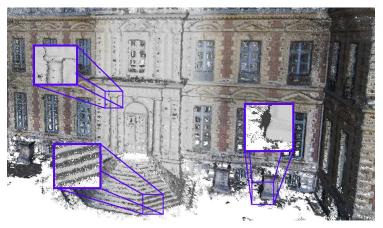
Robustness to anisotropy



Preservation of sharp features



Robustness to "natural" noise, outliers and anisotropy



Point cloud created by photogrammetry.

Normal estimation for point clouds

Our method

Experiments

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

	Plane fitting	Jet fitting	NormFet	Sample Consensus	Our method
Noise	\checkmark	\checkmark		\checkmark	\checkmark
Outliers				\checkmark	\checkmark
Sharp fts			\checkmark	\checkmark	\checkmark
Anisotropy			\checkmark		\checkmark
Fast	\checkmark	\checkmark	\checkmark		\checkmark

Compared to state-of-the-art methods that preserve sharp features, our normal estimator is:

- at least as precise
- at least as robust to noise and outliers
- almost 10x faster
- robust to anisotropy

Web site

https://sites.google.com/site/boulchalexandre

Two versions under GPL license:

- for Point Cloud Library (http://pointclouds.org)
- for CGAL (http://www.cgal.org)

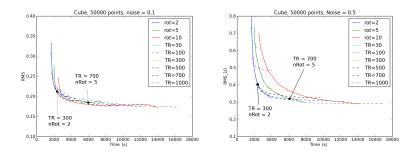
• • • • • • • • • •

Computation time

	<i>T_{min}</i> =700		T_{min} =300	
	n _{rot} =5		n _{rot} =2	
	w/o	with	w/o	with
Model (# vertices)	interv.	interv.	interv.	interv.
Armadillo (173k)	21 s	20 s	3s	3s
Dragon (438k)	55 s	51 s	8s	7 <i>s</i>
Buddha (543k)	1.1	1	10 s	10 s
Circ. Box (701k)	1.5	1.3	13 s	12 s
Omotondo (998k)	2	1.2	18 s	10 s
Statuette (5M)	11	10	1.5	1.4
Room (6.6M)	14	8	2.3	1.6
Lucy (14M)	28	17	4	2.5

- ► K or r: number of neighbors or neighborhood radius,
- ► *T_{min}*: number of primitives to explore,
- n_{ϕ} : parameter defining the number of bins,
- *n_{rot}*: number of accumulator rotations,
- c: presampling or discretization factor (anisotropy only),
- ► *a_{cluster}*: tolerance angle (mean over best cluster only).

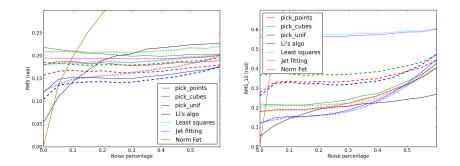
Efficiency



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Influence of the neighborhood size

Precision (with noise)



Precision for cube uniformly sampled, depending on noise.

<ロト < 部 > < 言 > < 言 > 言 う Q (* 37/37)