Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization

Alexandre Boulch Martin de La Gorce Renaud Marlet

IMAGINE group, Université Paris-Est, LIGM, École Nationale des Ponts et Chaussées

SGP 2014

3D models of existing buildings:

- thermal or acoustic simulations
- light and shadow casting
- Building Information Models

Laser point clouds + semi-automatic surface reconstruction

- error prone
- time consuming
- expensive

Objective

Automatic 3D surface reconstruction from point cloud

- watertight without self-intersection
- extends in a plausible manner in hidden regions
- piecewise planar

Challenges

Two main challenges

- ubiquitous occlusions
- sampling anisotropy

- Smooth surfaces priors are inadequate
- Intersects only pairs of planes that are adjacent in range image
- Manhattan world assumption: too restrictive
- Watertight solutions not guaranteed
- Voxelization: biased, expensive
- Delaunay tetrahedralization: visible regions only

[Chauve 2009]

Plane arrangement

- $\hfill\square$ Planes detected in the point cloud using region growing
- Hidden planes hypotheses (ghosts) guessed from the edges of detected polygons
- binary labelization of the 3D space
 - pairwise MRF (2nd order factors)
 - $\hfill\square$ solution with graph-cut
- Advantages
 - watertight solution
 - primitives can expand far beyond their visibility area
 - allows the use of hidden planes hypotheses
 - sharp surface reconstruction

[Chauve et al. 2009]

Limitations:

- anisotropy of laser point clouds is a problem
- missing plane hypotheses
- surface area minimization creates holes and cutted corners

Surface area vs Edges length vs Corners count

Contributions

- treatment of sampling anisotropy
- better and new plane hypotheses
- higher-order regularization:
 - length of edges (4th order factors)
 - number of corners (8th order factors)
- globally near optimal solutions using LP relaxation

- laser measures
- planes detection

- laser measures
- planes detection
- region polygonization and Ghosts creation

- laser measures
- planes detection
- region polygonization and Ghosts creation
- volume partition using a plane arrangement

- laser measures
- planes detection
- region polygonization and Ghosts creation
- volume partition using a plane arrangement
- LP Binary labelization

- laser measures
- planes detection
- region polygonization and Ghosts creation
- volume partition using a plane arrangement
- LP Binary labelization
- surface extraction

Plan detection

Region growing approach.

- compute point normals with a method that preserves sharp features [Boulch et al. 2012]
- locally planar region as seeds
- grow region from seeds
- keep plane equations updated using online least-square fitting

Plan detection

plane fusion to recover from over-segmentation using robust statistical criteria [Boulch et al. 2014]

Polygonization

Extraction of the the boundary pixel chain

- Extraction of the the boundary pixel chain
- Polygon simplification by greedy merging of adjacent edges, keeping maximum distance to the original polygon below 2 pixels (aliasing)

Polygonization

Orthogonal ghosts

We generate an orthogonal half-plane for each polygon edge

Orthogonal ghosts

Parallel ghosts

thin objects (tables, screens etc.)

- not enough points on the side
- find largest valid thickness

Parallel ghosts

thin objects (tables, screens etc.)

- not enough points on the side
- find largest valid thickness
- create parallel ghost

Surface reconstruction

Once we have all the plane candidates ,

- partition the volume with a plane arrangement
- label each cell as empty or full

$$x = (x_1, \ldots, x_N) \in \{0, 1\}^N$$

. .

$$E(x) = E_{data}(x) + E_{regul}(x)$$

labelization through minimization of a sum of terms

data terms

$$E_{data}(x) = E_{prim}(x) + E_{vis}(x)$$

the regularization terms

$$E_{
m regul}({\sf x}) = E_{
m area}({\sf x}) + E_{
m edge}({\sf x}) + E_{
m corner}({\sf x})$$

allows to cope with noisy measurement
 allows completion in hidden regions

Data term

- cells in front of labeled points should be empty
- cells just behind the points should be full

$$E_{\mathsf{prim}}(\mathsf{x}) = \sum_{\rho \in \mathcal{P}} w_{\rho}^{\mathsf{aniso}} \left(x_{\rho}^{+} + (1 - x_{\rho}^{-}) \right) \tag{1}$$

Data term

Facets on the surface should not intersect rays

$$E_{\text{vis}}(\mathbf{x}) = \sum_{\substack{\boldsymbol{p} \in \mathcal{P}, \ f \in \mathcal{F} \\ \omega \boldsymbol{p} \cap f \neq \emptyset}} w_{\boldsymbol{p}}^{\text{aniso}} |x_{f^+} - x_{f^-}|$$
(2)

Data term

Data term are not enough to label all cells

Surface area regularization

the total area of the surface is

$$E_{\text{area}}(\mathbf{x}) = \sum_{f \in \mathcal{F}} w_f \left| x_{f^+} - x_{f^-} \right| \tag{3}$$

with

$$w_f = a_f / \sigma^2$$

where σ is a scale parameter and a_f the area of the facet

Data term + Area term

Area term does not fill large gaps

Edge length regularization

existence of an edge as a linear function of the adjacent cell binary values:

$$h_e(x) = x_a - x_b - x_c + x_d$$

The total edge length of the surface is penalized in the optimized energy using

$$E_{\text{edge}}(\mathsf{x}) = \sum_{e \in \mathcal{E}} w_e \left| h_e(\mathsf{x}) \right| \tag{4}$$

With

$$w_e = \frac{l_e}{\sigma} \ w_{\text{ang}}(\alpha_e) \tag{5}$$

with σ the scale parameter and $w_{ang}(\alpha_e)$ a function of the angle between the two planes

Corners count regularization

Corners count regularization

We penalize the number of corner in the reconstructed surface by adding to he minimized energy the term

$$E_{\text{corner}}(\mathbf{x}) = \sum_{\mathbf{v} \in \mathcal{V}} w_{\mathbf{v}} \left| h_{\mathbf{v}}(\mathbf{x}) \right|$$
(6)

 W_{ν} depends on the three angles between each pair of plane:

$$w_{\nu} = w_{\text{ang}}(\alpha_1, \alpha_2, \alpha_3) \tag{7}$$

The corner count terms correspond to potentials of order up to 8 in the context of MRFs

- 8th order potential are challenging for MRF minimization methods.
 - Tree-reweighted Belief Propagation, extremely slow to converge
 - $\hfill\square$ Lazy Flipper : local minimum, extremely suboptimal
- We formulate the labeling problem as a Mixed-integer programming problem

Optimization

The total minimized energy can be written as

$$E(x) = \zeta + \sum_{i} w_i |H_i . x|$$

with ζ a constant and each H_i is a sparse vector using an auxiliary variable y_i , each term can be formulated as linear term with additional constraints

$$w_i|H_i \cdot x| = \min_{y_i} w_i y_i \quad s.t. \quad -y_i \le H_i \cdot x \le y_i \tag{8}$$

thus we aim to solve the integer program

$$min_{x,y} \sum_{i} w_{i}y_{i} \quad s.t. \ x \in \{0,1\}^{N}, \forall i: -y_{i} \leq H_{i}.x \leq y_{i}$$
 (9)

Optimization

we aim to solve the integer program

$$\min_{x,y} \sum_{i} w_{i}y_{i} \quad s.t. \quad x \in \{0,1\}^{N}, \forall i: -y_{i} \leq H_{i}.x \leq y_{i}$$
(10)

we relaxe the integer constraint $x \in \{0,1\}^N$ to the box constraint $x \in [0,1]^N$:

$$\min_{x,y} \sum_{i} w_i y_i \quad s.t. \quad x \in [0,1]^N, \forall i: -y_i \le H_i \, . \, x \le y_i$$
(11)

This is a standard Linear Program, We solve it using the dual simplex in the commercial Mosek[®] solver. After rounding to solution to integers we obtained an increase of energy not greater than 8%.

chauve & al

corners only

edges only

corners

edge+corners

reconstruction

point cloud

- allows plausible completion in hidden regions
- handles anisotropy
- edge and corner regularization superior to area term for completion
- near-optimal global solution using efficient LP relaxation

Futur work

- photogrammetry
- better scalability to large scenes

This work was partly supported by Bouygues Construction interested in automatic BIM generation from existing buildings

emails:

- martin.de-la-gorce@enpc.fr
- alexandre.boulch@enpc.fr
- renaud.marlet@enpc.fr
- IMAGINE team website:
 - imagine.enpc.fr

Polygonization

The polygones have curvy edges in the image coordinate system. we compute the distance of a point to a curvy segment using geodesqic projection in the the sphere

The surface should pass near observed points:

The surface should not intersect any segment joining the scanner center and the observed points

Data term

We penalize full cell just in front of a point and empty cell just behind a point

$$E_{\text{prim}}(\mathbf{x}) = \sum_{\boldsymbol{p} \in \mathcal{P}} w_{\boldsymbol{p}}^{\text{aniso}}(\boldsymbol{P}_{\boldsymbol{p}}) \left(x_{\boldsymbol{p}}^{\sigma+} + (1 - x_{\boldsymbol{p}}^{\sigma-}) \right)$$
(12)

We use a penalization weight that take anisotropy into account

$$w_{\rho}^{\text{aniso}}(P) = \frac{d^2}{\sigma^2} \Delta_{\theta} \Delta_{\phi} \frac{\sin \phi}{\cos \psi}$$
(13)

with θ the azimuth angle, ϕ the polar angle , Δ_{θ} and Δ_{ϕ} the two steps of the scan.

We penalize the use of facets that intersect the segments joining the laser center and the observed points

$$E_{\text{vis}}(\mathbf{x}) = \sum_{\substack{p \in \mathcal{P}, f \in \mathcal{F} \\ \omega p \cap f \neq \emptyset, \ d(p, P_f) \le \sigma}} w_p^{\text{aniso}}(P_f) |x_{f^+} - x_{f^-}|$$
(14)

We penalize the number of corner in the reconstructed surface by adding to he minimized energy the term

$$E_{\text{corner}}(\mathbf{x}) = \sum_{\mathbf{v} \in \mathcal{V}} w_{\mathbf{v}} \left| h_{\mathbf{v}}(\mathbf{x}) \right|$$
(15)

 W_{ν} depends on the three angles between each pair of plane:

$$w_{v} = w_{ang}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = A + (1 - A) \exp\left(-\frac{\sum_{i \in \{1, 2, 3\}} (\alpha_{i} - \pi/2)^{2}}{2\rho^{2}}\right)$$
(16)

The corner count terms correspond to potentials of order up to 8 in the context of MRFs