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Need

3D models of existing buildings:
� thermal or acoustic simulations
� light and shadow casting
� Building Information Models
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Existing solutions

Laser point clouds + semi-automatic surface reconstruction

� error prone
� time consuming
� expensive
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Objective

Automatic 3D surface reconstruction from point cloud
� watertight without self-intersection
� extends in a plausible manner in hidden regions
� piecewise planar
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Challenges

Two main challenges
� ubiquitous occlusions
� sampling anisotropy
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Limitation of existing methods

� Smooth surfaces priors are inadequate
� Intersects only pairs of planes that are adjacent in range image
� Manhattan world assumption: too restrictive
� Watertight solutions not guaranteed
� Voxelization: biased, expensive
� Delaunay tetrahedralization: visible regions only
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[Chauve 2009]

� Plane arrangement
� Planes detected in the point cloud using region growing
� Hidden planes hypotheses (ghosts) guessed from the edges of detected

polygons
� binary labelization of the 3D space

� pairwise MRF (2nd order factors)
� solution with graph-cut

� Advantages
� watertight solution
� primitives can expand far beyond their visibility area
� allows the use of hidden planes hypotheses
� sharp surface reconstruction
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[Chauve et al. 2009]

Limitations:
� anisotropy of laser point clouds is a problem
� missing plane hypotheses
� surface area minimization creates holes and cutted corners
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Surface area vs Edges length vs Corners count

larger surface area
shorter edges
fewer corners

larger surface area
longer edges
fewer corners
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Our approach

Contributions
� treatment of sampling anisotropy
� better and new plane hypotheses
� higher-order regularization:

� length of edges (4th order factors)
� number of corners (8th order factors)

� globally near optimal solutions using LP relaxation
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Method overview

� laser measures

� planes detection
� region polygonization
and Ghosts creation

� volume partition using a
plane arrangement

� LP Binary labelization
� surface extraction
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Plan detection

Region growing approach.
� compute point normals with a method that preserves sharp features
[Boulch et al. 2012]

� locally planar region as seeds
� grow region from seeds
� keep plane equations updated using online least-square fitting
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Plan detection

plane fusion to recover from over-segmentation using robust statistical
criteria [Boulch et al. 2014]

⇓
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Polygonization

� Extraction of the the boundary pixel chain

� Polygon simplification by greedy merging of adjacent edges, keeping
maximum distance to the original polygon below 2 pixels (aliasing)
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Polygonization

15



Orthogonal ghosts

We generate an orthogonal half-plane for each polygon edge
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Orthogonal ghosts
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Parallel ghosts

thin objects (tables, screens etc.)
� not enough points on the side
� find largest valid thickness

� create parallel ghost
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Surface reconstruction

Once we have all the plane candidates ,
� partition the volume with a plane arrangement
� label each cell as empty or full

x = (x1, . . . , xN) ∈ {0, 1}N
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Surface reconstruction

E (x) = Edata(x) + Eregul(x)

labelization through minimization of a sum of terms
� data terms

Edata(x) = Eprim(x) + Evis(x)

� the regularization terms

Eregul(x) = Earea(x) + Eedge(x) + Ecorner(x)

� allows to cope with noisy measurement
� allows completion in hidden regions
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Data term

� cells in front of labeled points should be empty
� cells just behind the points should be full

Eprim(x) =
∑
p∈P

waniso
p

(
x+p + (1− x−p )

)
(1)
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Data term

Facets on the surface should not intersect rays

Evis(x) =
∑

p∈P, f ∈F
ωp∩f 6=∅

waniso
p |xf + − xf − | (2)
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Data term

Data term are not enough to label all cells
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Surface area regularization

� the total area of the surface is

Earea(x) =
∑
f ∈F

wf |xf + − xf − | (3)

with
wf = af /σ

2

where σ is a scale parameter and af the area of the facet
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Data term + Area term

Area term does not fill large gaps
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Edge length regularization

existence of an edge as a linear function of the adjacent cell binary
values:

he(x) = xa − xb − xc + xd

EdgeNo edge

1-1-1+1=0 1-0-1+1=1 1-0-0+1=21-0-1+0=0
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Edge length regularization

The total edge length of the surface is penalized in the optimized
energy using

Eedge(x) =
∑
e∈E

we |he(x)| (4)

With
we =

le
σ

wang(αe) (5)

with σ the scale parameter and wang(αe) a function of the angle
between the two planes
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Corners count regularization

hv (x) = xa − xb − xc + xd − xe + xf + xg − xh
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Corners count regularization

Penalized configurations

Non-penalized configurations

1 11

2 2 32
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Corners count regularization

We penalize the number of corner in the reconstructed surface by
adding to he minimized energy the term

Ecorner(x) =
∑
v∈V

wv |hv (x)| (6)

Wv depends on the three angles between each pair of plane:

wv = wang(α1, α2, α3) (7)

The corner count terms correspond to potentials of order up to 8 in
the context of MRFs
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Optimization

� 8th order potential are challenging for MRF minimization methods.
� Tree-reweighted Belief Propagation, extremely slow to converge
� Lazy Flipper : local minimum, extremely suboptimal

� We formulate the labeling problem as a Mixed-integer programming
problem
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Optimization

The total minimized energy can be written as

E (x) = ζ +
∑
i

wi |Hi . x |

with ζ a constant and each Hi is a sparse vector
using an auxiliary variable yi , each term can be formulated as linear
term with additional constraints

wi |Hi . x | = min
yi

wiyi s.t. − yi ≤ Hi . x ≤ yi (8)

thus we aim to solve the integer program

minx ,y
∑
i

wiyi s.t. x ∈ {0, 1}N , ∀i : −yi ≤ Hi . x ≤ yi (9)
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Optimization

we aim to solve the integer program

minx ,y
∑
i

wiyi s.t. x ∈ {0, 1}N , ∀i : −yi ≤ Hi . x ≤ yi (10)

we relaxe the integer constraint x ∈ {0, 1}N to the box constraint
x ∈ [0, 1]N :

minx ,y
∑
i

wiyi s.t. x ∈ [0, 1]N , ∀i : −yi ≤ Hi . x ≤ yi (11)

This is a standard Linear Program, We solve it using the dual simplex
in the commercial Mosek c© solver. After rounding to solution to
integers we obtained an increase of energy not greater than 8%.
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Results

chauve & al surface only

edges only corners only
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Results

edges corners
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Results

corners edge+corners
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Results

point cloud reconstruction
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Conclusion

� allows plausible completion in hidden regions
� handles anisotropy
� edge and corner regularization superior to area term for completion
� near-optimal global solution using efficient LP relaxation

Futur work
� photogrammetry
� better scalability to large scenes
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Links

� This work was partly supported by Bouygues Construction
interested in automatic BIM generation from existing buildings

� emails:
� martin.de-la-gorce@enpc.fr
� alexandre.boulch@enpc.fr
� renaud.marlet@enpc.fr

� IMAGINE team website:
� imagine.enpc.fr
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Polygonization

The polygones have curvy edges in the image coordinate system. we
compute the distance of a point to a curvy segment using geodesqic
projection in the the sphere

Laser image

Unit sphere

Laser
center
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Data term

The surface should pass near observed points:
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Data term

The surface should not intersect any segment joining the scanner
center and the observed points
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Data term

� We penalize full cell just in front of a point and empty cell just
behind a point

Eprim(x) =
∑
p∈P

waniso
p (Pp)

(
xσ+p + (1− xσ−p )

)
(12)

� We use a penalization weight that take anisotropy into account

waniso
p (P) =

d2

σ2 ∆θ∆φ
sinφ
cosψ

(13)

with θ the azimuth angle, φ the polar angle , ∆θ and ∆φ the two
steps of the scan.
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Data term

We penalize the use of facets that intersect the segments joining the
laser center and the observed points

Evis(x) =
∑

p∈P, f ∈F
ωp∩f 6=∅, d(p,Pf )≤σ

waniso
p (Pf ) |xf + − xf − | (14)
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Corners count regularization

We penalize the number of corner in the reconstructed surface by
adding to he minimized energy the term

Ecorner(x) =
∑
v∈V

wv |hv (x)| (15)

Wv depends on the three angles between each pair of plane:

wv = wang(α1, α2, α3) = A + (1− A) exp(−
∑

i∈{1,2,3}(αi − π/2)2

2ρ2 )

(16)
The corner count terms correspond to potentials of order up to 8 in
the context of MRFs
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