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Abstract A technique for calibrating a network of perspec-
tive cameras based on their graph of trifocal tensors is pre-
sented. After estimating a set of reliable epipolar geome-
tries, a parameterization of the graph of trifocal tensors is
proposed in which each trifocal tensor is linearly encoded by
a 4-vector. The strength of this parameterization is that the
homographies relating two adjacent trifocal tensors, as well
as the projection matrices depend linearly on the parameters.
Two methods for estimating these parameters in a global
way taking into account loops in the graph are developed.
Both methods are based on sequential linear programming:
the first relies on a locally linear approximation of the poly-
nomials involved in the loop constraints whereas the sec-
ond uses alternating minimization. Both methods have the
advantage of being non-incremental and of uniformly dis-
tributing the error across all the cameras. Experiments car-
ried out on several real data sets demonstrate the accuracy
of the proposed approach and its efficiency in distributing
errors over the whole set of cameras.
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Jérôme Courchay, Arnak Dalalyan, Renaud Keriven
IMAGINE, LIGM, Université Paris-Est
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1 Introduction

Camera calibration from images of a 3-dimensional scene
has always been a central issue in Computer Vision. The
success of textbooks like [1,2] attests this interest. In re-
cent years, many methods for calibration have been pro-
posed. Most of these works either rely on known or partially
known internal calibrations [3–10] or deal with an ordered
sequence of cameras [11,12,14,15]. In many practical situ-
ations, however, the internal parameters of cameras are un-
available or available but very inaccurate. The absence of
an order in the set of cameras is also very common when
processing, for instance, Internet images.

In this paper, we deal with the problem of calibrating
a network of cameras from a set of unordered images, the
main emphasis being on the accuracy of the projective re-
construction of camera matrices. Traditionally, this situation
is handled by factorizing the measurement matrix [16,17],
which may be subject to missing data [18,19] because of
occlusions. The methodology adopted in the present work
is substantially different and is based on the notion of the
graph of trifocal tensors rather than on the factorization. The
experiments on real data sets show that our approach leads
to highly competitive results that furnish a good initializa-
tion to the bundle adjustment (BA) algorithm [20].

Even in the case of calibrated cameras, most of the afore-
mentioned methods are based on a graph of cameras (in
which the edges are the epipolar geometries) which is made
acyclic by discarding several edges. On the other hand, a
number of recent studies, oriented toward city modeling from
car or aerial sequences, point out the benefits of enforcing
loop constraints. Considering loops in the graph of cameras
has the advantage of reducing the drift due to errors induced
while processing the trajectory sequentially (cf. Fig. 1). [21]
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Fig. 1 Multi-view stereo reconstruction [26] using cameras calibrated without (left) and with (right) using the loop constraint. When the loop
constraint is not enforced, the accumulation of errors results in an extremely poor reconstruction.

merges partial reconstructions, [22] constrains consistent ro-
tations for loops and planar motion. Adapted to their specific
input, these papers often rely on trajectory regularization or
dense matching [23,24]. [25] is a notable exception, where
loop constraints are added to sparse Structure from Motion
(SfM), yet taking as input an ordered omnidirectional se-
quence and assuming known internal parameters.

Using the graph of triplets instead of the graph of im-
ages or image pairs confers a number of important advan-
tages: the strong geometric trifocal constraint means that
very few false correspondences are encountered, there is no
need to distinguish between feasible and infeasible paths as
it is done in [43] and the risk of having problems with criti-
cal surfaces is lessened [40].

The method proposed in the present work consists of the
following points:

1. Our starting point is a set of unknown cameras linked
by estimated epipolar geometries (EG). These are com-
puted using a state-of-the-art version of RANSAC [27],
followed by a maximum likelihood improvement des-
cribed in [14]. We assume that along with the estimated
fundamental matrices, reliable epipolar correspondences
are known. These correspondences are made robust by
simultaneously considering several camera pairs, like in
[3]. This produces a set of three-view correspondences
that will be used in the sequel.

2. We group views into triplets. Three views (i, j,k) are
considered as a valid triplet if (a) the EGs between i
and j as well as between j and k have been successfully
computed at the previous step and (b) there are at least 4
three-view correspondences in these images. To reduce
the number of nodes, some of the estimated epipolar ge-
ometries are ignored, so that inside a triplet, only two of
the three fundamental matrices are considered known.
The advantage of this strategy is that we do not need to
enforce the coherence of fundamental matrices. At first
sight, this can be seen as a loss of information. How-
ever, this information is actually recovered via trifocal
tensors.

3. We define a graph having as nodes valid camera triplets.
Therefore, there are two fundamental matrices available
for each node. Two nodes are connected by an edge if
they share a fundamental matrix. We demonstrate that
for each node there exists a 4-vector such that all the
entries of the three camera matrices are affine functions
with known coefficients of this 4-vector. Moreover, the
homographies that allow the registration of two adjacent
nodes ν and ν ′ are also affine functions depending on 4
out of the 8 unknown parameters corresponding to ν and
ν ′. To speed-up the computations, for each node only 50
(or less) three-view correspondences that are the most
compatible with the EGs are used.

4. If the graph of triplets is acyclic, the equations of three-
view correspondences for all nodes lead to a linear es-
timate of all the cameras. In case the graph of triplets
contains one or several loops, each loop is encoded as a
(non-linear) constraint on the unknowns. Starting from
an initial value computed as a solution to the uncon-
strained least squares, we sequentially linearize the loop
constraints and solve the resulting problem by (sparse)
linear programming. This can be efficiently done even
for very large graphs. It converges very rapidly, but the
loop constraints are fulfilled only approximately.

5. In the case where the loop constraints are not satisfied
exactly, we proceed by homography registration and es-
timation of camera matrices by linear least-squares un-
der a norm constraint. This is done exactly via a singular
value decomposition producing as output all cameras in
a projective space. To provide a qualitative evaluation,
we recover the metric space using an implementation of
[28], and a single Euclidean bundle adjustment that re-
fines the metric space and camera positions.

6. As an alternative to steps 4 and 5, we also propose a
second approach based on alternating minimization. In
all our experiments, this method converges to a solution
for which the loop constraints are satisfied to very high
precision. The main idea underlying this method is that
when, in a loop, all but 4 trifocal tensors are given, the
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loop constraints can be written as linear equations. A
precise formulation and the proof of this are presented
in Section 4 and the Appendix, respectively. While the
method described above in steps 1.-5. appeared in our
ECCV paper [13], this part is new and leads to improved
results in terms of the achievability of loop constraints.

Thus, we propose a method that accurately recovers geome-
tries, without any sequential process, and attempts to en-
force the compatibility of cameras within loops in the early
stages of the procedure. An important advantage conferred
by our approach is that the number of unknown parameters
is kept fairly small, since we consider only the cameras (four
unknowns for each triplet) and not the 3D points. Our re-
construction is further refined by bundle adjustment. Taking
loops into account and avoiding error accumulation, the pro-
posed solution is less prone to get stuck in local minima.

After submission of our manuscript, two papers, [41]
and [42], related to the present work have been published.
In [41], the authors aim at exploiting loops in the graph
of images in order to detect and to identify incorrect ge-
ometric relations between images. The main common fea-
ture with our approach is that the loop consistency statistics
are defined by chaining transformations over loops. Thus,
there are analogies between their techniques and the ours
but these techniques are applied to two different problems.
On the other hand, the problem studied in [42] is the same
as in the present paper, but the methodology is different.
In fact, the authors of [42] propose a structure from mo-
tion pipeline—based on a hierarchical representation of the
graph of images—capable to deal with large-scale data sets
but bound to trees of images.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background theory and terminology. Our
algorithms are thoroughly described in Sections 3 and 4.
The results of numerical experiments conducted on several
real data sets as well as a comparison to state-of-the-art soft-
ware are provided in Section 5.

2 Background

In this work, we consider a network of N uncalibrated cam-
eras and assume that for some pairs of cameras (i, j), where
i, j = 1, . . . ,N, i 6= j, an estimation of the fundamental ma-
trix, denoted by Fi, j, is available. Let us denote by ei, j the
unit norm epipole in view j of camera center i. Recall that
the fundamental matrix leads to a projective reconstruction
of camera matrices (Pi,P j), which is unique up to a homog-
raphy.

The geometry of three views i, j and k is described by
the Trifocal Tensor, hereafter denoted by T i, j,k. It consists

of three 3×3 matrices: Ti, j,k
1 ,Ti, j,k

2 and Ti, j,k
3 and provides a

particularly elegant description of point-line-line correspon-
dences in terms of linear equations

pT
i

lTj T
i, j,k
1

lTj T
i, j,k
2

lTj T
i, j,k
3

 lk = 0, (1)

where pi is a point in image i (seen as a point in projec-
tive space P2) which is in correspondence with the line l j
in image j and with the line lk in image k. Considering the
entries of T i, j,k as unknowns, we get thus one linear equa-
tion for each point-line-line correspondence. Therefore, one
point-point-point correspondence pi←→ p j←→ pk leads to 4
independent linear equations by combining an independent
pair of lines passing through p j in image j with an indepen-
dent pair of lines passing through pk in image k.

Since a Trifocal Tensor has 27 entries, the previous argu-
ment shows that 7 point-point-point correspondences suffice
for recovering the Trifocal Tensor as a solution of an overde-
termined system of linear equations. Recall however that the
Trifocal Tensor has only 18 degrees of freedom. Most algo-
rithms estimating a Trifocal Tensor from noisy point-point-
point correspondences compute an approximate solution to
the linear system by a least squares estimator (LSE) and then
perform a post-processing in order to get a valid Trifocal
Tensor. An alternative approach consists in using a minimal
solution that determines the three-view geometry from six
points [29,30].

2.1 Parameterization of the set of trifocal tensors

Let us describe now two elementary results that represent
the building blocks of our approach, relying on the fact that
when two out of three fundamental matrices are known, the
Trifocal Tensor has exactly 4 degrees of freedom.

Proposition 1 For three views i, j and k, given two funda-
mental matrices Fi, j and Fi,k, there exists a 4-vector γ =

[γ0,γ1,γ2,γ3] such that T i, j,k is given by:

Ti, j,k
t = Ai, j

t

0 0 0
0 0 γ0
0 1 γt

(Ai,k
t )

T
(2)

for every t = 1,2,3, where Ai,s
t =

[
(Fi,s

t,1:3)
T , (Fi,s

t,1:3)
T×ei,s , ei,s

]
,

for s = j,k. Moreover, T i, j,k is geometrically valid, i.e. ,
there exist 3 camera matrices Pi, P j and Pk compatible with
Fi, j and Fi,k and having T i, j,k as the Trifocal Tensor.

The proof of this result is deferred to the appendix. It is note-
worthy that the claims of Proposition 1 hold true under full
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generality, even if the centers of three cameras are collinear.
In view of [1], the camera matrices parameterized by γ that
are compatible with the fundamental matrices Fi, j and Fi,k

as well as with the Trifocal Tensor defined by Eq. (2) are
given by (up to a projective homography)

Pi = [I3×3 |03×1], Pk = [[ei,k]×Fk,i |ei,k],

P j = kron
(
[γ1:3,1];ei, j

)
− γ0[[ei, j]×F j,i |03×1],

(3)

where kron(·, ·) stands for the Kronecker product of two ma-
trices. These cameras are obtained directly using results in
[1, Eq. 15.1].

In the noiseless setting, Proposition 1 offers a minimal
way of computing the 4 remaining unknowns from point-
point-point correspondences. One could think that one point-
point-point correspondence leading to 4 equations is enough
for retrieving the 4 unknowns. However, since two EGs are
known, only one equation brings new information from one
point-point-point correspondence. So we need at least 4 point-
point-point correspondences to compute the Trifocal Ten-
sor compatible with the two given fundamental matrices. In
the noisy case, if we use all 4 equations associated to point-
point-point correspondences, the system becomes overdeter-
mined and one usually proceeds by computing the LSE.

The second ingredient in our approach is the parameter-
ization of the homography that bridges two camera triplets
having one fundamental matrix in common. Let i, j, k and
` be four views such that (a) for views i and k we have suc-
cessfully estimated the fundamental matrix Fi,k and (b) for
each triplet (i, j,k) and (k, i, `) the estimates of two funda-
mental matrices are available. Thus, the triplets (i, j,k) and
(k, i, `) share the same fundamental matrix Fi,k. Using equa-
tions (3), one obtains two projective reconstructions of cam-
era matrices of views i and k based on two 4-vectors γ and
γ . Let us denote the reconstruction from the triplet (i, j,k)
(resp. (k, i, `)) by Pi

γ and Pk
γ (resp. Pi

γ and Pk
γ ). If the centers

of cameras i and k differ, then there is a unique homography
H such that

Pi
γH∼= Pi

γ , Pk
γH∼= Pk

γ , (4)

where ∼= denotes equality up to a scale factor. Consider-
ing the camera matrices as known, one can solve equations
(4) w.r.t. H and then compute its inverse H. Setting λ =

− 1
2 tr([ei,k]×Fk,i[ek,i]×Fi,k), one readily checks that 1

H=

 kron(γ
1:3
,ek,i)− γ

0
[ek,i]×Fi,k ek,i

λ (ei,k)T 0

 , (5)

1 See Appendix B for more details

and

H=

 [ei,k]×Fk,i ei,k

γ
0
λ (ek,i)T− γT

1:3
[ei,k]×Fk,i −γ

1:3
ei,k

 . (6)

To sum up this section, let us stress that the main message
to retain from all these formulas is that the homographies H
and H, as well as the camera matrices given by (3) are linear
in (γ,γ).

2.2 Graph of trifocal tensors and loop constraints

This section contains the core of our contribution which re-
lies on a graph-based representation of the set of camera
triplets. This is closely related to the framework developed
in [5], where the graph of camera pairs is considered. The
advantage of operating with triplets instead of pairs is that
there is no need to distinguish between feasible and infeasi-
ble paths.

The starting point for our algorithm is a set of estimated
EGs that allows us to define a graph Gcam so that (a) Gcam has
N nodes corresponding to the N cameras and (b) two nodes
of Gcam are connected by an edge if a reliable estimation of
the corresponding epipolar geometry is available. Then, a
triplet of nodes i, j,k of Gcam is called valid if

- there is a sufficient number of three-view correspondences
between i, j and k,

- at least two out of three pairs of nodes are adjacent in
Gcam.

If for some valid triplet all three EGs are available, we re-
move the least reliable one (according to the Geometric Ro-
bust Information Criterion score [32]) and define the graph
Gtriplet = (Vtriplet,Etriplet) having as nodes valid triplets of
cameras and as edges the pairs of triplets that have one fun-
damental matrix in common. In view of Proposition 1, the
global calibration of the network is equivalent to the estima-
tion of a 4-vector for each triplet of cameras. Thus, to each
node v of the graph of triplets we associate a vector γv ∈R4.
The large vector Γ = (γv : v ∈ Vtriplet) is the parameter of
interest in our framework.

2.2.1 Tree of Trifocal Tensors

If, by some chance, it turns out that the graph of triplets is
acyclic, then the problem of estimating Γ reduces to estimat-
ing NV =Card(Vtriplet) independent vectors γv. This task can
be effectively accomplished using point-point-point corre-
spondences and the equation (1). As explained in Section 2,
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1 2 3 4 5 11
F1,2

2
F2,3

3
F3,4

4
F4,5

T 2,1,3, γ T 3,2,4, γ ′ T 4,3,5, γ ′′ 2T 2,1,3, γ
F2,3

T 3,2,4, γ ′
F3,4

P1, P2, P3 P′2, P′3, P′4 P′′3, P′′4, P′′5 3P1, P2, P3
H

HH′

P′2, P′3, P′4
H′

H′

Fig. 2 The first row shows the graph of cameras with estimated funda-
mental matrices. Based on this graph, we construct the graph of camera
triplets (as shown on the second row) and estimate the unknowns γ by
RANSAC. The third row illustrates that we transfer all the cameras to
the same projective space (that of T 4,3,5).

a few point-point-point correspondences suffice for comput-
ing an estimator of γv by least squares. In our implementa-
tion, we use RANSAC with a minimal configuration of four
3-view correspondences in order to perform robust estima-
tion.

Once the unknowns γv are recovered, the set of associ-
ated cameras can be reconstructed in a unique manner. As
shown in Fig. 2, one can transport all the camera triplets
to the same projective space by applying the homographies
computed using Equation 5. This can be seen by consid-
ering the degrees of freedom (DF) of a network of cam-
eras such that the corresponding graph of trifocal tensors
is acyclic. This network has 11N−15 DF since each one of
N cameras has 11 DF and they are defined up to an over-
all 4×4 homography, having 15 DF. On the other hand, our
parametrization—in the case of an acyclic graph of trifocal
tensors—is composed of N − 1 fundamental matrices and
N−2 vectors γ ∈ R4. Thus, the total number of parameters
is 7(N − 1)+ 4(N − 2) = 11N − 15, which coincides with
the number of DF.

2.2.2 Loop of Trifocal Tensors

However, acyclic graphs are the exception rather than the
rule. Even if the camera graph is acyclic, the resulting triplet
graph may contain loops. If there is a loop, then one has 15
loop constraints, i.e. one additional fundamental matrix and
two additional trifocal tensors as shown in Fig. 3. These con-
straints translate the fact that the camera triplet of Trifocal
Tensor T 2,1,3 obtained by iteratively transferring it via the
homographies H along the loop matches the initial camera
triplet. Denoting by {H1,2,H2,3, . . . ,HN,1} the homographies
that connect the nodes of the loop of Trifocal Tensors, the
constraints can be written in the form:

N

∏
i=1

Hi,i+1 ∼= I. (7)

Equation (7) defines a set of 15 polynomial constraints on

1 2 3 4 5 11
F1,2

F1,5

2
F2,3

3
F3,4

4
F4,5

T 2,1,3, γ1 T 3,2,4, γ2 T 4,3,5, γ3 2T 2,1,3, γ1
F2,3

T 3,2,4, γ2
F3,4

T 1,5,2, γ5 T 5,4,1, γ4 3

T 4,3,5, γ3

F4,5

T 5,4,1, γ4
F5,1

T 1,5,2, γ5

F1,2

Fig. 3 The first row shows an example of a graph of cameras forming
a loop; if we compare with the tree presented in Fig. 2, there is one
additional fundamental matrix leading to 7 additional constraints. The
second and the third rows illustrate the loop of camera triplets. There
are two additional reduced tensors (cf. row 3) giving raise to 8 new
constraints.

the unknown vector Γ . If the triplet graph contains Nloop
loops, then we end up with 15Nloop constraints. To give more
details, let us remark that every loop constraint (7) can be
rewritten as f j(Γ ) = 0, j = 1, . . . ,15, for some polynomial
functions f j. Gathering these constraints for all Nloop loops,
we get

f j(Γ ) = 0, j = 1, . . . ,15Nloop. (8)

On the other hand, in view of (1) and (2), the point-point-
point correspondences can be expressed as an inhomoge-
neous linear equation system in Γ

MΓ = m, (9)

where M is a 4N3-corr× 4N matrix and m is a 4N3-corr vec-
tor with N3-corr being the number of correspondences across
three views. The matrix M and the vector m are computed us-
ing the known fundamental matrices. Since in practice these
matrices are estimated from available data, the system (9)
need not be satisfied exactly. Then, it is natural to estimate
the parameter-vector Γ by solving the problem

min‖MΓ −m‖q
q

subject to f j(Γ ) = 0, ∀ j = 1, . . . ,15Nloop,
(10)

for some q ≥ 1. Unfortunately, this problem is non-convex
and, therefore, it is very hard to solve. To cope with this
issue, we propose two strategies based on local linearization
and alternating minimization.

The main advantage of this approach is that if a solution
to the proposed optimization problem is found, it is guaran-
teed to be consistent w.r.t. the loops, meaning that each cam-
era matrix will be uniquely determined up to a scale factor
and an overall homography ambiguity.
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3 First approach : sequential linear programming and
homography registration

We present now in full details the first approach to solving
for projective structure from motion. The second approach,
which differs from the first one only in the way the loop con-
straints are dealt with, will be described in the next section.

3.1 Constraint linearization

Instead of solving the optimization problem that is obtained
by combining the LSE with the loop constraints, we propose
here to replace it by a linear program.

We start by computing an initial estimator of Γ , e.g.,
by solving the unconstrained (convex) problem with some
q ≥ 1. In our implementation, we use RANSAC with q = 2
for ensuring robustness to erroneous three-view correspon-
dences. Then, given an initial estimator Γ0, we define the
sequence Γk by the following recursive relation: Γk+1 is the
solution to the linear program (LP)

min‖MΓ −m‖1
subject to | f j(Γk)+∇ f j(Γk)(Γ −Γk)| ≤ ε,

(11)

where ε is a small parameter (we use ε = 10−6).

There are many softwares, such as GLPK, SeDuMi, SDP3,
for solving problem (11) with highly attractive execution
times even for thousands of constraints and variables. Fur-
thermore, empirical experience shows that the sequence Γk
converges very rapidly. Typically, a solution with satisfac-
tory accuracy is obtained after five to ten iterations. Note
that a similar approach for imposing loop constraints has
been proposed in [38], where several other techniques of re-
laxation of non-linear constraints in (10) are considered.

Remark 1 Since our parameterization of the network of cam-
eras relies on a set of estimated fundamental matrices, LP
(11) might have no solution, i.e., there is no vector Γ satis-
fying all the constraints in (11). We did not observe such a
situation in our experiments, since in all our examples the
fundamental matrices have been estimated very accurately
and the number of unknowns in (11) was much larger than
the number of constraints. However, if for some data set the
LP is infeasible, it is possible to increase the tuning param-
eter ε so that the resulting LP becomes feasible.

3.2 Accounting for heteroscedasticity

The goal now is to make the energy that we minimize in
(11), which is purely algebraic, meaningful from a statis-
tical viewpoint. Assume equations (9) are satisfied up to

Fig. 4 This figure illustrates the heteroscedasticity of the noise in Eq.
(9) when the matrix M and the vector m are computed using estimated
EGs. The estimated residuals for 4 nodes of the triplet graph are plot-
ted, with 800 measurements available for each node.

an additive random noise: MΓ = m+ ξ , where the random
vector ξ has independent coordinates drawn from the cen-
tered Laplace distribution with constant scale. Then the en-
ergy in (11) is proportional to the negative log-likelihood.
The constancy of the scale factor means that the errors are
homoscedastic, which is a very strong hypothesis. We ob-
served that all three-view correspondences recorded by a
fixed triplet have nearly the same scale for the errors, while
the scales for different triplets are highly variable (cf. Fig. 4).

To account for this heteroscedasticity of the noise, we
use the initial estimator of Γ to estimate one scale parameter
σv per node v ∈ Vtriplet. This is done by computing the stan-
dard deviation of the estimated residuals. Using {σv}, the
energy in problem (11) is replaced by ∑v ‖MvΓ −mv‖1/σv.
Here, Mv is the submatrix of M containing only those rows
that are obtained from three-view correspondences recorded
by v. The vector mv is obtained from m in the same way.

3.3 Homography registration and estimation of projection
matrices

Assume that we have a graph of trifocal tensors, Gtriplet, the
nodes of which are denoted by v1,v2, . . . ,vn. In the previous
step, we have determined parameters γ1, . . . ,γn, such that γ i
characterizes the trifocal tensor represented by vi. A naive
strategy for estimating camera matrices is to set one of the
cameras equal to [I3×3 |03×1] and to recover the other cam-
eras by successive applications of the homographies H to the
camera matrices reconstructed according to (3).

However, in general situations, the vector Γ computed
by sequential linear programming as described in the previ-
ous section satisfies the loop constraints up to a small error.
Therefore, the aforementioned naive strategy has the draw-
back of increasing the error of estimation for cameras com-
puted using many homographies H.

In order to avoid this and to uniformly distribute the es-
timation error over the set of camera matrices, we propose
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a method based on homography registration by SVD. Thus,
the input for the method described in this section is a vector
Γ for which the loop constraints are satisfied up to a small
estimation error.

3.3.1 The case of a single loop

We assume in this subsection that Gtriplet reduces to one loop,
that is each node vi has exactly two neighbors vi−1 and vi+1
with standard convention and vn+i = vi for all i. (This ap-
plies to all the indices in this subsection.) For each node vi
representing three views, we have already computed a ver-
sion of the projection matrices P1,γ i ,P2,γ i ,P3,γ i . Furthermore,
for two neighboring nodes vi and vi+1 we have computed a
homography Hi,i+1 so that

P j,γ i+1 ∼= P j+1,γ iHi,i+1, j ∈ {1,2}. (12)

Based on the relative homographies {Hi,i+1} we want to re-
cover absolute homographies Hvi that allow to represent all
the matrices P j,γ i in a common projective frame. In other
terms, in the ideal case where there is no estimation error,
the matrices Hvi should satisfy

P j,γ i Hvi ∼= P j+i−1,∗, j ∈ {1,2,3}. (13)

Obviously, the set {Hvi} can only be determined up to an
overall projective homography.

Proposition 2 If for some i = 1, . . . ,n, the cameras Pi+1,∗

and Pi+2,∗ have different centers, then Hvi ∼= Hi,i+1Hvi+1 . Fur-
thermore, if the centers of each pair of consecutive cameras
are different, then one can find a projective coordinate frame
so that
i) Hvi = Hi,i+1Hvi+1 , ∀i = 1, . . . ,n−1,

ii) α Hvn = Hn,1Hv1 , where α = 1
4 Trace(∏n

i=1 H
i,i+1),

iii) Let H̄ be the (4n)× 4 matrix resulting from the vertical
concatenation of matrices Hvi . The four columns of H̄ are
orthonormal.

This result, the proof of which is presented in the Ap-
pendix, allows us to define the following algorithm for esti-
mating the matrices {Hvi}. Given the relative homographies
{Hi,i+1}, we first compute α according to the formula in ii)
and then minimize the cost function
n−1

∑
i=1

‖Hvi −Hi,i+1Hvi+1‖2
2

max(σ2
vi
,σ2

vi+1
)

+
‖α Hvn −Hn,1Hv1‖2

2
max(σ2

v1
,σ2

vn)
(14)

w.r.t. {Hvi}, subject to the orthonormality of the columns of
H̄. Here, ‖ · ‖2 is the Frobenius norm. The exact solution of
this (non-convex) optimization problem can be computed
using the singular value decomposition of a matrix of size
4n×4n constructed from α and {Hi,i+1}. Since this is quite
standard (based on the Courant-Fischer minimax theorem
[31, Thm. 8.1.2]), we do not present more details here.

First frame Second frame Last frame

Fig. 5 This figure illustrates the improvement achieved at each step
of our algorithm. If the cameras are reconstructed without imposing
loop constraints, the epipolar lines between the first and the last frames
are extremely inaccurate (1st row). They become much more accurate
when the constrained optimization is performed (2nd row). Finally, the
result is almost perfect once the homography registration is done (3rd
row). Figure can be best viewed under pdf magnification.

Remark 2 An alternative to the approach we have just de-
scribed consists in considering the homographies as elements
of a Lie group and in estimating the absolute homographies
by Lie averaging of relative motions as described in [39].

3.3.2 The case of several loops

Assume now that we have identified several loops in the
graph of trifocal tensors. Let Nloop be the number of these
loops. We apply to each loop the method of the previous
section and get a homography for every node of the loop.
In general, one node of Gtriplet may lie in several loops, in
which case we will have several homographies for that node.
It is then necessary to enforce the coherence of these ho-
mographies. To this end, we define the graph Gloop having
Nloop nodes, each node representing a loop. Two nodes of
Gloop are linked by an edge, if the corresponding loops have
non-empty intersection. We will assume that the graph Gloop
is connected, since otherwise it is impossible to simultane-
ously calibrate different connected components.

The next step consists in determining a minimal depth
spanning tree Tloop of Gloop. Since the number of loops is
assumed small, this step will not be time consuming. Let
(L ,L ′) be a pair of adjacent nodes of Tloop. By an argu-
ment analogous to that of Proposition 2, one can show that
there exists a 4× 4 homography HL ,L ′ such that Hv,L ∼=
Hv,L ′HL ′,L up to an estimation error, for every triplet of
cameras v ∈L ∩L ′. Here, Hv,L (resp. Hv,L ′ ) stands for the
homography assigned (cf. previous subsection) to the triplet
v as a part of the loop L (resp. L ′). The homography HL ′,L

can be estimated by minimizing the objective function

∑
v∈L∩L ′

‖αvH
v,L −Hv,L ′HL ′,L ‖2

2/σ
2
v (15)
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w.r.t. the matrix HL ′,L and parameters {αv} subject to

‖HL ′,L ‖2
2 + ∑

v∈L∩L ′
α

2
v = 1. (16)

Once again, this minimization can be carried out by comput-
ing the eigenvector corresponding to the smallest singular
value of a suitably defined matrix.

Finally, to enforce the coherence of absolute homogra-
phies computed using different loops, we proceed as fol-
lows. We do not modify the homographies computed within
the loop L0 constituting the root of the minimal depth span-
ning tree Tloop. For any other loop L , let L0 → L1 →
. . .→Lk →L be the (unique) path joining L to the root.
Then, every absolute homography Hv,L , v ∈ L , computed
within the loop L using the method of the previous subsec-
tion is replaced by Hv,L HL ,Lk · · ·HL1,L0 . After this modifi-
cation, the images by Hv,L of the projection matrices P j,γv

( j = 1,2,3) will all lie in nearly the same projective space.
This makes it possible to recover the final projection matri-
ces Pi by a simple computation presented in the next subsec-
tion.

3.3.3 Estimating projection matrices

Once the set of absolute homographies estimated, we turn
to the estimation of camera matrices {P j,∗}. Due to the es-
timates computed in previous steps, each projection matrix
P j,∗ can be estimated independently of the others. To ease
notation and since there is no loss of generality, let us focus
on the estimation of P1,∗. We start by determining the nodes
in Gtriplet that contain the first view. Let V1 denote the set of
these nodes. To each node v ∈ V1 corresponds one estimator
of P1,∗, denoted by P1,γv . Furthermore, we have a set of es-
timated homographies Hv,L that satisfy, up to an estimation
error, the relation P1,vHv,L ∼= P1,∗. This is equivalent to

αv,L P1,vHv,L = P1,∗, ∀v ∈ V1, ∀L ⊃ {v} (17)

for some αv,L ∈R. In Eq. (17), the unknowns are the scalars
αv,L and the matrix P1,∗. Since this matrix should be of rank
3, it has nonzero Frobenius norm. Therefore, we estimate
P1,∗ by P1 defined as a solution to

argmin
P

min
‖P‖22+‖α‖

2
2=1

∑
L

∑
v∈L∩V1

‖αv,L P1,vHv,L −P‖2
2

σ2
v

, (18)

where α stands for the vector having as coordinates the num-
bers αv,L . Once again, the problem (18) can be explicitly
solved using the SVD of an appropriate matrix.

3.4 Summary of the first approach

Prior to switching to the second approach, let us provide a
concise description of the pipeline presented in this section.

1. Use robust estimators of fundamental matrices for con-
structing the matrix M, the vector m and the polynomial
functions f j involved in the optimization problem (10).

2. Find an initial estimator of Γ by solving the unconstrained
problem using robust least squares. Estimate the scale
parameters using this initial estimate of Γ (cf. Subsec-
tion 3.2).

3. Iteratively solve the version of LP (11) described in Sub-
section 3.2 until convergence is observed. This gives a
vector Γ .

4. For each loop in the graph of triplets:
a. Compute relative homographies by (5) and (6).
b. Compute loop-specific homographies solving (14).

5. Determine absolute homographies as described in Sub-
section 3.3.2.

6. Solve (18) to get the final camera matrices.

4 Second approach: alternating linear minimization

We describe now a second approach that is also tailored to
the graphs of triplets constituting a loop, or a chain of a
few overlapping loops. It follows the pipeline of the first ap-
proach summarized in Subsection 3.4 except Step 3, which
is replaced by alternating minimization.

4.1 Background

We start this section by stating some basic results, the proofs
of which are deferred to the Appendix. The following propo-
sition states that, with our Trifocal Tensor parameterization,
the third fundamental matrix can be computed explicitly and
is affine in γ .

Proposition 3 Let G j,i = [ei, j]×F j,i and let us consider the
parameterization of the Trifocal Tensor T i, j,k described in
Proposition 1. Then, the fundamental matrix F j,k is an affine
function of γ and can be computed by the formula:

F j,k = [G j,iek,i]×
[(

ei, j
γ
T
1:3− γ0G

j,i)Gi,k−λei, j(ei,k)T
]

+(γ1:3ek,i)[ei, j]×G
j,iGi,k.

Proposition 4 Assume that we are given a chain of Trifocal
Tensors with the associated parameterization as described
in Proposition 1:[
T 1,0,2,γ1] . . .[T i,i−1,i+1,γ i] . . .[T `,`−1,`+1,γ`

]
. (19)



On Camera Calibration with Linear Programming and Loop Constraint Linearization 9

The Trifocal Tensor T i,1,` can be computed by formula (2)
using the fundamental matrices Fi,1, Fi,` and a 4-vector γ i,1,`,
satisfying the following properties:
i) The fundamental matrices Fi,1 and Fi,` do not depend on

(γ1,γ i,γ`).

ii) The parameter γ i,1,` can be computed as an affine func-
tion of γ i (independent of γ1 and γ`),

γ
i,1,` =


1 0 0 0
a′1 −1 0 0
a′2 0 −1 0
a′3 0 0 −1

γ
i +


0
a1
a2
a3

 . (20)

Assume now that the graph of camera triplets is a loop with
N nodes. Let us choose k distinct nodes, vi1 ,. . . ,vik , in this
graph. According to the previous proposition, one can com-
pute the trifocal tensor T is,is−1,is+1 as a function of γ is . This
tensor will be affine in γ is and independent of {γ it : t 6= s}.
In such a way, one can compute the k tensors

T i2,i1,i3 , . . .T ik,ik−1,ik+1 ,T ik+1,ik,ik+2 ,

hereafter referred to as extended tensors. Considering ex-
tended tensors instead of the original ones allows us to re-
duce the graph to a loop with k nodes. For our purposes, the
case k = 4 is of particular interest.

As already mentioned, each loop gives rise to 15 loop
constraints, that have been formulated so far as “the prod-
uct of transformation matrices is proportional to the identity
matrix”. Now we will formulate these loop constraints in a
different manner. The point is that given a graph of four (ex-
tended) trifocal tensors

[
T i, j,k,γ1

]
,
[
T k,i,`,γ2

]
,
[
T `,k, j,γ3

]
and

[
T j,`,i,γ4

]
forming a loop, the fundamental matrix F j,k

can be computed by the formula presented in Proposition 3
based on either T i, j,k or T `,k, j. This leads to two different
expressions of F j,k; the first one depends only on γ1 while
the second one depends only on γ3. Since these dependen-
cies are affine, the equality of two expressions for F j,k leads
to a set of linear constraints. Using similar kind of arguments
one can prove the following result (see Appendix F).

Proposition 5 Let us consider a loop of 4 parameterized,
possibly extended, Trifocal Tensors, denoted by [T i, j,k,γ1],
[T k,i,`,γ2], [T `,k, j,γ3] and [T j,`,i,γ4]. If we define the vec-
tor Γ =

(
γ1,γ2,γ3,γ4

)T ∈ R16, the loop constraints can be
written as a linear system CΓ = d, where C is a 15×16 full
rank matrix and d ∈ R15.

If the loop contains more than N triplets and we have an
initial estimate for the parameters γ of every node, we can
pick (according to some rule) a set of four nodes and look
for an update of the parameters of these nodes, leaving the

Algorithm 1 2nd approach: alternating linear minimization
Require: 1 loop, N Tensors, Γinit = {γ i

init}, M, m, and 1 < K < 20.
1: bool Ended =false.
2: Γ = Γinit, γ i = γ i

init.
3: while (Ended ==false) do
4: Compute the vector of errors E, E[i] = ‖Miγ

i−mi‖
‖Miγ

i
init−mi‖

.

5: Choose the 4 Trifocal Tensors with the smallest errors.
6: Determine the graph of the 4 extended Trifocal Tensors along

with the matrix C and the vector d (see Proposition 5 and Ap-
pendix F).

7: Compute Γsol as solution to CΓ = d.
8: Compute Γnull, the null vector of C.
9: Set Γs = Γsol +αΓnull with α = Γ T

nullM
T(m−MΓsol)/‖MΓnull‖2.

10: Set β = ‖Γ ‖
‖Γ−Γs‖K N ∧1.

11: Update the vector Γ : Γ = Γ −β (Γ −Γs).
12: if (β == 1) then
13: Ended = true
14: end if
15: end while
16: return Γ .

parameters of the other nodes unchanged. This amounts to
solving, w.r.t. the vector Γ , the following problem

min‖MΓ −m‖2
subject to CΓ = d. (21)

To this end, one can compute a particular solution Γsol of the
system CΓ = d along with the null vector of C and find the
value of α minimizing the squared error ‖MΓsol +αMΓnull−
m‖2

2. This gives α = Γ T
nullM

T(m−MΓsol)/‖MΓnull‖2
2. As one

can see in the case of 4 trifocal tensors the constrained op-
timization can be carried out without resorting to any opti-
mization package.

4.2 Algorithm

The main idea behind the algorithm—largely inspired by
the well-known coordinate descent technique of optimiza-
tion (see, e.g., [37])—is to iteratively choose 4 Trifocal Ten-
sors among N and to update the parameters of these tensors
by minimizing the error ‖MΓ −m‖2 subject to the (linear)
loop constraints. This approach guarantees that the error de-
creases along the iterations. Indeed, at each iteration, the
current vector Γ is a feasible solution to the optimization
problem at hand, therefore the minimizer will necessarily
have a smaller error than the current vector Γ . While this
has the advantage of ensuring the convergence of the algo-
rithm and the loop constraints, our empirical results revealed
that it gives too much importance to the constraints and does
not distribute the error over the set of parameters.

To cope with this, we propose the following “interme-
diate” solution. Instead of replacing the current Γ by the
solution Γs of the constrained minimization problem (21),
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Fig. 6 The left panel shows the evolution of the cyclicity error as a
function of the number of iterations. One can observe that it converges
to zero after nearly 1000 iterations. In the right panel we plotted the er-
ror ‖MΓ −m‖2 against the number of iterations. One can observe that
the attainability of the loop constraint does not deteriorate the quality
of explanation of point correspondences. In fact, the minimal error is
multiplied by a factor less than 1.15. Both left and right panels corre-
spond to the dinosaur data set.

we suggest to do a small displacement in the direction of Γs:
Γ = Γ −β (Γ −Γs) with β = ‖Γ ‖

‖Γ−Γs‖K N ∧1, where K > 0 is
a tuning parameter, permitting to achieve a reasonable trade-
off between the uniformity of the distribution of error over
the parameters γ i and the attainability of loop constraints.

While the previous system allows to get interesting theo-
retical guarantees, we propose an algorithm allowing to reg-
ularly spread the error among all the Trifocal Tensors. As
extreme cases, we retrieve the unconstrained LSE for K = ∞

and a vector satisfying the constraints for K very close to
zero. To summarize, the larger the parameter K is, the slower
the algorithm converges but the better the error distribution
between the tensors is. Our numerical experiments showed
that nice trade-off is obtained for K ∈ (1,20).

At this stage, it is important to present an automatic rule
for choosing the 4 tensors for which the parameters γ i are
updated. We propose a purely heuristical rule, consisting in
choosing the tensors minimizing the error

Eγ =
‖Mγ−m‖
‖Mγinit−m‖

. (22)

This choice allows us to spread the errors over the entire set
of cameras.

4.3 Numerical results and comparison to the first approach

Since many steps of the second approach are largely heuris-
tical and are based on empirical arguments, we present here
some numerical results that aim to demonstrate the conver-
gence of the proposed procedure as well as the fact that the
goal of uniform distribution of the error is achieved with
high accuracy.

For the well-known dinosaur sequence containing 36
images, the second approach described above allows to con-
verge—after nearly 1000 iterations—to a solution satisfying
the loop constraints (see Fig. 6, left panel). In this and subse-
quent experiments, we have chosen K = 15. The measure of

Fig. 7 For the 36 camera triplets of the dinosaur data set, we com-
pare the reprojection errors obtained by the first and the second ap-
proaches. On the left, one can observe that the second approach leads
to a much smaller Root Mean Square Error (RMSE) than the first ap-
proach. Moreover, the inter-image variability of the RMSE is drasti-
cally smaller for the second approach.

attainability of the loop constraint, represented in Fig. 6 by
the y-axis, is the Frobenius norm of the difference between
the identity matrix and the normalized product of all homo-
graphies. On the right panel of Fig. 6, we plotted the error
‖MΓ −m‖2 against the number of iterations. As expected,
this function has an increasing trend. It is however notewor-
thy that this trend has a very moderate slope. Indeed, the
final error is within 15% of the initial one.

It is also interesting to have a look at the quality of the
final reconstruction obtained by 2 versions of our procedure.
While the accuracy of the estimated cameras is of the same
order, there is a clear difference between the quality in terms
of the reprojection error. This can be seen in Fig. 7, where
the x-axis corresponds to the index of the camera triplet (the
triplet i being made of cameras i, i+ 1 and i+ 2) and the
y-axis represents the root mean squared error (in pxl) for the
3-view correspondences belonging to the relevant triplet.

We see that the Root Mean Square Error (RMSE) of the
second approach is uniformly smaller than that of the first
approach and, more importantly, the RMSE for the second
approach is uniformly distributed over the camera triplets.
A similar experiment has been conducted for 3 other bench-
mark data sets and the results are summarized in Table 1.
One can observe that in all experiments the second approach
succeeds in finding a feasible solution (i.e., a vector satisfy-
ing the constraints). In terms of the RMSE, the second ap-
proach outperforms significantly the first one in the case of
the Dinosaur and the Detenice data sets. The results of both
methods for the Temple are quite similar, whereas on the
Calvary data set the first approach is significantly better.
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Fig. 8 Three frames of each data set used to test our methodology. From left to right: dinosaur, temple, fountain P11, Herz-Jesu R23 [36], Calvary,
Detenice fountain.

Dataset Method # Iterations RMSE St. Dev.Until CV

Dinosaur 1st - 1.01 1.31
2nd 1027 0.31 0.71

Temple 1st - 0.10 1.21
2nd 340 0.09 1.92

Detenice 1st - 2.28 1.49
2nd 1393 1.27 0.41

Calvary 1st - 1.02 1.22
2nd 1286 1.76 1.11

Table 1 For classical data sets we compare the Root Mean Square
Error (RMSE), measured in pixels, of the first with that of the second
approach. We observe that the RMSE is often smaller for the second
approach. The standard deviations of squared errors are presented in
the last column.

5 Experiments

5.1 Implementation

In order to apply the methodology we have just described,
we extract and match SIFT [33] descriptors from all the im-
ages. Then, epipolar geometries are estimated by DEGEN-
SAC [34]. Note that some speed-up in this step can be achieved
by using one of the recent versions of RANSAC [27,35].
Estimated EGs allow us to identify and remove wrong cor-
respondences as well as to create feature tracks. Using these
tracks and EGs as input for our algorithm, we compute as
output the projection matrices of all the cameras. In order to

be able to visually assess the reconstruction quality, all cam-
eras and the 3D structure are upgraded to Euclidean [28].

5.2 Datasets

We tested our methodology on six data sets: the dinosaur
(36 frames), the temple (45 frames), the fountain P11 (11
frames), the Herz-Jesu R23 (23 frames), the Detenice foun-
tain (34 frames) and the calvary (52 frames) sequences. For
the first three data sets, the ground truth of camera matrices
is available on the Internet, see respectively
http://www.robots.ox.ac.uk/˜vgg/data1.html,
http://vision.middlebury.edu/mview/data/,
http://cvlab.epfl.ch/˜strecha/multiview/.

5.3 Quality measures

Since the main contribution of the present paper concerns
the projective reconstruction, it is natural to assess the qual-
ity of the proposed approach using the distance:

dpro j({P j},{P j,∗}) = inf
α,H

n

∑
j=1
‖α jP

jH−P j,∗‖2
2, (23)

where P j and P j,∗ are respectively the reconstructed and the
true camera projection matrices, α = (α1, . . . ,αn) is a vec-
tor of real numbers and H is a 3D-homography. Naturally,
this measure can be used only on sequences for which the
ground truth is available. Note also that the computation
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Dataset #frames resolution # image points RMSE (pxl)
Our Bundler Our Bundler

Dinosaur 36 576 × 720 45,250 37,860 0.27 0.25
Temple 45 640 × 480 26,535 23,761 0.08 0.11
Fountain P11 11 2048 × 3072 57,547 23,648 0.16 0.13
Herz-Jesu R23 23 2048 × 3072 129,803 − 0.41 −
Detenice 34 1536 × 2048 30,200 − 0.15 −
Calvary 52 2624 × 3972 54,798 − 0.51 −

Table 2 Characteristics of the data sets used for the experimental validation. From left to right: number of frames in each sequence, the resolution
of each image (all images of a data set have the same resolution), the number of 2D image points used for the final BA for our method and for
bundler [5], the RMSE for both methods. The numbers in the four last columns are reported to show that both methods work well and not to
compare them.

of the infimum in (23) is a non-convex optimization prob-
lem. We solve it by first computing the unit-norm solution
to the least squares problem minα,H ∑

n
j=1 ‖P jH−α

−1
j P j,∗‖2

2,
and then use this solution as a starting point for an alter-
nating minimization. For the examples considered here, this
converges very rapidly and, since the results are good, we
believe that the local minimum we find is in fact a global
minimum, or at least not too far from it.

5.4 Results

For the dinosaur, temple and fountain P11 sequences, since
ground truth exists, we compared our results with those of
bundler [5], which is a state-of-the-art calibration software.
The ground truth was normalized so that the Frobenius norm
of all the cameras is one. For both reconstructions (ours and
bundler), we computed numbers α j and a homography H by
minimizing (23). This allows us to define the per-camera er-
ror as ‖α jP

jH− P j,∗‖2
2 for the jth camera. For our method,

the results of the first approach are shown, those of the sec-
ond approach being of the same order.

As shown in Fig. 9, not only the errors are small, but also
our results are quite comparable to those of bundler despite
the fact that our method does not perform intermediate BAs
and does not assume that the principal point is in the center
and the skew is zero. One can also note that the error is well
distributed over the whole sequence of cameras due to the
fact that both methods operate on the closed sequence. Fur-
thermore, the results reported for fountain P11 are achieved
without final BA, proving that the method we proposed fur-
nishes a good starting point for the non-linear optimization.

As for the data sets where no ground truth is known, we
have chosen to use as measure of evaluation the multiview
stereo reconstruction of the scene based on the method of
[26]2. The results are shown in Fig. 1 (right) for the cal-

2 Since multiview stereo reconstruction is not the purpose of the pa-
per and is only used for illustration, the results shown in Fig. 1 and 10
are obtained without the final mesh refinement.

(a)

(b)

(c)

Fig. 9 This figure shows the errors in estimated camera matrices for
our method and for bundler [5]. The per-camera errors and their box-
plots for the dinosaur sequence (a), the temple sequence (b) and for the
fountain P11 sequence (c). One can remark that our method achieves
the same level of accuracy as that of bundler, despite the fact that we
do not use any information on the internal parameters, while bundler
assumes that the skew is zero and the principal point is in the center,
hypotheses that are close to reality in these data sets.
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Fig. 10 Multi-view stereo reconstruction using the camera matrices
estimated by our method for the Herz-Jesu R23 and Detenice fountain
data sets. For these data, the ground truth is unavailable but the qual-
ity of the scene reconstruction demonstrates the accuracy of estimated
cameras.

vary sequence and in Fig. 10 for the Herz-Jesu R23 and
the Detenice fountain sequences. In the aim of comparing
our results with other approaches, let us recall that (as re-
ported in [36]) on the Herz-Jesu R23 data the ARC3D soft-
ware succeeded to calibrate four of the 23 cameras, while
the method proposed in [4] calibrated all the cameras with
a relatively large error for cameras 6-11. Although we are
unable to quantitatively compare our reconstruction to that
of [4], the accuracy of the 3D scene reconstruction makes us
believe that the estimated cameras are very close to the true
ones.

5.5 Run times

To give a rough idea of running times of the pipeline we
proposed, note that on the calvary dataset consisting of one
loop of 52 images of size 2624x3972 and on an Intel Xeon
2,33 GHz CPU, it took

- 231 seconds to load images and to compute interest points,

- 1791 seconds to compute the fundamental matrices with
classical RANSAC and to look for additional matches,

- 1308 seconds to determine a first estimator of Γ with 4
points RANSAC applied to each camera triplet,

- 9 seconds to perform one iteration of the constrained
optimization with linearized loop constraints (the LP is

solved using SeDuMi). In this example, we used 15 iter-
ations.

For a Matlab implementation of the second approach, each
iteration took 4 seconds and 1286 iterations were needed for
the convergence. Thus, the first approach has very attractive
execution times while the second approach is significantly
more time consuming. It is, however, very likely that this
drawback can be partly overcome by using C implementa-
tion instead of Matlab.

6 Summary and outlook

In this work, we have presented a new pipeline for solving
the uncalibrated structure from motion problem of multi-
view geometry. To this end, we have introduced a new pa-
rameterization of the trifocal tensor which has the advantage
of being linear with respect to the unknown parameters, pro-
vided that two fundamental matrices out of three are known.
We proposed to use this parameterization in order to esti-
mate the projection matrices of cameras from the graph of
trifocal tensors, a set of estimated fundamental matrices and
a collection of three-view correspondences. The main em-
phasis is put on the ability of enforcing loop constraints.

Two variants of the pipeline are considered, differing by
the way of handling loop constraints. Experiments carried
out on standard data sets and reported in this work have
shown that the second variant outperforms the first one in
terms of distributing estimation error uniformly across all
the cameras. The downside of the second variant is the higher
run-time since, typically, it requires many more iterations to
converge than the first variant.

Although the pipeline we have presented can deal with a
network of cameras containing several loops, the current im-
plementation of the pipeline is limited to at most one loop
in the graph of trifocal tensors, or to several loops prede-
fined by the user. Next in our agenda is to combine this
pipeline with an algorithm performing automatic loop de-
tection in a graph. This is a delicate issue since the loops
need to satisfy several properties (covering nearly all the
nodes of the graph, avoiding edges corresponding to poorly
estimated fundamental matrices, etc.) which may often be
mutually contradictory.

It should also be mentioned that, in our pipeline, the
computations for different loops are completely independent
and are parallelizable. Therefore, we envisage in the future
to implement the pipeline or a part of it on GPU in order to
decrease the running times. On a related note, making the
pipeline scaleable to data sets containing thousands of im-
ages is another important avenue for future research.
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Appendix

A Proof of Proposition 1

We begin by considering the case where all the 3 rows of the funda-
mental matrices Fi, j and Fi,k are different from the zero vector of R3.
This implies that the columns of the matrices Ai, j

t and Ai, j
t form two

orthogonal bases of R3. (Indeed, it is well-known that the epipole ei, j

is orthogonal to the rows of Fi, j , while (Fi, j
t,1:3)

T × ei, j is orthogonal

to Fi, j
t,1:3 and to ei, j by virtue of the definition of the vector product.)

Therefore, Ai,k
t and Ai, j

t are invertible. Let us defineat bt ct
dt et ft
gt ht it

= (Ai, j
t )−1Ti, j,k

t (Ai,k
t )−T. (24)

Let us show that at = bt = ct = 0. Recall that the matrix Ti, j,k
t relates

a point p = (p1, p2, p3) ∈ P2 to its epipolar line l = Fi, jTp through
the equation lT ∑

3
s=1 psT

i, j,k
s = 0T [1, p. 373]. Choosing as p the vector

(δt1,δt2,δt3)
T, where δt` stands for the Kronecker symbol that equals

one if t = ` and zero otherwise, we get Fi, j
t,1:3T

i, j,k
t = 0T. This equation,

in conjunction with (24), the definition of Ai, j
t and the invertibility of

Ai,k
t entails thatat dt gt
bt et ht
ct ft it

‖(Fi, j
t,1:3)

T‖2

0
0

=

0
0
0


This yields at = bt = ct = 0. By a symmetric argument, we also check
that dt = gt = 0. Thus, the Trifocal Tensor necessarily reduces to the
form:

Ti, j,k
t = Ai, j

t

0 0 0
0 et ft
0 ht it

(Ai,k
t )

T
(25)

Since the rank of any fundamental matrix is equal to two, there exists
an index t ′ ∈ {1,2,3} such that Fi, j

t ′,1:3 and Fi, j
t,1:3 are not collinear. We

have already checked that Fi, j
t,1:3T

i, j,k
t = 0T and, similarly, Fi, j

t ′,1:3T
i, j,k
t ′ =

0T. Therefore, substituting p = (δt1,δt2,δt3)
T+(δt ′1,δt ′2,δt ′3)

T in the
equation pTFi, j

∑
3
s=1 psT

i, j,k
s = 0, we get

Fi, j
t ′,1:3T

i, j,k
t +Fi, j

t,1:3T
i, j,k
t ′ = 0T. (26)

Now, let us observe that

(Fi, j
t ′,1:3)

T((Fi, j
t,1:3)

T× ei, j) =−(Fi, j
t,1:3)

T((Fi, j
t ′,1:3)

T× ei, j) = βt,t ′ . (27)

Moreover, βt,t ′ 6= 0 since the vectors Fi, j
t,1:3 and Fi, j

t ′,1:3 are linearly inde-
pendent and orthogonal to ei, j . This observation together with (25) and
(26) leads to

Ai,k
t

0 0 0
0 et ht
0 ft it

α

β

0

+Ai,k
t ′

0 0 0
0 et ′ ht ′

0 ft ′ it ′

 α

−β

0

= 0,

where we have used the shorthands α = αt,t ′ and β = βt,t ′ . Matrix
multiplication yields

βt,t ′
([

0, et , ft
]
(Ai,k

t )T−
[
0, et ′ , ft ′

]
(Ai,k

t ′ )
T
)
= 0T. (28)

The last equality is equivalent to

(etF
i,k
t,1:3− et ′F

i,k
t ′,1:3)

T× ei,k +( ft − ft ′ )ei,k = 0, (29)

which is possible if and only if ft = ft ′ and etF
i,k
t,1:3−et ′F

i,k
t ′,1:3 = 0. Since

Fi,k
t,1:3 and Fi,k

t ′,1:3 are linearly independent, we conclude that et = et ′ = 0.
In addition, using a symmetric argument, we get ht = ht ′ and thus

Ti, j,k
t = Ai, j

t

0 0 0
0 0 f
0 h it

(Ai,k
t )

T
, Ti, j,k

t ′ = Ai, j
t ′

0 0 0
0 0 f
0 h it ′

(Ai,k
t ′ )

T
. (30)

Let now t ′′ be the element of the index set {1,2,3} that is different
from t and t ′. Repeating the same arguments with t replaced by t ′′ leads
to a formula similar to (30) in which t ′ is replaced by t ′′ everywhere.
The first claim of the proposition follows by dividing all the entries
of [Ti, j,k] by h, which is 6= 0 since otherwise the fundamental matrix
computed from this trifocal tensor is of rank < 2, which is impossi-
ble. So in the inhomogeneous formulation there are only 4 unknowns
corresponding to the remaining degrees of freedom, and in the homo-
geneous formulation there are 5 unknowns.

In the case where the matrix Fi, j or Fi,k contains zero rows, one can
merely use the fact that Eq. (3) (see page 4 of the paper) characterize all
the triplets of camera matrices (up to a projective homography) which
are compatible with the fundamental matrices Fi, j and Fi,k. In view of
[1, Eq. 15.1], the trifocal tensor corresponding to these camera matrices
coincides with the one defined in the statement of the proposition. This
completes the proof.

B Proofs of Equations (5) and (6)

Let us start with the proof of Equation (5). Let Pi and Pk be the camera
matrices computed from the triplet (i, j,k) with the parameter γ and let
Pi and Pk be those computed from the triplet (k, i, `) with the parameter
γ . To simplify the exposition, we denote Gk,i = [ei,k]×Fk,i and Gi,k =

[ek,i]×Fi,k. We are looking for a homography H such that PH∼= P. This
amounts to solving:

[I3×3|0]H∼= kron([γ
1:3

,1],ek,i)− γ
0

[
Gi,k|0

]
,
[
Gk,i|ei,k]H∼= [I3×3|0].

(31)

The first equation in (31) yields

H1:3,1:4
∼= kron([γ

1:3
,1],ek,i)− γ

0

[
Gi,k|0

]
. (32)

Inserting this in (31) and using Gk,iek,i = 0, we get

−γ0G
k,iGi,k + ei,kH4,1:3 = αI3×3, (33)

and ei,kH4,4 = 0. This implies that H4,4 = 0. Furthermore, multiplying
both sides of (33) by (ei,k)T, we get H4,1:3 = α(ei,k)T. To complete the
proof, it remains to determine the value of α . This is done by comput-
ing the trace of both sides in (33).

Now we prove the formula for Hγ,γ := H given in Eq. (6). The
relation P∼= PH implies that:

[I3×3|0]∼=
(

kron([γ
1:3

,1],ek,i)− γ
0

[
Gi,k|0

])
H,
[
Gk,i|ei,k]∼= [I3×3|0]H,

(34)

The second equation yields H1:3,1:4 ∼=
[
Gk,i|ei,k

]
. Inserting this in the

first equation of (34), we get:

γ
1:3

ei,k ek,i +H4,4ek,i = 0 ⇐⇒ H4,4 =−γ
1:3
· ei,k.

−γ
0
Gi,kGk,i + ek,i

γ
T
1:3
Gk,i + ek,iH4,1:3 = λγ

0
I3×3. (35)

Multiplying both sides of the last equation by (ek,i)T we get H4,1:3 =
λγ

0
(ek,i)T−(γ

1:3
)TGk,i. After inserting this value of H4,1:3 into Eq. (35)

and computing the trace of both sides, we get the equality 2λ =−tr(Gi,kGk,i)
and the desired result follows.
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C Proof of Proposition 2

In view of Eq. (12) of the paper, it holds

P2,γ iHvi ∼= Pi+1,∗, P3,γ iHvi ∼= Pi+2,∗ (36)

P1,γi+1Hvi+1 ∼= Pi+1,∗, P2,γi+1Hvi+1 ∼= Pi+2,∗. (37)

Therefore,

P2,γ iHvi ∼= P1,γi+1Hvi+1 , P3,γ iHvi ∼= P2,γi+1Hvi+1 . (38)

Furthermore, by virtue of Eq. (13) of the paper,

P1,γ i+1 ∼= P2,γ iHi,i+1, P2,γ i+1 ∼= P3,γ iHi,i+1. (39)

Substituting (39) in (38), we get

P2,γ iHvi ∼= P2,γ iHi,i+1Hvi+1 , P3,γ iHvi ∼= P3,γ iHi,i+1Hvi+1 . (40)

If the centers of P2,γ i and P3,γ i differ, which is equivalent to Pi+1,∗,Pi+2,∗

having different centers, then Eq. (40) can be satisfied if and only if
Hvi ∼= Hi,i+1Hvi+1 .

To prove i) and ii), we need to transform the relations of propor-
tionality into the relations of equality. Since Hvi = Hi,i+1Hvi+1 , there ex-
ists a real number αi 6= 0 such that Hvi = αiH

i,i+1Hvi+1 . Thus, we have

Hv1 = α1H
1,2Hv2 ,

Hv2 = α2H
2,3Hv3 ,

...

Hvn = αnH
n,1Hv1 .

Let us denote H̃v1 = Hv1 , H̃v2 = α1H
v2 , H̃v3 = α1α2H

v3 , . . ., H̃vn = α1×
. . .×αn−1H

vn . Each H̃vi being proportional to Hvi , satisfies Eq. (12) of
the paper. This leads to the assertion i) of Proposition 2, since H̃vi =
Hi,i+1H̃vi+1 for i = 1, . . . ,n−1. Moreover, we have

H̃vn =
( n

∏
i=1

αi

)
Hn,1H̃v1 notation

= α
−1Hn,1H̃v1 . (41)

This implies that

n

∏
i=1

H̃vi =

( n−1

∏
i=1

Hi,i+1H̃vi+1

)( n

∏
i=1

αi

)
Hn,1H̃v1 = α

−1
( n

∏
i=1

Hi,i+1
) n

∏
i=1

H̃vi ,

which is equivalent to αI4×4 = ∏
n
i=1 H

i,i+1. Taking the trace of both
sides, we get the desired expression for α , completing thus the proof
of ii).

To prove iii), we simply remark that all the homographies Hvi are
defined up to an overall homography ambiguity. In other terms, we can
replace all Hvi by HviQ, where Q is an invertible 4×4 matrix. Let H̄ be the
4n×4 matrix resulting from the vertical concatenation of matrices Hvi

(satisfying conditions i) and ii) of the proposition). Let H̄>H̄= ULU> be
the SVD of H̄. Thus, L is a 4×4 diagonal matrix with strictly positive
diagonal entries and U is a 4× 4 orthogonal matrix. Therefore, U is a
homography. Setting Q= U, we get a new version of homographies Hvi

that satisfy all the conditions of Proposition 2.

D Proof of Proposition 3

The camera triplet corresponding to T i, j,k is:

Pi = [I3×3 |03×1], Pk = [[ei,k]×Fk,i |ei,k],
P j = kron

(
[γ1:3,1];ei, j

)
− γ0[[ei, j]×F j,i |03×1].

(42)

There exists a projective transform such that P′i = PiH, P′k = PkH and:

P′i = [[ek,i]×F
i,k |ek,i], P′k = [I3×3 |03×1],

P′ j =
(
kron

(
[γ1:3,1];ei, j)− γ0[[ei, j]×F

j,i |03×1]
)
H.

The equation [[ek,i]×Fi,k |ek,i] = [I3×3 |03×1]H can be rewritten in the
form H1:3,1:4 =

[
[ek,i]×Fi,k|ek,i

]
. The other equation is:

β [I3×3 |03×1] = [[ei,k]×F
k,i |ei,k]

[
[ek,i]×Fi,k | ek,i

v1×3 | v4

]
. (43)

By denoting Gk,i = [ei,k]×Fk,i and Gi,k = [ek,i]×Fi,k, the equality of the
last columns leads to v4 = 0, while that of the first 3 columns is equiv-
alent to

βI3×3 = Gk,iGi,k + ei,kv1×3. (44)

Multiplying from left by (ei,k)T one gets v1×3 = β (ei,k)T. This expres-
sion of v1×3 in conjunction with Eq. (44) yields βI3×3 = Gk,iGi,k +
βei,k(ei,k)T. Computing the trace of both sides of this equation, we get
β = 1

2 trace
(
Gk,iGi,k

)
=−λ . Therefore, the camera triplet can be writ-

ten as: P′i = [Gi,k |ek,i], P′k = [I3×3 |03×1] and

P′ j =
(
ei, j[γ1:3;1]T− γ0[G

j,i |03×1]
)[ Gi,k | ek,i

−λ (ei,k)T | 0

]
=
[
ei, j(γ1:3G

i,k−λ (ei,k)T)− γ ′0G
j,iGi,k | (γ1:3ek,i)ei, j− γ ′0G

j,iek,i
]
.

(45)

The projection matrix P′ j having the form [M3×3 |m3×1], one can com-
pute the fundamental matrix F j,k ∼= [m3×1]×M3×3. Now, simple algebra
yields the claim of Proposition 3.

E Proof of Proposition 4

If one considers a set of connected and consistent Trifocal Tensors on
a chain, with the parametrization proposed in Proposition 1:([

T 1,0,2,γ1], . . . ,[T i,i−1,i+1,γ i], . . . ,[T `;`−1,`+1,γ`
])

(46)

We can compute the camera triplet Pi, P1, P` in the projective space of
the Trifocal Tensor

[
T i,i−1,i+1,γ i

]
. It is obvious that Pi = [I3×3 |03×1]

(see equation (3)). Using the formula for the projective transform be-
tween two consecutive camera triplets, one easily derives that:

P` = [[e`−1,`]×F
`,`−1 |e`−1,`]

i

∏
j=`−2

H j, j+1, (47)

P1 = [I3×3 |03×1]
i−1

∏
j=1

H j, j+1. (48)

The formula for P` can be retrieved using the expression of the Trifocal
Tensor associated to γ`−1 and transferring it to the projective space of[
T i,i−1,i+1,γ i

]
, with the help of the homographies defined by equation

(6). Similarly, one retrieves P1 from the Trifocal Tensor
[
T 102,γ1

]
by transferring to the space of

[
T i,i−1,i+1,γ i

]
, with the help of the

inverse homography defined by equation (5). As one can see, P` does
not depend on γ1, γ i and γ`. So this matrix will be denoted by P` =
[M3×3 |m3×1]. We normalize it so that ‖m‖ = 1. One can also notice
that [I3×3 |03×1] ∏

i−2
j=1H j, j+1 does not depend on γ1, γ i and γ`. So it

will be written as [M′3×3 |m′3×1]. Thus, we have the triplet of cameras:

Pi = [I3×3 |03×1], P
` = [M3×3 |m3×1], P

1 = [M′3×3 |m′3×1]Hi−1,i. (49)
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As stated in [1], the fundamental matrix associated to Pi and P` is F`,i =
[m]×M and the epipole is ei` = m.

Recall that the object we are interested in is the Trifocal Tensor
T i,1`. We can write this trifocal tensor in a projective space such that:
P′i = [I3×3 |03×1] and P′` = [[ei,`]×F`,i |ei,`], with P′i = PiH and P′` =
P`H. The first of these equations implies that H reduces to the simple
form:

H=

[
I3×3 | 03×1
a1:3 | a4

]
. (50)

Using the notation G`,i = [ei,`]×F`,i, the second equation becomes

[G`,i |ei,`] = [[m]×[m]×M |m]∼= [M3×3 |m3×1]H. (51)

Since the vector m is of unit norm, using the triple cross product equa-
tion

[m]×[m]×M:,i = m(m ·M:,i)−M:,i, (52)

one obviously finds that a4 = −1 and a1:3 = −mTM. Therefore, the
camera P′1 can be written as

P′1 = [M′3×3 |m′3×1]Hi−1,i

[
I3×3 | 03×1
−mTM | −1

]
. (53)

We will now retrieve the fundamental matrix F1,i and show that is does
not depend on γ1, γ i and γ`. This fundamental matrix corresponds to
the camera pair:

Pi = [I3×3 |03×1], P1 = [M′3×3 |m′3×1]Hi−1,i (54)

That is, Pi = [I3×3 |03×1] and

P1 = [M′3×3 |m′3×1]

[
[ei,i−1]×Fi−1,i | ei,i−1

−µei−1,i | 0

][
−γ i

0I3×3 | 03×1
γ i

1:3 | 1

]
. (55)

The two left matrices of the camera decomposition P1 do not depend
on γ1, γ i and γ`, so one can merge these two left matrices under the
fixed form [M′′3×3 |m′′3×1]. We deduce that the camera triplet in equation
(53) can be written as P′i = [I3×3 |03×1], P′` = [[ei,`]×F`,i |ei,`] and

P′1 = [M′′3×3 |m′′3×1]

[
−γ i

0I3×3 | 03×1
γ i

1:3 | 1

][
I3×3 | 03×1
−mTM | −1

]
. (56)

Moreover if we normalize [M′′3×3 |m′′3×1] so that ‖m′′‖= 1, we recover
the fundamental matrix F1,i = [m′′]×M′′ and the unit norm epipole ei,1 =
m′′. Furthermore, using computations similar to those leading to (50),
and noticing that H−1 = H, we can write the camera triplet:

P′i = [I3×3 |03×1], P′` = [G`,i |ei,`],

P′1 = [G1,i |ei,1]

[
I3×3 | 0
a′1×3 | a′4

][
−γ i

0I3×3 | 0
γ i

1:3 | 1

][
I3×3 | 0
a1×3 | a4

]
(57)

with a′4 = −1 and a′1×3 = −m′′TM′′. Finally we want to express, by
identification, this triplet in a projective space matching the formula-
tion in Proposition 1. The tensor T i,1,` should be equivalent to the
camera triplet:

Pi = [I3×3 |03×1], P` = [[ei,`]×F`,i |ei,`],
P1 = kron

(
[γs

1:3,1];ei,1
)
− γs

0[[e
i,1]×F1,i |03×1],

(58)

One has just to solve,[
−γs

0I | 0
γs

1:3 | 1

]
∼=
[
I | 0

a′1×3 | −1

][
−γ i

0I | 0
γ i

1:3 | 1

][
I | 0

a1×3 | −1

]
. (59)

Solving this linear system, we retrieve the coefficients of the affine
transformation in equation (20) and the desired result follows.

F Proof of Proposition 5

Let us consider the loop made of four Trifocal Tensors,
[
T i, j,k,γ1

]
,[

T k,i,`,γ2
]
,
[
T `,k, j,γ3

]
and

[
T j,`,i,γ4

]
. A fundamental matrix hav-

ing 7 degrees of freedom, the fact that the tensors T i, j,k and T `,k, j

share the matrix F j,k leads to 7 “coherence” constraints. By a symmet-
ric argument, T k,i,` and T j,`,i share the fundamental matrix Fi`, giving
raise to additional 7 constraints. According to Proposition 3, all these
constraints are linear. So we have 14 independent linear “coherence”
constraints.

In view of Proposition 3, the fundamental matrix F j,k (resp. Fk j)
can be deduced from the Trifocal Tensor T i, j,k (resp. T `,k, j) as fol-
lows:

F j,k =
[
G j,iek,i

]
×

[(
ei, j

γ
1
1:3

T− γ
1
0G

j,i
)
Gi,k−λ

i,kei, jei,kT
]

+
(

γ
1
1:3 · ek,i

)
[ei, j]×G

j,iGi,k. (60)

Fk j =
[
Gk,`e j,`

]
×

[(
e`,kγ

3
1:3

T− γ
3
0G

k,`
)
G`, j−λ

`, je`,ke`, jT
]

+
(

γ
3
1:3 · e j,`

)
[e`,k]×Gk,`G`, j, (61)

where we used the notation λ i,k =− 1
2 tr([ei,k]×Fk,i[ek,i]×Fi,k) and λ ` j =

− 1
2 tr([e` j]×F j,`[e j,`]×F` j). A set of 7 coherence equations is thus ob-

tained from η1F j,k = Fk jT, where η1 is a real number. In the same way,
we get seven other coherence equations η2Fi,` = (F`,i)T. Multiplying
this equation from right by ei,k and from left by (e`, j)T, and using equa-
tions (60) and (61), we get:

η1βe`, jT
[
G j,iek,i

]
×

ei, j = λ
`, je`,kT

[
Gk,`e j,`

]
×

T
ei,k. (62)

This allows us to compute the scale factor η1. In the way we retrieve the
scale factor η2. Hence, we get a system of 9×2 = 18 equations of rank
14. It remains to find one more (independent) coherence constraint.

Since T i, j,k and T `,k, j have the fundamental matrix F j,k in com-
mon, it exists a projective homography mapping one camera triplet to
the other camera triplet. Therefore, one can derive the form of T k,i,`.
Indeed, in equation (45), Section D, we have seen that the camera
triplet corresponding to T i, j,k can be written in one projective space:

P′i = [Gi,k |ek,i], P′k = [I3×3 |03×1],

P′ j = [G j,i |ei, j]

[
−γ1

0I3×3 | 0
γ1

1:3 | 1

][
Gi,k | ek,i

−λei,kT | 0

]
,

(63)

Now, if we consider the tensor T k,i,`, it corresponds to the camera
triplet:

Pk = [I |0], P` = [G`,k |ek,`], Pi = [Gi,k |ek,i]

[
−γ2

0I3×3 | 0
γ2

1:3 | 1

]
, (64)

Considering the cameras k and i in equations (63) and (64), one can see
that the projective transform between these camera triplets is

H=

[
−γ2

0I3×3 | 0
γ2

1:3 | 1

]
. (65)

Finally, the tensor T i, j,k in the projective space of T k,i,` is:

P′i = [Gi,k |ek,i]

[
−γ2

0I | 0
γ2

1:3 | 1

]
, P′k = [I |0],

P′ j = [G j,i |ei, j]

[
−γ1

0I | 0
γ1

1:3 | 1

][
Gi,k | ek,i

−λei,kT | 0

][
−γ2

0I | 0
γ2

1:3 | 1

]
.

(66)
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We will also compute the tensor T `,k, j in the projective space of T k,i,`.
The camera triplet corresponding to T `,k, j is:

P` = [I3×3 |03×1], P j = [[e`, j]×F j,` |e`, j],
Pk = kron

(
[γ3

1:3,1];e`,k
)
− γ3

0 [[e
`,k]×Fk,` |03×1].

(67)

We look for a projective transform H such that : P′′` = P`H= [G`,k |ek,`]
and P′′k = µPkH = [I |0]. The first equation implies that H1:3,1:4 =
[[ek,`]×F`,k |ek,`]. Inserting that equality in the second equation we get:

e`,k
(

γ
3
1:3 · ek,`

)
+H4,4e`,k = 03×1, (68)

µI= e`,kγ
3
1:3

T
G`,k− γ

3
0G

k,`G`,k + e`,kH4,1:3. (69)

Left-multiplying the second equation by [e`,k]×[e`,k]× and computing
the trace, we get

µ =
1
2

trace
(
[e`,k]×[e`,k]×Gk,`G`,k

)
. (70)

One can find H4,1:3 by left-multiplying the second equation by e`,kT:

H=

[
G`,k | ek,`

µγ3
0 e`,kT− γ3

1:3
T
G`,k | −γ3

1:3 · ek,`

]
. (71)

So, the tensor T `,k, j admits the following representation in the projec-
tive space of T k,i,`:

P′′` = [G`,k |ek,`], P′′k = [I3×3 |03×1],

P′′ j = [G j,` |e`, j]
[

G`,k | ek,`

µγ3
0 e`,kT− γ3

1:3
T
G`,k | −γ3

1:3 · ek,`

]
,

(72)

As seen from equations (66) and (72), one has camera triplets associ-
ated to tensors T i, j,k and T `,k, j in the same projective space as that of
T k,i,`. So one can write the last constraints as being P′′ j ∼= P′ j , or more
precisely [ei, j]×P′′ j = η3[ei, j]×P′ j . We aim at computing the scale fac-
tor η3. Using the last column and left-multiplying by

[
[ei, j]×e`, j

]
× = X

one gets:

X[ei, j]×G
j,`ek,` =−η3γ

1
0X[e

i, j]×G
j,iek,i. (73)

This leads to the value of η3γ1
0 , and the equation

[ei, j]×P
′′ j = η3[ei, j]×P

′ j, (74)

becomes simple and linear. We get 12 more constraints, which are how-
ever redundant with the 14 previous ones, the underlying rank being
equal to 15.
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