
Singular Vector Methods for Fundamental
Matrix Computation

Ferran Espuny1 and Pascal Monasse2

1 School of Environmental Sciences, University of Liverpool
Ferran.Espuny-Pujol@liverpool.ac.uk
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Abstract. The normalized eight-point algorithm is broadly used for the
computation of the fundamental matrix between two images given a set
of correspondences. However, it performs poorly for low-size datasets due
to the way in which the rank-two constraint is imposed on the funda-
mental matrix. We propose two new algorithms to enforce the rank-two
constraint on the fundamental matrix in closed form. The first one re-
stricts the projection on the manifold of fundamental matrices along the
most favorable direction with respect to algebraic error. Its complexity is
akin to the classical seven point algorithm. The second algorithm relaxes
the search to the best plane with respect to the algebraic error. The mini-
mization of this error amounts to finding the intersection of two bivariate
cubic polynomial curves. These methods are based on the minimization
of the algebraic error and perform equally well for large datasets. How-
ever, we show through synthetic and real experiments that the proposed
algorithms compare favorably with the normalized eight-point algorithm
for low-size datasets.
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1 Introduction

1.1 Overview

The fundamental matrix is a two-view tensor which encodes the relative geome-
try between two images, named epipolar geometry [4, 7]. Concisely, for each point
in one image the fundamental matrix determines a line of possible corresponding
points on the other image, called the epipolar line associated to the point. Since
all epipolar lines in one image pass through the projection of the other camera
center (the epipole), the fundamental matrix is constrained to have rank two.

The fundamental matrix plays a central role in the theory of 3D reconstruc-
tion from stereo images. It is used at initial stages to achieve a sparse projective
reconstruction of a scene, and to extract the camera motion either from intrin-
sically calibrated cameras or by a self-calibration approach. It is also used to
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rectify the images as a preliminary step in order to achieve a dense reconstruc-
tion of a scene. The rank-two constraint is crucial for motion estimation and for
image rectification algorithms requiring the existence of epipoles [8, 6].

For its robust computation in presence of outlier point correspondences, the
fundamental matrix needs to be estimated from minimal subsets of data in ran-
dom sampling methods. This is a requirement of the RANSAC [5] algorithm and
variants. It can also be estimated using non-minimal but relatively small sets of
data in the local random sampling method of Chum et al. [3]. Finally, it is esti-
mated using all the available inlier correspondences, yielding an initial solution
for an overall error optimization, known as bundle adjustment [15]; even in this
context, the size of the available dataset can be low due to typical problems in
feature detection and matching. In this paper we will focus on the closed-form
and fast computation of the fundamental matrix given noisy inlier data; our final
goal is to improve the accuracy of the existing approaches in this context.

The normalized eight-point algorithm introduced by Hartley [9] allows com-
puting in closed form an estimate of the fundamental matrix given at least
eight correspondences between two images. A closed-form variant using seven
correspondences exists which benefits from the rank-two constraint (see e.g.
Zhang [16]). This broadly used method is an improvement over previous ones
achieved through a prior data normalization step.

The rank-two constraint on the fundamental matrix is imposed by the nor-
malized eight-point algorithm in an a posteriori step which does not take into
account the error to minimize. Iterative strategies have been proposed to over-
come this drawback [10], and modern optimization approaches exist that take
into account the rank-two constraint at some computational expense [2, 11, 17].
In contrast, we propose two closed-form solutions for the direct computation of
a fundamental matrix satisfying the rank-two constraint.
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Fig. 1. Geometric Interpretation of the Singular Vector Methods. We represent in black
the hypersurface of P8 with equation det(F ) = 0 and, in front of it, the three matrices
F1, F2, F3 corresponding to the singular values s1 ≤ s2 ≤ s3 of A in (4); in cyan, the
level sets of the algebraic error function. The solution given by the 8-point algorithm
(red) is obtained as the closest matrix in Froebenius norm to F1 on the hypersurface.
Our first proposed solution (green) lies on the intersection of the line F1, F2 with the
hypersurface. Our second proposal (blue) lies on the intersection of the plane spanned
by F1, F2, F3 with the hypersurface.
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1.2 The Rank-Two Constraint

The fundamental 3× 3 matrix F between two images can be expressed as

F = K−T [t]× R K
′−1 , (1)

with R the relative rotation matrix and t the translation vector between the
images, K and K ′ being the camera intrinsic calibration matrices. [t]× denotes
the 3 × 3 matrix corresponding to the linear operator mapping a vector to its
vector product with t on the left: [t]× x = t× x.

Due to the factor [t]× in (1), the matrix F has rank 2 (unless t = 0, meaning
no parallax). Conversely, any rank-two matrix accepts such a decomposition.
The epipoles are then e = K t and e′ = K ′ RT t, respectively left and right null
vectors of F : eT F = 0 and F e′ = 0. For several applications, it is mandatory
to get a rank-two solution F .

For a point correspondence xi ↔ x′i between the two images (expressed in
homogeneous coordinates), the epipolar constraint is written

xTi F x′i = 0 . (2)

The geometric error of F at a point correspondence xi ↔ x′i is the point to line
distance dist(xi, Fx

′
i). We take as geometric error of F the root mean square

error (RMSE) of the geometric error of F over all the available correspondences:

GeomErr(F ) =

√√√√ 1

n

n∑
i=1

dist(xi, Fx′i)
2
. (3)

The simplest existing method for the computation of the fundamental matrix
proceeds as follows. For n ≥ 8 point correspondences between two images, the
data coordinates are normalized linearly (we use the isotropic scaling normaliza-
tion described e.g. in [7]), and then the epipolar constraint (2) on the transformed
coordinates is expressed as a linear system of the type

A f = 0 , (4)

f being a 9× 1 vector representing the coefficients of F . The system is homoge-
neous due to a scale ambiguity in the fundamental matrix.

We denote by fi the i-th eigenvector of ATA with associated eigenvalue s2i ,
si ≥ 0 being the singular values of A sorted by increasing value, s1 ≤ s2 ≤ · · · ≤
s9, and we denote by Fi the 3 × 3 matrix associated to fi (the right singular
vectors of A). The homogeneous least-squares problem associated to (4) is the
minimization of the so-called algebraic error :

arg min ‖A f‖ s.t. ‖f‖ = 1 . (5)

Its solution is given by f1, the eigenvector of ATA corresponding to the smallest
singular value of A. The solution provided by the Direct Linear Transform (DLT)
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is the de-normalization of the matrix F1, which does not satisfy the rank-two
constraint. Setting to zero the smallest singular value of the SVD decomposition
of F1, we obtain the rank-two matrix closest in Frobenius norm to the minimum
of the algebraic error. This corresponds to an orthogonal projection of F1 on
the manifold of rank-two matrices, see Figure 1. The de-normalization of that
matrix is the final solution given by the normalized eight-point algorithm.

In general, one is more interested in the minimization of the geometric er-
ror (3), the Gold standard error or its approximation, the Sampson error [7].
However, there is no known closed-form solution for the minimization of such
errors. Therefore, there is still interest in simple closed-form methods with low
computational cost, even if based on minimizing the algebraic error.

This paper proposes two alternative algorithms to enforce the rank-two con-
straint (see Figure 1). The solutions we propose intersect a line or a plane with
the manifold of rank-two matrices. These are constructed by taking into account
F2 and F3, the next right-singular vectors of A, in order to have a better control
of the increasing error when computing F . We show that this has a low com-
putational burden, being closed-form, and generally provides a precision gain,
especially with few correspondences or in near-degenerate cases, such as low b/h
(ratio baseline/distance to scene).

In next section, we show through simulation the effect of the classical projec-
tion, its poor performance for low-size datasets and the relation with the singular
vectors of A. Then, we present our alternative proposals based on two and three
right-singular vectors of A instead of just one for the standard eight-point algo-
rithm. We report the results on synthetic and real data before concluding.
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Fig. 2. Performance of the DLT (cyan) and normalized eight-point (red) algorithms for
variable size datasets and noisy data. Median over 5000 runs of the obtained geometric
(3) and real (6) errors in dashed and continuous lines, respectively.

2 Performance of the Normalized Eight-Point Algorithm
for Low-size Datasets

We carried out the following simulation with the initial purpose of showing the
performance of the normalized eight-point algorithm for low-size datasets, and
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later to compare this algorithm with our proposed improvements. We simulated

a camera with calibration matrix K =

900 0 320
0 900 240
0 0 1

 with a 640× 480 image,

corresponding to an horizontal angular field of view of approximately 40 degrees.
A variable number n of 3D points was generated at a minimum distance h = 1
in the direction of the principal axis inside a cuboid of depth ∆Z; the width
and height of the cuboid were chosen so that its image was inside the domain
[0, 640] × [0, 480]. A second camera position was generated at a distance b of
the first one. The obtained image points were perturbed with uniform noise
with standard deviation σ = 1 pixel. The experiment was repeated 5000 times
for each value of n, and the geometric errors (3) of the obtained fundamental
matrices were computed using the data correspondences.

In order to have an unbiased error measure of each fundamental matrix, we
randomly generated a dense cloud of 1000 points inside the simulation cuboid
and computed at each iteration as real error the geometric error of the exact
correspondences yi ↔ y′i obtained by projecting that cloud:

RealErr(F ) =

√√√√ 1

1000

1000∑
i=1

dist(yi, Fy′i)
2
. (6)

Given that we are not considering outlier data, the geometric errror (3) gives
us a measure of the goodness of the fundamental matrix for reconstructing the
given matches; in constrast, the real error (6) serves us to validate the goodness
of the fundamental matrix for reconstructing new correspondences or for motion
estimation (e.g. in self-calibration). This error is expected to be worse for low-
size datasets, for which many points in the dense cloud used for evaluation are
far from the few given data points used for model fitting. Notice that in absence
of ground truth correspondences yi ↔ y′i, the real error is not computable.

We show in Figure 2 the results of a simulation attempting to cover a broad
range of realistic scenes and camera motions: for each iteration, the scene depth
variation ∆Z was randomly chosen between 10−4h (satellite images) and h (close
scenes), and the baseline size b was randomly chosen between 0.01h and h.

Observing the real error, a first remark is that for low-size datasets the en-
forcement of the rank-two constraint (eight-point algorithm) improves the solu-
tion given by F1, the minimum of the algebraic error. However, the geometric
error (as well as the algebraic error, and the Sampson error [7]) increases with
that enforcement. Observe that for low-size datasets the geometric errors corre-
sponding to the noisy data are not necessarily correlated with the real errors of
the models (which we estimate using a dense cloud of exact points). This does
not hold for bigger size datasets, which in our simulation tend to be dense inside
the cuboid. When dealing with real images, the errors can only be computed us-
ing the available data, which can be low-size due to typical problems in feature
detection and matching.

A second remark is that the normalized eight-point algorithm behaves quite
poorly for very low-size datasets, in comparison with its performance with gen-
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eral datasets. In our simulation, the real error (6) is divided by a factor of 3 when
considering datasets of n = 12 correspondences instead of n = 8. This behaviour
was reported before in [3], where the normalized eight-point algorithm was com-
pared to its variant for 7 correspondences, which takes as solution F = F1+αF2,
for α such that det(F1 + αF2) = 0 [7].

It can be observed in Figure 3 that the groundtruth fundamental matrix,
when decomposed into the orthonormal basis {Fi}i=1,...,9, has significant coef-
ficients not only in the right-singular vector F1, but also in the right-singular
vector F2 and, in minor measure, F3. This is because the matrices Fi are com-
puted using noisy data. Based on this observation, we propose two solutions for a
better closed-form computation of the fundamental matrix for low-size datasets.
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Fig. 3. Significance of Singular Vectors. For low-size datasets, we show the average
squared coefficients of the groundtruth fundamental matrix with respect to the three
right-singular vectors F1, F2, F3 (top), and only for F2, F3 (bottom).

3 The Two Singular Vector Algorithm

The normalized eight-point algorithm imposes the rank-two constraint on the
fundamental matrix ignoring the fact that the algebraic error may increase dras-
tically for certain directions. We propose a first alternative to this strategy which
consists in selecting the rank-two matrix close to the algebraic minimum moving
in the best direction for minimizing the algebraic error.

Whereas the solution of the normalized eight-point algorithm is given by a
modification of F1, our first proposal, the two singular vector algorithm, is to
compute the fundamental matrix as (see Figure 1):

F̃ = F1 + αF2 , for α s.t. det(F1 + αF2) = 0 . (7)

This proposal is commonly used for computing three possible fundamental ma-
trices given 7 correspondences, and has been previously used in a non-minimal
context without further validation [14]. The computation of α in (7) can be done
in closed form as in those cases, consisting in the resolution of the univariate
cubic equation in α given by (7). In case that we obtain three possible real values
α when solving (7), we choose the one that has minimum geometric error (other
error choices gave similar performance).
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The algebraic error associated to a solution of (7) can be obtained straight-
forwardly using the singular values of A:

‖A f̃‖2 = s21 + α2s22 . (8)

Although the value of this error is clearly bigger than ‖A f̃1‖2 = s21, it may be
smaller than the algebraic error of the normalized eight-point algorithm.

Using the general simulation proposed in Section 2, we show in Figure 4 the
median (over 5000 runs) of the real and geometric errors associated to the two
singular vector algorithm for noisy data (σ = 1 pixel). In Section 6 we will show
using both simulation and real images that the performance of this method is
superior to what could be concluded from the results hereby.
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Fig. 4. Performance of the normalized eight-point algorithm (8pt, in red), the two
singular vector algorithm (2sv, in green), and the three singular vector algorithm (3sv,
in blue). We show the median over 5000 runs of the geometric (3) and real (6) errors.

4 The Three Singular Vector Algorithm

A plausible criticism to the previous algorithm is that, even if it imposes the
rank constraint on the fundamental matrix, the increase in algebraic error is
known but remains uncontrolled. Our second proposal addresses this issue by
imposing the rank-two constraint while minimizing the algebraic error. Concisely,
we compute the fundamental matrix as

F̂ = F1 + αF2 + βF3 , (9)

with
(α, β) = arg min s21 + α2s22 + β2s23

s.t. G(α, β) = 0
(10)

where G(α, β) = det(F1 + αF2 + βF3).
Using Lagrange multipliers, the solution to the problem (10) can be searched

inside the set of real values α, β, µ that satisfy:

2s22 α+ µ ∂αG(α, β) = 0 , (11)

2s23 β + µ ∂βG(α, β) = 0 , (12)

G(α, β) = 0 . (13)
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Assuming for the moment that ∂βG(α, β) 6= 0, the equations (11) and (12)
have a compatible solution µ if the following cubic equation in α, β holds

s22 α ∂βG(α, β) = s23 β ∂αG(α, β) . (14)

Otherwise, if ∂βG(α, β) = 0, by (12) it holds β = 0, which can be obtained too
by imposing equation (14).

Therefore, the solution(s) of (10) will lie in the intersection of two plane
cubics, given by equations (13) and (14). In conclusion, theoretically there are
at most 9 solutions of (10). In general, the minimum of (10) is reached at a
unique value (α, β).

The exact intersection of the two cubics (13) and (14) can be obtained by
solving their resultant with respect to β, which is a univariate polynomial in
α of degree 9. In practice, for each real root α of this polynomial, we compute
the corresponding β using (13), and finally select as solution the (α, β) with
minimum geometric error (the Sampson error gave similar performance). We
obtained experimentally better results using the geometric error than using the
algebraic error, which however we need to generate the set of candidate solutions
in closed form.

Using again the general simulation proposed in Section 2, Figure 4 shows the
median real and geometric errors associated to the three singular vector algo-
rithm for noisy data (σ = 1 pixel). From the observed results we conclude that
for general computations of the fundamental matrix (general camera motions
and scenarios), the closed-form three singular vector algorithm outperforms the
normalized eight-point algorithm for datasets of sizes between 8 and 12. Other
applications are discussed in next section.

5 Applicability to General-Size Datasets

We have already shown, using the general scenario described in Section 2, that
the use of more than one right-singular vector can be useful for low-size datasets
(Figure 4). The reason is that the smallest singular values of the matrix A in (4)
are close to each other for those datasets.

We can imagine two degenerate scenarios where this is also the case: small
baseline motions and distant scenes. In fact, these problems can be solved by
computing a planar homography instead of the fundamental matrix; the config-
urations close to them, however, cannot be modelled using a homography.

An example is given in satellite imagery, where the distance from the camera
to the scene is much bigger than both the baseline size and the scene depth. We
show in Figure 5 the simulation results (median over 5000 runs) corresponding
to the Pleiades system (http://smsc.cnes.fr/PLEIADES/), where, using the
notation introduced in Section 2, we approximately have b/h = 0.2, ∆Z/h =
0.00014. For any data size, the two singular vector algorithm outperforms the
other closed-form methods.
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Fig. 5. Performance with simulated satellite data. Geometric (3) and real (6) errors.

6 Experimental Results

6.1 Numerical Stability Evaluation

We plot in Figure 6 the errors as a function of noise standard deviation by the
different methods, at various datasizes, for general camera motions and scenarios
simulated as in Section 2; see also Figure 4 for a clear picture when σ = 1. A first
remark is that all methods exhibit a linear dependence on noise level, showing
that the proposed methods have correct numerical stability. In all cases, the 3sv
method outperforms the 2sv method, which is to be expected concerning the
algebraic error, since solutions of (7) are inside the minimization space of (9).

It can be also observed that for high noise levels the geometric error increases
as the dataset size increases, the behaviour of the normalized eight-point algo-
rithm for datasets of size n = 8 and close values being particularly critical. For
the low dataset sizes, the 3sv outperforms the 8pt algorithm, whereas for the
2sv this seems only true for dataset sizes n = 8, 9. For bigger datasets, there is
a very slight advantage for the normalized eight-point algorithm over 3sv.
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Fig. 6. Errors against noise for different datasizes.

6.2 Real Data

We first test the algorithms on stereo pairs from the SyntIm INRIA database
(http://perso.lcpc.fr/tarel.jean-philippe/syntim/paires.html) (see Fig-
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Fig. 7. Image pairs used for the validation with real images. From top to bottom and
from left to right: Baballe, BalMouss, BatInria, BatSynt, Billet, Color, GrRub, Sabine,
Serfaty, Sport; next, images from Hartley-Zisserman’s book [7], and then images from
Strecha’s website; the last two row images are from Aanæs et al. [1].

ure 7), whih are small size images (mostly 512 × 512) with a moderate num-
ber of SIFT matches [12] obtained by using demanding parameters in order
to avoid outliers. The SIFT matches are filtered by a non-parametric variant
of RANSAC [13], and the remaining outliers are manually discarded to ob-
tain a real noisy inlier dataset for our algorithms. We report in Table 1 the
results. In all but two datasets, one of our proposed algorithms outperforms the
8-point algorithm, usually the three singular vector algorithm. We also tested
on image pairs from Hartley-Zisserman’s book [7] (http://www.robots.ox.ac.
uk/~vgg/hzbook/code/) and from Strecha’s website (http://cvlab.epfl.ch/
data/strechamvs/). Results are reported in Table 1. Even though the number
n of inliers is higher, we can see that 2sv and 3sv yield comparable precision.

Aanæs et al. [1] propose a large dataset of calibrated image sequences (http:
//roboimagedata.imm.dtu.dk/index.html). We take some 1/4 size sequences
(300×400) and consider as stereo pair the first image of a sequence and successive
images in that sequence. Statistics are reported in Table 2. As we compare image
1 with further images in the sequence, the number n of inlier correspondences
tends to decrease as the b/h ratio increases. Images 1 and 2 have b/h ∼ 0.03, and
images 1 and 6 have b/h = 0.17. In all sequences, the most accurate method is
either 2sv or 3sv. Many times, one of both outperforms the eight-point algorithm,
especially for small b/h. Notice for example the dramatic failure of the latter
for pairs (1, 5) and (1, 6) of SET037. Even for relatively high n a significant
improvement can be obtained with 3sv.

7 Conclusion

We have shown that a small modification of the eight-point algorithm provides in
several cases a better precision. The two singular vector algorithm is quite similar
to the seven-point algorithm. The three singular vector algorithm is slightly more
complex to implement, but it is more likely to improve the precision. Whatever
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Table 1. Results on 10 SyntIm stereo pairs, 5 pairs from Hartley-Zisserman’s book [7]
and 3 pairs from Strecha’s site. The first column is the pair name, n the number of
inlier correspondences after RANSAC. In each cell are indicated the root mean/max
square geometric error over the data correspondences. In each test, the least error over
the three constraint-enforcing methods (8pt, 2sv, and 3sv) is in bold.

Pair n 8pt 2sv 3sv

Baballe 9 0.65/1.79 0.21/0.48 0.20/0.43

BalMouss 24 0.49/1.41 0.92/3.20 0.41/0.93

BatInria 46 0.59/1.87 0.82/2.52 0.58/1.92

BatSynt 26 0.52/1.84 0.46/1.74 0.59/1.31

Billet 11 0.39/0.72 0.16/0.38 0.15/0.28

Color 15 0.61/1.49 0.31/0.76 0.30/0.66

GrRub 24 0.66/1.54 0.66/1.45 0.65/1.52

Sabine 16 0.38/1.01 0.60/1.39 0.51/0.97

Serfaty 39 0.75/1.97 0.59/1.72 0.59/1.83

Sport 115 0.37/1.24 1.16/3.65 0.39/1.52

bt.000, bt.002 62 0.50/1.45 0.50/1.44 0.50/1.44

bt.000, bt.004 41 0.72/1.82 0.72/1.86 0.73/1.86

bt.000, bt.006 28 0.86/2.79 0.84/2.87 0.83/2.87

chapel 31 0.69/1.69 0.68/1.73 0.68/1.72

keble 50 0.33/1.01 0.33/0.95 0.32/1.02

Brussels 671 0.35/1.34 0.35/1.34 0.35/1.34

Dresden 1615 0.22/0.79 0.23/1.03 0.23/1.01

Leuven 904 0.48/1.69 0.55/1.89 0.54/2.13

the case, our recommendation is to compute the errors resulting from the three
considered rank-two enforcement algorithms and keep the least of them.
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