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Abstract

We propose a novel global calibration method for a net-
work of cameras. Given a set of unknown cameras linked by
epipolar geometry, we transform it into a graph of camera
triplets. Underlying this new graph is a set of trifocal ten-
sors. Based on (i) a linear computation of the trifocal tensor
given two of the three related fundamental matrices, and (ii)
considering a maximal tree embedded in our graph, we first
design a way to globally recover the cameras. Then, we ob-
serve that considering the whole graph consists in simply
adding constraints that can be easily linearized. A global
estimation of the cameras thus boils down to solving a lin-
ear program. Numerical experiments show the ability of
our method to recover accurate geometries, without any in-
cremental process, and dealing naturally with loops in the
network of cameras. Moreover, the number of unknown pa-
rameters is limited: we only consider the cameras (the mo-
tion), not the three-dimensional points (the structure).

1. Introduction
Camera calibration from images has always been a cen-

tral issue in Computer Vision. The success of textbooks like
[6, 4] attests this interest, although misleads somehow the
community toward the idea that most of the problem have
been solved. Indeed, in recent years, many methods have
been proposed [12, 20, 19, 13, 11, 5, 7, 24, 18, 2, 1]. Yet,
very few of them achieve calibration in a global way i.e.
without any incremental process.

Since the seminal work on global calibration for ortho-
graphic cameras [23], much has been done to cope with
its inherent limits (total matching and orthographic camera
model). Nevertheless, despite some remarkable results to
compute factorization with perspective cameras [21], and
factorization with affine cameras and missing data [8], most
of today methods are incremental.

In [11, 13, 20, 19], an incremental process is used by
estimating new cameras from previously obtained cameras
and three-dimensional (3D) points. It is subject to an error
accumulation and results in a visible and annoying drift for
closed scenes. This drift can be attenuated by a final bundle
adjustment [25] that enforces the closure constraints, but is
prompt to get stuck in local minima. As a result, such meth-
ods have to fight against errors during the incremental pro-
cess (usually by running the bundle adjustment regularly),
hoping that the drift does not grow up too quickly and pre-
vents the solution of the optimization problem from falling
into a local minimum.

A number of recent studies, oriented toward city mod-
eling from car or aerial sequences, investigate such loop
closing. [10] merges partial reconstructions, [16] constrains
coherent rotations for loops and planar motion. Adapted
to their specific input, these papers often rely on trajectory
regularization or dense matching[3, 22]. [24] is a notable
exception, where loop constraints are added to sparse Struc-
ture from Motion (SfM), yet taking as input an ordered om-
nidirectional sequence.

In [5], a method is proposed based on trifocal tensors
to recover the cameras in one common projective space by
estimating the best projective transform between two con-
secutive camera triplets. However, as noticed in [5], the
noise in correspondences may severely affect the coherence
of two estimated trifocal tensors. Therefore, in general, the
estimated homography does not offer a perfect merging be-
tween cameras. As a next step, it is proposed in [2] to con-
nect two consecutive fundamental matrices using the trifo-
cal tensor as an intermediate “glue”, which guarantees the
uniqueness of subsequent camera matrices without recov-
ering the underlying 3D model. The approach we propose
in the present paper is linked to that of [2] in that the re-
covery of camera matrices is carried out by enforcing the
fundamental matrices and tensors to be coherent. Never-
theless, unlike our method, that of [2] is incremental, based
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on a sliding window, and does not take into account loop
constraints.

Substantial progress in performing global calibration is
made in [18], where the authors compute coherent funda-
mental matrices and produce compatible cameras. How-
ever, the methodology of [18] does not handle loop con-
straints and the way to compute the third compatible fun-
damental matrix is not directly based on images data, i.e.
correspondences. Perhaps the most extended recent work
on global calibration has been conducted by Martinec [12],
who proposed a global framework, to calibrate a set of cam-
eras, encoding the loop constraints in a global way. The
most important limitation of Martinec’s approach is that in-
trinsic parameters are assumed to be constant. We achieve
here the same goal, but in the fully general case of unknown
intrinsic parameters.

Our method consists of the following points:
• As in [12], our starting point is a set of unknown

cameras linked by estimated epipolar geometries.
We assume that along with the estimated fundamen-
tal matrices, reliable epipolar correspondences are
known. These correspondences are made robust by
simultaneously considering several camera pairs,
like in [19]. This produces a set of three-camera
correspondences that will be used in the sequel.
• We group cameras into triplets. Some of the estimated

epipolar geometries are ignored, so that inside a
triplet, only two of the three fundamental matrices
are considered known. The advantage of this strategy
is that we do not need to enforce the coherence of
fundamental matrices. At a first sight, this can be seen
as a loss of information. However, this information is
actually recovered via trifocal tensors.
• We define a graph having as vertices camera triplets.

Two triplets are connected by an edge if they share
two cameras. We consider a maximal tree embedded
in this graph. We demonstrate that for each triplet
there exists a 4-vector such that all the entries of
the three camera matrices are affine functions of this
4-vector with known coefficients. Writing this rela-
tionship for all the vertices of the tree, we get a linear
estimate of all the cameras from the aforementioned
three-cameras correspondences.
• Finally, considering the same relationships for the

complete graph adds constraints. Linearizing these
constraints, our method boils down to linear pro-
gramming which can be efficiently solved by fast
algorithms even for very large graphs.
• Once we have all cameras in a projective space, we

recover the metric space using an implementation
of [14], and a single euclidean bundle adjustment in
order to refine the metric space and camera positions.

Thus, we propose a method that accurately recovers geome-
tries, without any incremental process, and deals naturally

with loops in the network of cameras. Moreover, the num-
ber of unknown parameters is fairly small, since we con-
sider only the cameras (four unknowns for each triplet) and
not the 3D points which are usually involved in most struc-
ture from motion approaches. Our results could be further
refined by standard bundle adjustment techniques. Taking
loops into account and avoiding error accumulation, the
proposed solution is less prone to get stuck in local minima.
Numerical experiments confirm these nice properties.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background theory and terminology. Our
algorithm is thoroughly described in Section 4. The results
of numerical experiments conducted on two real datasets as
well as a comparison to state-of-the-art software is provided
in Section 5. Discussion concludes the paper.

2. Background and notation
In this work, we consider a network of N uncalibrated

cameras. In what follows, we assume that for some pairs of
cameras (i, j), where i, j = 1, . . . , N , i 6= j, an estimation
of the fundamental matrix, denoted by Fij , is available. Let
us denote by eij the unit norm epipole in view j of camera
center i. Recall that the fundamental matrix leads to a pro-
jective reconstruction of camera matrices (Pi,Pj), which is
unique up to a homography.

The geometry of three views i, j and k is described by
the Trifocal Tensor, hereafter denoted by T ijk. It consists
of three 3 × 3 matrices: Tijk1 ,Tijk2 and Tijk3 and provides a
particularly elegant description of point-line-line correspon-
dences in terms of linear equations

p>i

l>j T
ijk
1

l>j T
ijk
2

l>j T
ijk
3

 lk = 0, (1)

where pi is a point in image i (seen as a point in projec-
tive space P2) which is in correspondence with the line
lj in image j and with the line lk in image k. Consider-
ing the entries of the Trifocal Tensor as unknowns, we get
thus one linear equation for each point-line-line correspon-
dence. Therefore, one point-point-point correspondence
pi←→pj←→pk leads to 4 independent linear equations by
combining an independent pair of lines passing through pj
in image j with an independent pair of lines passing through
pk in image k.

Since a Trifocal Tensor has 27 entries, the previous argu-
ment shows that 7 point-point-point correspondences suf-
fice for recovering the Trifocal Tensor as a solution of an
overdetermined system of linear equations. Recall how-
ever that the Trifocal Tensor has only 18 degrees of free-
dom. Most algorithms estimating a Trifocal Tensor from
noisy point-point-point correspondences compute an ap-
proximate solution to the overdetermined linear system by
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least squares estimator (LSE) and then perform a post-
processing in order to get a valid Trifocal Tensor. An alter-
native approach consists in using a minimal solution that de-
termines the three-view geometry from six points [15, 17].

3. Main ingredients of our approach
In the present section, we describe two elementary re-

sults that represent the building blocks of our approach. It
relies on the fact that when two out of three fundamental
matrices are known, the Trifocal Tensor has exactly 4 de-
grees of freedom (recall that a fundamental matrix has 7
degrees of freedom).

Proposition 1. For three views i, j and k, given two fun-
damental matrices Fij and Fik, there exists a 4-vector
γ = [γ0, . . . , γ3] such that the Trifocal Tensor T ijk is given
by:

Tijkt = Aijt

0 0 0
0 0 1
0 γ0 γt

 (Aikt )
>

(2)

for every t = 1, 2, 3, where

Aist =
[
(Fist,1:3)> , (Fist,1:3)> × eis , eis

]
, s = j, k.

Moreover, this Trifocal Tensor is geometrically valid, i.e.,
there exist 3 camera matrices Pi, Pj and Pk compatible with
the fundamental matrices Fij and Fik and having T ijk as
the Trifocal Tensor.

The proof of this result is postponed to the Appendix.
It is noteworthy that the claims of Proposition 1 hold true
under full generality, even if the centers of three cameras
are collinear. It is important to present the form of a triplet
of camera matrices parameterized by γ that are compatible
with the fundamental matrices Fij and Fik as well as with
the Trifocal Tensor defined by Eq. 2. In fact, the triplet of
cameras, which is unique up to a projective homography, is

Pi = [I3×3 |03×1], (3)

Pk = [γ0[eik]×Fki | eik], (4)

Pj = kron
(
[γ1:3, 1]; eij

)
− [[eij ]×Fji |03×1], (5)

where kron(·, ·) stands for the Kronecker product of two
matrices.

In the noiseless setting, Proposition 1 offers a mini-
mal way of computing the 4 remaining unknowns from
point-point-point correspondences. At first sight, one could
think that one point-point-point correspondence leading to
4 equations is enough for retrieving the 4 unknowns. This is
not true, since as the epipolar geometry is known, only one
equation brings new information from one point-point-point
correspondence. So we need at least 4 point-point-point
correspondences to compute the Trifocal Tensor compatible

with the two given fundamental matrices. In the noisy case,
if we use all 4 equations associated to point-point-point cor-
respondences, the system is then overdetermined and one
usually proceeds by computing the LSE. One can also, from
4 point-point-point correspondences, use only one equation
for each correspondence and get an estimator by solving a
linear system.

The second ingredient in our approach is the parameter-
ization of the homography that bridges two camera triplets
having one fundamental matrix in common. Let i, j, k and
` be four views such that (a) for views i and k we have suc-
cessfully estimated the fundamental matrix Fik and (b) for
each triplet (i, j, k) and (k, i, `) the estimates of two fun-
damental matrices are available. Thus, the triplets (i, j, k)
and (k, i, `) share the same fundamental matrix Fik. Us-
ing equations (3)-(5), one obtains two projective reconstruc-
tions of camera matrices of views i and j based on two 4-
vectors γ and γ′. Let us denote the reconstruction from the
triplet (i, j, k) (resp. (k, i, `)) by Piγ and Pkγ (resp. Piγ′ and
Pkγ′ ). These matrices are connected by a homography Hγ,γ′ ,
that is

PiγHγ,γ′ = Piγ′ , PkγHγ,γ′ = Pkγ′ . (6)

Considering the camera matrices as known, one can solve
(6) w.r.t. Hγ,γ′ . The solution of (6) can be easily computed1

and is

Hγ,γ′ =

 kron(γ′1:3, e
ki)− [eki]×Fik eki

−γ02 tr([eik]×Fki[eki]×Fik)(eik)> 0

 .
(7)

To sum up this section, let us stress that the main mes-
sage to retain from all these formulas is that the homogra-
phy Hγ,γ′ , as well as the camera matrices given by (3)-(5)
are linear in (γ,γ′).

4. Global network calibration

This section contains the core of our contribution which
is based on a graph-based representation of the triplets of
cameras.

4.1. Graph of triplets of cameras

The starting point for our algorithm is a set of estimated
epipolar geometries. Based on these geometries, one can
define a graph Gcam such that (a) Gcam has N vertices corre-
sponding to the N cameras and (b) two vertices of Gcam are
connected by an edge if a reliable estimation of the corre-
sponding epipolar geometry is available. As a preprocess-
ing step, we discard some edges from Gcam in such a way
that the resulting graph has no loops of length 3.

1See Appendix for more details
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From this graph, we deduce the graph Gtriplet =
(Vtriplet, Etriplet) of triplets of cameras as follows:

- each vertex v ∈ Vtriplet of Gtriplet is a triplet of cameras
for which two fundamental matrices are available,

- two vertices v, v′ ∈ Vtriplet are connected by an edge
if the corresponding triplets have one fundamental
matrix in common.

In view of Proposition 1, the global calibration of the
network is equivalent to the estimation of a 4-vector for each
triplet of cameras. Thus, to each vertex v of the graph of
triplets we associate a vector γv ∈ R. The large vector
Γ = (γv : v ∈ Vtriplet) is the parameter of interest in our
framework.

4.2. Calibration of an acyclic graph

If, by some chance, it turns out that the graph of triplets
is acyclic, then the problem of estimating Γ reduces to
estimating NV = Card(Vtriplet) independent vectors γv .
This task can be effectively accomplished using point-point-
point correspondences and the equation (1). As explained in
Section 2, a few point-point-point correspondences suffice
for computing an estimator of γv by least squares.

4.3. Calibration as constrained optimization

Acyclic graphs are however the exception rather than the
rule. Even if the camera graph is acyclic, the resulting triplet
graph may contain loops. To explain how the loops in the
graph Gtriplet are handled, let us remark that one can asso-
ciate a homography (cf. (7)) to each adjacent pair (v, v′) of
vertices of Gtriplet. Using these homographies, each loop of
the graph of triplets yields a constraint on the homographies
and, therefore, on the parameter vector Γ. For instance, the
3-loop v←→v′←→v′′←→v gives raise to the constraint

Hγv,γv′Hγv′ ,γv′′Hγv′′ ,γv = I4×4, (8)

where the equality is understood in the projective sense,
i.e., up to a multiplicative constant. Equation (8) defines
a set of 15 polynomial constraints on the unknown vector
Γ. If the triplet graph contains Ncycle loops, then we end
up with 15Ncycle constraints. Our proposal—in the case of
general graphs of triplets—is to estimate Γ by minimizing
the algebraic error derived from the equations (1) and point-
point-point correspondences (similarly to the least squares
estimation proposed in the previous subsection) subject to
15Ncycle constraints.

The main advantage of this approach is that if a solution
to the proposed optimization problem is found, it is guaran-
teed to be consistent w.r.t. the loops, which is not the case
for the incremental procedures.

4.4. Sequential linear programming

Instead of solving the optimization problem that is ob-
tained by combining the LSE with the loop-constraints, we
propose here to replace it by a linear program that can
be solved fairly rapidly even for a very large network of
cameras. To give more details, let us remark that every
loop-constraint (8) can be rewritten as fj(Γ) = 0, j =
1, . . . , 15, for some polynomial functions fj . Writing these
constraints for all Ncycle loops, we get

fj(Γ) = 0, j = 1, . . . , 15Ncycle. (9)

On the other hand, in view of (1) and (2), the point-point-
point correspondences can be expressed as an inhomoge-
neous linear equation system in Γ

MpΓ = mp, p = 1, . . . , 4N3-corr, (10)

whereN3-corr is the number of correspondences across three
views. The matrices Mp and the vectors mp are computed
using the known fundamental matrices. Since in practice
these matrices are estimated from available data, the sys-
tem (10) need not be satisfied exactly. Then, it is natural to
estimate the parameter-vector Γ by solving the problem

min
∑
p ‖MpΓ−mp‖qq

subject to fj(Γ) = 0, ∀j = 1, . . . , 15Ncycle,
(11)

for some q ≥ 1. Unfortunately, there is no q for which this
problem is convex and, therefore, it is very hard to solve. To
cope with this issue, we propose a strategy based on local
linearization.

We start by computing an initial estimator of Γ, e.g.,
by solving the unconstrained (convex) problem with some
q ≥ 1. Then, given an initial estimator Γ0, we define the se-
quence Γk by the following recursive relation: Γk+1 is the
solution to the linear program

min
∑
p ‖MpΓ−mp‖1

subject to |fj(Γk) +∇fj(Γk)(Γ− Γk)| ≤ ε, (12)

where ε is a small parameter. In practice one can always
set ε = 10−6. There are many softwares—such as GLPK,
SeDuMi, SDP3—for solving the problem (12) with highly
attractive execution times even for thousands of constraints
and variables. Furthermore, empirical experience shows
that the sequence Γk converges very rapidly. Typically, a
solution with satisfactory accuracy is obtained after five to
ten iterations. Such a behavior is also observed on the nu-
merical experiments reported in this work. The only flaw
of this strategy is that there is no guarantee that the solution
we get is a global minimum.

Another strategy could be to design a suitable version
of the branch and bound algorithm for finding the global
minimum of (11), inspired by the recent work [9]. However,
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actual implementation of this strategy for the task of global
calibration of a network results in an algorithm which is
prohibitively time consuming.

5. Experiments

The proposed algorithm has been implemented in C++
with a call to the SeDuMi package of Matlab for solving the
linear program. We have tested our algorithm on three real
datasets. The Dinosaur dataset (Figure 1 on the top)2 com-
posed of 36 images, the Detenice Fountain dataset3 com-
posed of 34 images and the Calvary dataset4 composed of
52 images.

One of the main contributions of the paper is the accu-
rate computation of cameras respecting the loop-constraints
without neither performing bundle adjustment (BA) nor re-
covering 3D points. As one can see in Figure 1, in the
three datasets, without constrained optimization, the epipo-
lar lines in the last image, corresponding to a point clicked
in the last but one image, are quite accurate. This is not sur-
prising since the method computes cameras based on a tree,
fitting exactly previously computed fundamental matrices.
On the other hand, one can observe that epipolar lines in the
first image, corresponding to a point clicked in the last but
one image, are quite inaccurate, when the loop-constraints
are not enforced. This is particularly true for the Dinosaur
dataset, and even more for the Calvary dataset. Once we
add the constraint optimization, one can see on the right
panel of Figure 1, that epipolar lines closing the sequence
become far more accurate.

Since no ground truth is available for the Detenice Foun-
tain and the Calvary datasets, we use the result of the
BA as a benchmark for evaluating the impact of the loop-
constraints on the estimated cameras. In Figure 2, we can
observe that the camera locations estimated without the
loop-constraint are very different from those obtained by the
BA. In particular, camera 33 is in front of camera 00 , while
according to the estimator provided by the BA it is slightly
behind camera 00 . In contrast with this, if the constrained
optimization is performed, relative positions of cameras 33
and 00 are almost the same as those obtained by the BA.
Generally speaking, it is noticeable that the cameras esti-
mated by the BA and those estimated by our constrained
optimization approach are very close. This demonstrates
the potential of our approach as a non-incremental alterna-
tive to the BA.

Figure 3, shows an example of a long sequence in
which the unconstrained optimization results in a strong
drift (camera 00 is far behind camera 51 ). With the con-
strained optimization, camera 51 is close to camera 00 . As

2http://www.robots.ox.ac.uk/̃vgg/
3courtesy of D. Martinec
4courtesy of Imagine Group http://imagine.enpc.fr/

one can observe on the small images in Figure 3, the first
and last photos were taken from almost the same viewpoint.
This configuration is confirmed by the BA. In order to get
a quantitative evaluation of the improvement achieved by
enforcing the loop-constraints, we successively performed
BA with constrained estimators and unconstrained estima-
tors as initial values. The root mean square reprojection
error on the whole sequence is 0.87 for the BA with con-
strained estimator as initial value, while it equals 1.61 for
the BA with unconstrained estimator as initial value.

6. Conclusion
In this paper, we have proposed a new approach to the

problem of autocalibration of a network of cameras. Our ap-
proach is based on a representation of the network of cam-
eras by a graph of trifocal tensors and on a natural param-
eterization of camera matrices and relating homographies.
We have proposed to estimate the unknown parameters by
a constrained optimization that can be recast in a linear pro-
gram. Thanks to the sparsity of the matrices involved in this
linear program, the running times of the proposed algorithm
are very attractive even for large scale datasets.

The main advantage of the proposed methodology is that
it offers a global approach for estimating the network of
cameras, whereas the most popular approaches are incre-
mental. The experiments reported in this paper show the
potential of our method on datasets containing loops. We
stay in the projective context and do not rely on known or
estimated internal parameters. Yet, if needed, one final Eu-
clidean bundle adjustment could be conducted to refine the
metric space and the camera positions.

Future work includes to incorporate the possible het-
eroscedasticity of the errors into the objective of the opti-
mization problem. In addition, the performance of the algo-
rithm should be tested on a wider range of experiments. We
are currently acquiring larger sequences with several loops
for which our framework is expected to be considerably
more efficient than classical incremental methods. Another
natural path for further investigation is to use our method-
ology in conjunction with a branch and bound approach in
order to improve the robustness with respect to local min-
ima.
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Appendix
6.1. Proof of Proposition 1

We begin by considering the case where all the 3 rows
of the fundamental matrices Fij and Fik are different from
the zero vector of R3. This implies that the columns of the
matrices Aijt and Aijt form two orthogonal bases of R3. (In-
deed, it is well-known that the epipole eij is orthogonal to
the rows of Fij , while (Fijt,1:3)>×eij is orthogonal to Fijt,1:3
and to eij by virtue of the definition of the vector product.)
Therefore, Aikt and Aijt are invertible. Let us defineat bt ct

dt et ft
gt ht it

 = (Aijt )−1Tijkt (Aikt )−>. (13)

Let us show that at = bt = ct = 0. Recall that the matrix
Tijkt relates a point p = (p1, p2, p3) ∈ P2 to its epipolar
line l = Fij

>p through the equation l>
∑3
s=1 psT

ijk
s =

0> [6, p. 373]. Choosing as p the vector (δt1, δt2, δt3)>,
where δt` stands for the Kronecker symbol that equals one
if t = ` and zero otherwise, we get Fijt,1:3T

ijk
t = 0>. This

equation, in conjunction with (13), the definition of Aijt and
the invertibility of Aikt entails thatat dt gt

bt et ht
ct ft it

‖(Fijt,1:3)>‖2
0
0

 =

0
0
0


This yields at = bt = ct = 0. By a symmetric argument,
we also check that dt = gt = 0. Thus, the Trifocal Tensor
necessarily reduces to the form:

Tijkt = Aijt

0 0 0
0 et ft
0 ht it

 (Aikt )
>

(14)

Since the rank of any fundamental matrix is equal to two,
there exists an index t′ ∈ {1, 2, 3} such that Fijt′,1:3 and
Fijt,1:3 are not collinear. We have already checked that
Fijt,1:3T

ijk
t = 0> and, similarly, Fijt′,1:3T

ijk
t′ = 0>. There-

fore, substituting p = (δt1, δt2, δt3)>+ (δt′1, δt′2, δt′3)> in
the equation p>Fij

∑3
s=1 psT

ijk
s = 0, we get

Fijt′,1:3T
ijk
t + Fijt,1:3T

ijk
t′ = 0>. (15)

Now, let us observe that (Fijt′,1:3)>((Fijt,1:3)> × eij) =
−(Fijt,1:3)>((Fijt′,1:3)> × eij) := βt,t′ . Moreover, βt,t′ 6= 0
since the vectors Fijt,1:3 and Fijt′,1:3 are linearly independent
and orthogonal to eij . This observation together with (14)
and (15) leads to

Aikt

0 0 0
0 et ht
0 ft it

αβ
0

+ Aikt′

0 0 0
0 et′ ht′

0 ft′ it′

 α
−β
0

 = 0,

where we have used the shorthands α = αt,t′ and β = βt,t′ .
Matrix multiplication yields
βt,t′

( [
0, et, ft

]
(Aikt )> −

[
0, et′ , ft′

]
(Aikt′ )>

)
= 0>.

The last display is equivalent to
(etFikt,1:3 − et′Fikt′,1:3)> × eik + (ft − ft′)eik = 0,
which is possible if and only if ft = ft′ and etFikt,1:3 −
et′Fikt′,1:3 = 0. Since Fikt,1:3 and Fikt′,1:3 are linearly indepen-
dent, we conclude that et = et′ = 0. In addition, using a
symmetric argument, we get ht = ht′ and thus

Tijkt = Aijt

0 0 0
0 0 ft
0 ht it

 (Aikt )
>
,

Tijkt′ = Aijt′

0 0 0
0 0 ft
0 ht it′

 (Aikt′ )
>

(16)

Let now t′′ be the element of the index set {1, 2, 3} that
is different from t and t′. Repeating the same arguments
with t replaced by t′′ leads to a formula similar to (16) in
which t′ is replaced by t′′ everywhere. The first claim of
the proposition follows by dividing all the entries of [Tijk]
by ft, which is 6= 0 since otherwise the fundamental matrix
computed from this trifocal tensor is of rank < 2, which is
impossible.

In the case where the matrix Fij or Fik contain zero rows,
one can merely use the fact that Eq. (3)-(5) characterize all
the triplets of camera matrices (up to a projective homog-
raphy) which are compatible with the fundamental matrices
Fij and Fik. In view of [6, Eq. 15.1], the trifocal tensor cor-
responding to these camera matrices coincides with the one
defined in the statement of the proposition. This completes
the proof.

6.2. Proof of Equation 7

Let Pi and Pk be the camera matrices computed from the
triplet (i, j, k) with parameter γ and let P̄i and P̄k be those
computed from the triplet (k, i, `) with parameter γ′. Thus,
we are looking for a homography H such that

[I3×3|0]H ∼= kron([γ′1:3, 1], eki)−
[
[eki]×Fik|0

]
, (17)[

γ0[eik]×Fki|eik
]
H ∼= [I3×3|0], (18)

where ∼= stands for the proportionality. The first equation
yields H1:3,1:4 =

[
kron(γ′1:3, e

ki)− [eki]×Fik|eki
]
. Insert-

ing this in (18) and using Fkieki = 0, we get

−γ0[eik]×Fki[eki]×Fik + eikH4,1:3 = αI3×3 (19)

and eikH4,4 = 0. This implies that H4,4 = 0. Furthermore,
multiplying both sides of (19) by (eik)>, we get H4,1:3 =
α(eik)>. To complete the proof, it remains to determine
the value of α. This is done by computing the trace of both
sides in (19).
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