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Abstract

We propose a new parameter-free method for detecting
planar patches in disparity maps. We first introduce an a
contrario decision criterion which may be used to solve two
decision problems on configurations of 3D points: (i) is the
configuration well explained by a plane?; (ii) what is the
optimal number of planes that best explains the configura-
tion? These decision criteria are the core of an algorithm
that searches for an optimal explanation of a disparity map
by planar patches whenever applicable. This method may
be used for 3D reconstruction of urban environments, par-
ticularly in the context of low-baseline stereo where preci-
sion requirements are most strict, and a pertinent choice
of the type and amount of regularization is key to achiev-
ing accurate results. It also suggests its use for automatic
vectorization of urban DEMs, where a sensible geometric
representation is key to achieving good visualizations.

1. Introduction
Finding a Vectorized Digital Elevation Model (VDEM)

of a urban scene is of great interest. This is necessary
for various applications such as 3D data compression, ur-
ban planning, radiowave reachability, disaster recovery, etc.
This paper concentrates on a crucial step in the obtention of
VDEMs, namely the optimal grouping of 3D point clouds
representing the underlying surface, into planar patches,
whenever possible.

1.1. Small baseline stereo

Even though the input 3D point clouds may come from
a variety of sources (including LIDAR, SAR interferome-
try, etc.), and despite the potential applicability of our tech-
nique in those settings, we concentrate here on the spe-
cific case of disparity maps obtained by photogrammetry
from low-baseline stereo pairs [4] (however, the method we
propose here does still work in the case of large-baseline

stereovision). Such 3D measurement systems have a cer-
tain number of advantages: (i) sure and independent punc-
tual matches become feasible in a relatively dense area [15];
(ii) occlusions are reduced to a minimum and quasi-zenital
views can be assumed. They however introduce new chal-
lenges, since fattening artifacts become specially important,
and highly subpixel-accurate disparities are required to ob-
tain a usable accuracy in height. For this reason careful
regularization techniques (like the robust affine regression
we propose here) are crucial to obtaining the required ac-
curacy level. Furthermore, such a regularization should be
appplied only after verifying that the underlying data is well
explained by the chosen regularization model (thus enabling
the use of other regularization or interpolation techniques
for non planar structures such as vegetation, domes, etc),
and level (thus avoiding over- of sub-regularization).

1.2. Previous work

Various methods were previously proposed to find a 3D
model from a disparity map, but for different reasons they
do not fit the low B/H setting.

RANSAC and Hough transform. Robust estimators
based on RANSAC or Hough transform have been widely
used in unconstrained stereovision.

Though the Hough transform seems pretty natural for the
detection of multiple objects, its computational complexity
makes it hard to use when the objects are defined by too
many parameters (typically more than 2).

One of the challenges to overcome when using RANSAC
is that it was originally designed to detect only one object
among outliers. Though various approaches were proposed
to overcome this problem, most of them [22, 23, 20] were
proved to fail in the experiments of [19]. This is mainly due
to the detection of phantom objects made of the combina-
tion of two objects. In [19], groups are merged according to
their Jacquard distance. The main problem of this algorithm
is to get rid of groups made only of outliers. This points out



the need of a criterion to decide whether a group is valid or
not.

Such a decision criterion was addressed in [14] in the
context of group matching of SIFT descriptors to find dif-
ferent objects in a scene. However, this technique does
not scale well to quasi-dense correspondence maps, where
transformations to be detected are far more numerous. In
[12] k-nearest neighbors and local orientation were com-
bined with RANSAC to fit models to dense 3D data, but
several thresholds have to be fine-tuned.

Geometric modelling from disparity maps. Due to the
larger number of both points and objects in disparity maps,
other methods than RANSAC or Hough transform have
been proposed.

In [13] the authors used a dictionary of complex building
models to fit the disparity map. However the applicability
to the low-baseline case is less evident because the initial
delimitation of buildings by rectangle-fitting to the dispar-
ity map is more error prone when the latter is noisy and
affected by fattening (adhesion) artifacts. In addition, the
slow convergence of the underlying non-convex optimiza-
tion procedure, may scale up when the number of models
in the dictionary is increased to more closely fit reality. An-
other version of this algorithm drops the rectangle-fitting
part but has the main drawback of requiring considerable
user interaction.

In [2], the authors tried to match line segments of both
images in order to find the height of a 3 dimensional edge.
Then half planes are computed on each side of the segment.
Despite their good results in urban areas, their method
does not apply to low baseline stereo, because it relies on
segment-to-segment matching, which proved to be not pre-
cise enough in this case [15]. Furthermore, when segments
are badly or not detected, no assumption can be made.

Various methods were proposed for the segmentation of
range images [11, 18, 9] but they all lack at some point of a
generic criterion to decide when a group can be considered
as planar.

In [10], the authors propose an a contrario region merg-
ing procedure to obtain a piecewise affine disparity map.
However, the procedure is highly dependent on an initial
partition which can be error prone. This initialisation is ob-
tained by assuming that quasi-uniform gray-levels imply a
common affine model, which is often, but not always the
case, even under Lambertian hypotheses.

Following the same hypothesis, [7] uses the luminance-
geodesic Voronoi cells of a sparse disparity map to provide
an initial piecewise affine interpolation. From this partition,
a merging procedure is proposed to find the final interpo-
lation. However, due to the computational complexity of
the geodesic distance, its use with our quasi-dense disparity
maps becomes prohibitive.

1.3. Overview

The paper is organized as follows. In Section 2, we in-
troduce an a contrario criterion [6] for validating a planar
model and for selecting the best model among single or
multiple planes. This criterion is similar to the one intro-
duced in [10] but does not rely on the segmentation con-
straint. Unlike classical model selection criteria [1, 17]
which are quite similar in nature, the proposed a contrario
criterion serves also as an automatic and parameter free val-
idation method. In Section 3, we propose an algorithm
using the a contrario criterion to search for the different
planes in a disparity map by means of a split & merge strat-
egy. At last, the experimental results in Section 4 support
the effectiveness of the proposed algorithm and its potential
use for interpolation, denoising, and vectorization of urban
DEMs.

2. A contrario plane validation

Most methods presented before lack of an automatic cri-
terion to decide when a group found by any algorithm ac-
tually is a plane. When a decision is made, this is usually
done by keeping the groups for which the size is superior to
a predefined threshold, which is difficult to tune in a univer-
sal manner. We propose here to use an a contrario frame-
work to make the decision automatic.

Following a similar methodology as the one done in [10],
a group can be considered as planar if the probability of
finding such a large number of points on a plane is very
low if the disparity map was random (background process).
In such a case, according to the Helmholtz principle, the
background hypothesis has to be rejected in favor of the de-
tection of a significant planar patch.

2.1. Data and background process

A (deterministic) disparity map z is a mapping where
each point X in a discrete grid D ⊂ R2 (image plane) is
associated to a disparity (or height) z ∈ R. z depends on the
observed object on the disparity map and can take any value
in [zmin, zmax] ⊂ R. It can also be seen as a realization of
the random process Z(X) defined as:

Definition 1 (Background process) A background pro-
cess is a finite process Z(X) ∼ U([zmin, zmax]), X ∈ D,
made of mutually independent variables.

Let N be the number of points in the discrete grid D. For
a given plane π and a group G of n data points, the a con-
trario criterion should consist of comparing the (random)
number K of points near π out of N points drawn from the
background process to the actual number k of points from G
near π. If the probability P[K > k] is small enough then the
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planar grouping π of the points in G cannot be simply ex-
plained by the background process and a meaningful plane
is detected.

However, such a comparison penalizes small groups
(even when they are planar) if one set the value of N . More-
over, the final goal of such a criterion is to detect not only
planes but planar facets which are very localized in the dis-
parity map. Therefore a good comparison should be made
on a region of the disparity map containing the tested data
point group. For the rest of this article, let R be a suffi-
ciently rich set of regions such that

∪
R∈R

R = D.

2.2. Meaningful planes

Definition 2 (NFA or Number of False Alarms) Let G ⊂
D be a group of points. Let R ⊃ G be a region containing
G, π be a plane and σz the z-tolerance to belong to π (σz

may be different at each point). The NFA of G according
to (R, π, σz) is defined as:

NFA(G,R, π, σz) ≡ NtestsP[K > k] (1)

where

• k =
∑
X∈G

11{|z(X)−zπ(X)|<σz(X)} counts the number

of points from G that are sufficiently close to π.

• K =
∑
X∈R

11{|Z(X)−zπ(X)|<σz(X)} is a random vari-

able counting the number of random points in R that
are sufficiently close to plane π,

• Ntests is the number of tests done to go through all the
planes in all the tested regions.

The probability P (K > k) is then the probability that a
random vector Z(R) with size given by R shows at least as
many points near π as what is observed by z(G). The NFA
is then a measure of how likely the closeness of z(G) to π
is to happen by chance.

Remark 1 In most of the methods described during the in-
troduction, the precision over the points σz is supposed to
be known. For approaches such as RANSAC, the choice of
planar groups directly depends on it and a bad value may
lead to disastrous results. In [15], Sabater gave an estima-
tion of the finest precision that can be expected at each point
when a disparity map is computed using a block matching
method. The parameter σz in the NFA computation can
therefore be fixed to the value given by [15].

However, in cases where the precision is unknown the
NFA gives a proper framework to choose this precision
parameter. The value of σz can be chosen as the one that
minimizes the NFA.

In the rest of the paper, we suppose that the precision σz

was chosen following this remark.

Similarly, the region R and the plane π can be chosen as the
ones minimizing the NFA:

Definition 3 The NFA of a group G ⊂ D is defined:

NFA(G) = min
R∈R,R⊃G

π∈ΠR

NFA(G,R, π) (2)

where ΠR is the set of all planes defined for region R.

Remark 2 In Definition 3, The region and plane that min-
imize the NFA are respectively the smallest region of R
containing G and the plane that best fits group G. There-
fore, a given group can be associated to a plane π and a
region R using the NFA.

Definition 4 (ε-meaningful plane) A group G is said to be
an ε-meaningful planar patch whenever NFA(G) < ε.

Proposition 1 Let S be the set of all the possible pairs
(R, π). If we consider a random data set following the back-
ground model, then the expected number of ε-meaningful
planes in S is less than ε.

Proposition 1 is of capital importance in a contrario
methods. It says that considering the definition of the
NFA, less than ε detections of a meaningful plane should
happen with a random set. The common use is then to set
ε to 1 which means that we should have less than one false
detection due to noise. The Proof of proposition 1 is given
in appendix A.

Number of tests The number of tests is given by counting
all possible region-plane configurations:

Ntests =
∑
R∈R

#ΠR (3)

The choice of the set of regions R is very important. On
one hand, a too small set may penalize some groups (e.g.
R = {D} is unfair to small groups). On the other hand, a
too large set makes it difficult for a group G to be meaning-
ful.

A simple choice for R is the set of all the rectangles in
D (oriented along the 2 main directions of the map). This
choice is similar to the one made in [3] for their a contrario
clustering method. This set can be reduced without loss of
precision by limiting it to rectangles with dyadic size (2 ×
2, 2 × 4, 4 × 4, etc.).

For the set of planes of a region R, we propose to use the
set given by all the triplets of points in R. The number of
tests then becomes:

Ntests =
∑
R∈R

#R · (#R − 1) · (#R − 2) (4)
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Probability of false alarms. Computing the probability
P[K > k] depends on the probability of a random point
from the background process to be near a given plane. If
the precision σz is the same for each point, then for any
plane π and ∀X ∈ R, we have:

P[ |Z(X) − zπ(X)| < σz ] ≤ 2 · σz

zmax − zmin
= p

In such case, P[K > k] can then be upper bounded by
the tail of the binomial law:

P[K > k] ≤ B(#R, k, p) =
#R∑
j>k

(
#R
j

)
pj(1 − p)#R−j

When the precision is not constant, P[K > k] can be
accurately approximated using the Hoeffding theorem [8]:

P[K > k] 6 e#Rω(η−µ,µ)

with,

ω(η, µ) = (µ+η) log(
µ

µ + η
)+(1−µ−η) log(

1 − µ

1 − µ − η
)

and

η =
k

#R
, µ = E[

K
#R

] =
1

#R

∑
X∈R

2
σz(X)

zmax − zmin

2.3. A contrario model selection

Due to its generic form, the NFA can be easily adapted
to test the validity of a configuration with several groups,
planes and regions. This will allow to choose between two
configurations: a simple one with one plane and a more
complicated one with several planes. We give here an ex-
ample for the case of 2 groups.

Following the same reasoning as in Remark 2 to choose
regions and planes, and using similar notations as before,
we can define the joint NFA for two groups G1 and G2 as:

Definition 5 (joint NFA)

NFA(G1, G2) ≡ N ′′
tests · P[K1 + K2 > k1 + k2) (5)

Note that the number of tests is not the same as before since
pairs of regions and planes are now tested:

N ′′
tests =

∑
R1∈R

R2∈R\R1

#ΠR1 · #ΠR2 (6)

To be able to do a proper comparison with a single group,
the NFA and the joint NFA have to be computed under
the same conditions. This means that G = G1

∪
G2, R =

R1

∪
R2, and σz should be the same for the NFA and the

joint NFA. In all that follows, we note NFA′(G,R1, R2)
the NFA that takes into account two regions for the back-
ground process. Note that in such case, the number of tests
for the NFA′ is changed to:

N ′
tests =

∑
R1∈R

R2∈R\R1

#ΠR1∪R2 (7)

The smallest value between NFA′ and joint NFA de-
termines the best configuration.

3. Plane search
In this section, we propose a heuristic based on the NFA

to find planes in disparity maps. Note that other heuristics
can be used in conjunction with the NFA as a validation
criterion. The algorithm we propose is two-step: first, a
topdown dyadic division is done until a good solution is
reached, then the resulting groups are merged to refine the
result. In both the division and the merging part, the NFA
is used as a decision criterion. The main advantage of this
method over [10, 7] is to rely only on the 3D information of
the points which avoids errors due to image segmentation.

3.1. Splitting step

Starting from a group containing all the points, we divide
it into two groups. The best configuration is then kept. If
the best configuration is the first group then stop. If it is the
division, then for each new group, we start a new division
and so on until a good configuration is reached.

To make the division, we chose to use an EM algorithm
[5], in order to find the best two normal distributions in the
maximum likelihood sense. The choice of normal distribu-
tions was made because a planar patch may also be seen as
a normal distribution with a low variance according to the
plane orthogonal direction.

The decision between one group or two groups is made
by following Subsection 2.3. Moreover, we chose to force
the division in the case where the main group is not mean-
ingful. To sum up, the one-grouped configuration is kept
when: {

NFA(G) < 1
NFA′(G,R1, R2) < NFA(G1, G2)

(8)

A summary of the whole splitting step is given by Algo-
rithm 1.

3.2. Merging step

Due to the dyadic division process, the final partition of
the points might not be optimal. Better configurations may
then be found by merging some of the groups. This merging
is done only on pairs of adjacent groups, because we are
looking for connected closed planes.
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Algorithm 1: Splitting step
Data:
G0, a group of points of D
Dmax, the maximal depth of the tree
Result:

Gfinal = {G1, . . . , GN} such that G0 =

N
[

i=1

Gi

begin1
G = {G0} is the set of all the groups2
G′ = ∅ the next set of groups to be tested3
Gfinal = ∅ is the set of validated groups4
D = 0, the current depth of the tree5
while D < Dmax do6

foreach G ∈ G do7
(G1, G2)←− EM algorithm(G)8
nfa←− NFA(G)9
nfa1←− NFA(G, R1, R2)10
nfa2←− NFA(G1, G2)11
if

`

nfa < 1
´

&&
`

nfa1 < nfa2
´

then12
add G to Gfinal13

else14
Add (G1, G2) to G′15

end16

end17
D = D + 118
if D < Dmax then19
G = G′, G′ = ∅20

else21
Gfinal = Gfinal

S

G′22
end23

end24

end25

The decision of merging or not is made with exactly
the same criterion as for the splitting. However, since two
groups may be first merged toghether or with a third one, a
merge order has to be set.

We introduce a contrast factor to decide the merge order.
This contrast factor is defined as:

F (G1, G2) =
NFA′(G12)

NFA(G1, G2)
(9)

The lower this contrast factor is the lower the NFA of a
single group is compared to the one of two groups. In other
words, the lower the contrast factor is the more likely it is to
have a configuration using a single group. A priority queue
is built using growing contrast factor (the lowest contrast
factor is the first).

Whenever groups G1 and G2 are merged, each pair of
groups including either G1 or G2 is removed from the pri-
ority queue, and in exchange the corresponding pair formed
with the merged group G12 = G1 ∪ G2 are added to the
priority queue. The complete merging process is shown in
algorithm 2. Its effectiveness is illustrated in Figure 1.

Algorithm 2: Merging step
Data:
G = {G1, . . . , GN}, where Gi ⊂ D
Result:
G′ = {G′

1, . . . , G
′
M} such that

[

G′∈G′

G′ =
[

G∈G

G

begin1
G′ = G.2
Q = ∅ is the priority queue of merges.3
foreach (G1, G2) ∈ G2 do4

if G1 ∩G2 are neighbors then5
add (G1, G2) toQ6

end7

end8
while #Q > 0 do9

(G1, G2) = arg minG,G′ F (G, G′)10
Remove (G1, G2) fromQ11
if

`

F (G1, G2) < 1
´

&&
`

NFA(G1 ∪G2) < 1
´

12
then13

The groups are merged14
Remove G1 and G2 from G′15
Add G12 = G1 ∪G2 to G′16
foreach17
k such that (G1, Gk) ∈ Q or (G2, Gk) ∈ Q
do

Remove (G1, Gk) and (G2, Gk) fromQ18
Add (G12, Gk) toQ19

end20

21

end22

end23

3.3. Possible improvements

When the number of planes is too large in a dispar-
ity map, dividing groups dyadically might be intensive or
might stop in a local minimum. A solution to that is to
roughly divide the disparity map into blocks before the
splitting process. The splitting step then becomes a lot eas-
ier. Moreover, the resulting oversegmentation can be easily
overcome by the merging step (see for instance Figure 1).

Another possible improvement is to add image infor-
mation to this algorithm. For instance, one could use the
line segments of the reference image (by using for instance
[21]). Indeed, the line segments might suggest separations
between different objects in the image. Therefore they
might be used to guide the divisions or to try other divisions
than the ones given by the EM algorithm.

4. Experimental Results
We tried our algorithm on some of the disparity maps

from the Middlebury database [16] with a constant preci-
sion parameter of 1 pixel (which is the quantification step
of the disparity maps). The results are given in Figure 2 and
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Figure 1. Toulouse’s St-Michel Jail (the red parts are unknown or non-planar). Top row: Planar patch detection on noisy ground truth
disparity. From left to right: ground truth, result of our algorithm after projection on planes, plane classification after splitting, plane
classification after merging, absolute value of the difference between the ground truth and our result (black=0 pixels, white = 0.017 pixels).
Bottom row: Planar patch detection on semi-dense stereo correlation results. From left to right: reference image (secondary image is
simulated as a deformation of this image with the ground truth disparity), result [15] (input of our algorithm), plane classification after split
& merge algorithm, absolute value of the difference between the ground truth and result of [15], absolute value of the difference between
the ground truth and our plane projection for [15] (black=0 pixels, white = 0.075 pixels).

Table 4. The disparity maps of these data sets are some-
times only made of planes (Venus, Sawtooth) and some-
times made of more complex structures. Extremely ir-
regular structures are rejected. If, however, structures are
smooth enough, they can be locally approximated by planes
up to the given precision and this is the answer of our algo-
rithm. Note that further extensions of our model selection
criterion are possible, which should distinguish for instance
quadrics from planes.

The piecewise planar approximation is not too simplis-
tic as shown by the error maps given in Figure 2 (e) and
the error mesurements of Table 4. The remaining error after
projection on the various planes seems to be mostly due to
the quantification step of the disparity maps. This explains
the oscillations of the errors. Each different period of os-
cillation corresponds to a different plane. Had the planes
been badly estimated, or some of the points been associated
to a wrong plane, more errors would be visible. On the an-
other hand, the obtained classifications do not seem to be
oversegmented. The various periods of oscillations seem to
correspond to one plane most of the time.

Our approach is robust to change of precisions and gives
a planar approximation at different scales (see Figure 4).
This is usually not the case of RANSAC based approaches
which tend to fail when the precision is not optimal.

We also tried our algorithm on a simulated stereo pair of
Toulouse’s St-Michel Jail. For this experiment, a subpixel
precision is expected. Two tests were performed: (i) We

Figure 3. Classification obtained with different precisions. From
left to right: precision=1 pixel, 85 planes detected; precision=2
pixels, 44 planes detected; precision=5 pixels, 23 planes detected.

added an additional Gaussian noise of variance 0.02 pixels
to the ground truth disparity. The results are given in Figure
1 and Table 4, column Toulouse. For this experiment, most
of the planes seem to have been detected. The error was
significantly reduced (Figure 1 (f)) and is mostly localized
around the edges (RMSE = 0.007 with edges). However,
the planes were estimated with a great precision (RMSE =
0.005 pixels without the edges).

The algorithm in [15] was used on a simulated low-
baseline stereo pair to obtain a disparity map with precision
0.024 pixels. After grouping with our algorithm and repro-
jection of the measured disparity data on the detected planes
we observe that the RMSE is reduced to 0.021 pixels (see
Table 1, column Toulouse2) which proves the correctness
of our planar approximation.

5. Conclusion
We presented an algorithm for optimally grouping 3D

point clouds into planar patches. Inspired from computa-
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(a) Reference image (b) Ground truth (c) Projection on planes (d) Planar classification (e) |(b)− (c)|
Figure 2. Results obtained with Middlebury’s ground truth datasets. From top to bottom, Venus, Sawtooth, Cones, Teddy and Books.
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Initial
variance(σ)

0.02 0.024 1 1 1 1 1

RMSE 0.005 0.021 0.29 0.29 0.95 1.15 1.01
Error> σ
(%)

1.8 - 0 0 3.9 6 3.4

Error>
2σ (%)

0.7 - 0 0 0.8 1.9 0.9

Table 1. Error measurements. First line initial: precision of the
ground truth. Second line: RMSE (`2 error). Third and fourth
lines: percentage of outliers.

tional gestalt theory [6], it allows the use of simple group-
ing laws to robustly detect simple patterns (planar patches
here), and to apply later these laws recursively (for instance
symmetry or similarity of planar patches) in order to obtain
more complex structures, like those proposed in Lafarge’s
dictionary [13], without making an a priori explicit list of all
possibilities. As opposed to the method proposed in [10, 7],
our algorithm do not rely on an initial segmentation which
can be error prone. The various parameters can be easily
set which makes it almost automatic. The ε value can be set
to 1 due to its statistical meaning and the precision over the
points can be either computed with a method similar to the
one of [15] or estimated as the one minimizing the NFA.

Our experiments show that the proposed approach is ca-
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pable of detecting a reasonable piecewise affine decomposi-
tion even in complex scenes (as opposed to RANSAC based
approaches). Moreover, the corresponding regularization
reduces the error of punctual disparity measures.

Several applications and improvements are envisaged.
The piecewise planar grouping can be used as a basis for
interpolation and vectorization algorithms. However, these
applications will require a stronger use of luminance (as a
post processing refinement of the boundaries between sev-
eral planes).
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A. Proof of Proposition 1

Let’s note S the random variable defined as:

S =
∑

(R,π)∈S

χ(R,π)

where, χ(R,π) = 11(R,π) is ε-meaningful. Using the linearity
of the expectation operator one has:

E[S] =
∑

(R,π)∈S

E[χ(R,π)] (10)

Then, using definition 2 we can write: E[χ(R,π)] = P (K >
k(ε)) 6 ε

Ntests
. At last using the definition of the number

of tests given in 2.2, and substituting it in equation 10, we
obtain the result:

E[S] 6
∑

(R,π)∈S

ε

Ntests
= Ntests ·

ε

Ntests
= ε (11)
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[22] W. Zhang and J. Kosecká. Nonparametric estimation of mul-
tiple structures with outliers. In ECCV 06, pages 60–74,
2006. 1

[23] M. Zuliani, C. S. Kenney, and B. S. Manjunath. The multi-
ransac algorithm and its application to detect planar homo-
graphies. In ICIP, 2005. 1

8


