Introduction to Programming

Final examination on machine

G1: clement.riu(at)enpc.fr G2: marie.haghebaert(at)inrae.fr G3: thomas.belos(at)enpc.fr
G4: abderahmane.bedouhene(at)enpc.fr G5: youval.vanlaer(at)enpc.fr G6: pascal.monasse(at)enpc.fr
GT: thomas.daumain(at)enpc.fr

14/01 /22

1 Instructions

1.1 Dinosaur Game

The goal is to build a simplified version of the Dinosaur Game, a basic game included in the Google Chrome
web browser. A dinosaur has to avoid obstacles moving its way by jumping. Our dinosaur will be represented
by a rectangle and the obstacles are balls. The game is registered so that it can be viewed backward and
forward after the user lost.

Important: All methods of classes take a time tO (integer) as parameter.

It is more important to deliver a clean code (commented and correctly indented)
that compiles than answering all questions. For that, check after each step that the
build works. At the end, create an archive with source code and file CMakeLists.txt
to upload on educnet.

Imagine++ dl int keyboard() {
Event e;
do {
meo h hFloor getEvent (0,e);
if (e.type — EVI _KEY ON)
thO ball motion at speedBall return e.key;
xDmo altltud . -~ } while(e.type!=EVI NONE);
hBall WBan * return 0;
JI II LI II] /N Y }
“floor motion |

Figure 1: Blue jumping dinosaur and red balls. Altitude is variable (when the dinosaur jumps), computed
question 4. The function keyboard returns the pressed key code (without waiting), 0 if none. You can
copy-paste it from Practical#8.

1.2 Happy jumping dino

1. Create a new project and a basic main function opening a window. In a separate file dino.h write
the constants: wDino—=20 and hDino=30 the dimensions of the dinosaur, xDino—=25 the abscissa of the
dinosaur (fixed, the decor is moving), w x h=512 x 5xhDino the window dimensions, hFloor=h-hDino
the base ordinate of the dinosaur when not jumping.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Write a class Dino and its constructor. It only needs an integer t storing the time of the last jump
start. A jump lasts for a constant time tJump=20 and reaches a height hJump=3*hDino (yes, the
dinosaur is heavy but is a high jumper!). Initially, the dinosaur is not jumping, so we put its t as
sufficiently negative.

Method jump registers that a jump starts. Method jumping indicates if the jump is still in process.

Method altitude computes the altitude above the floor (0 if not jumping). According to Newton’s
gravitation law, it has a parabolic evolution given by equation

to—t\"
h = hJump * (1 — <1 - QtJump)) . (1)

(Proof: tg =t = h =0, tg =t + tJump/2 = h = hJump, tg =t + tJump = h = 0)

In a separate file, define a class Recorder. It has a field of type Dino. First this class will be used to
play the game, the recording part will be coded in Section 1.4.

Method Recorder: :display clears the window and draws the dinosaur at the current time.

Method Recorder: :action calls the function keyboard: if the space bar key is pressed, the dinosaur
is set to start jumping but only if the last jump has finished.

In the main, let the user make the dino jump on demand.

Recorder: :display draws the floor, composed of disjoint rectangles of width wBrick=16 and height
10 pixels. The floor is shown moving to the left (as dinosaur moves to the right), the bricks are shifted
1 pixel at each time increment.

1.3 Life becomes harder with moving balls

A ball has diameter hBall=3/4 hDino and will be moving with a constant speed speedBall=8 pixels
per time increment. It stores a time and abscissa for an initial position. Write class Ball in dino.h
and a constructor, initially at abscissa 1000 for time 0.

Ball::set records a time and abscissa as initial position.

Ball::center returns the abscissa of its center at current time. It is based on initial position and
speed, moving to the left (toward the poor dino).

Ball::relnit is used to recycle a ball that was dodged by the jumping dino if it went out of screen:
it restarts at abscissa xBase (a method parameter) plus a random gap between one and three times
tJump*speedBall pixels, but it must appear to the right, so that the result is set to at least w (the
window width). The function returns true if recycling took place.

Add an array of nBalls=3 balls (nBalls is a constant) in class Recorder. In the constructor of the
class, the ball are regularly spaced from abscissa w with a space of tJump*speedBall pixels.

Insert the display of balls in Recorder: :display and call reInit on all balls in method action. The
parameter xBase of reInit is the position of preceding ball.

In the main, let the user play the game with a span of 20 milliseconds for each time increment.

Add a method Dino: :crash taking a ball and indicating whether the ball intersects the rectangle of
the dinosaur. The squared distance to the ball center can be computed

d? = max(0, h — hBall/2)? + max(0, xDino — ¢)? 4+ max(0, ¢ — xDino — wDino)?, (2)
with h the altitude of the dino and ¢ the abscissa of the ball center.

Add method Recorder: : crash indicating if the dino crashes with one of the balls. Insert the crash
test in the game, letting it finish when it happens.

19.

20.

21.

22.

23.

24.

1.4 Recorder replay

Add a structure Action, a triplet (¢, x,7) with ¢ the time, x the abscissa and ¢ the ball number. An
action is either a dino jump start (then = and i are set negative) or a ball reinitialization.

The recorder will store all actions during the game. Insert a dynamic array actions in Recorder
reserving initially the space for one action. Modify constructor and destructor accordingly. The
management of the array follows this principle: nmax actions are initially allocated, but n = 0, the
actual number of stored actions.

Write method Recorder: :record storing a new action: if n=nmax, double nmax and reallocate the
array to leave space for the new action.

In Recorder: :action, store actions if they happen (jump and reinitialization of a ball). In the con-
structor, record also actions for the initial positions of the balls.

Write Recorder: :set taking a time and resetting the game at this time: find the preceding stored
jump in recorded actions, and for each ball the preceding reinitialization.

When the game is finished, let the user visualize it back and forth by arrow keys.

