
Introduction to Programming

�

Midterm examination on machine

�

G1: clement.riu(at)enpc.fr G2: belos.liza(at)gmail.com G3: pascal.monasse(at)enpc.fr
G4: emanuele.concas(at)enpc.fr G5: thomas.daumain(at)enpc.fr G6: laura.echeverri-guzman(at)enpc.fr

G7: niloufar.fulami(at)aol.com

�
28/10/22

�

1 Instructions

1.1 Bézier Curves

A cubic Bézier curve is a parametric curve used a lot in computer graphics. The curve P (s), (0 ≤ s ≤ 1), is
parameterized by 4 control points P0 . . . P3:

P (s) = (1− s)3P0 + 3(1− s)2sP1 + 3(1− s)s2P2 + s3P3. (1)

Note that P (0) = P0 and P (1) = P3 but P1 and P2 are not on the curve in general. Our program explores
the various shapes the curve can take. Without loss of generality, we will assume P0 = (0, 0) and P3 = (1, 0).

It is more important to deliver a clean code (commented and correctly indented)
that compiles than answering all questions. For that, check after each step that the
build works. Write in comments of the code the question number. At the end, create
an archive with source code and file CMakeLists.txt to upload on educnet.

Initial Bezier curve Two Bezier curves after motion of the control
points. Notice the cusp in the right image.

bool t rack (i n t& x , i n t& y) {
Event e ;
whi l e (t rue) {

getEvent (−1 , e) ;
i f (e . type == EVT_BUT_OFF)

return f a l s e ;
i f (e . type == EVT_MOTION) {
x = e . pix [0] ;
y = e . pix [1] ;
r e turn true ;

}
}

}

Function used in question 15.

1.2 Point structure

1. Create an Imagine++ project. In a file separate from the one containing your main function, define
the structure point taking coordinates of type float .

1

2. Define the operators for addition and subtraction of two points.

3. Define the operators for multiplication and division by a float . For multiplication, define the two
operators: float *point and point*float .

4. Define a function affine taking a point and applying the similarity P → a ∗ P + S with parameters
a the zoom factor and S a point (shift). It will be used to map standard coordinates of the curve to
pixel coordinates for drawing.

5. Define a function rotate that rotates a point P around a center C with an angle α expressed in
degrees. Functions cos and sin from #include <cmath> take their argument in radians.

1.3 Bézier curve

6. In a new separate file, define a structure Bezier storing an array of four points.

7. Write a function initBezier that returns a new curve with P1 = (1/3, 0) and P2 = (2/3, 0).

8. To draw the curve, we will zoom and shift the coordinates for display. The window will be square with
dim×dim pixels, point P0 will be displayed at (dim/3,dim/2) and P3 at (2dim/3,dim/2). Values of s
will be discretized uniformly at npoints= 100 values. Define the adequate constants, dim= 512.

9. The function draw takes a curve and displays it: draw a blue line from P (s) to P (s+ δs) (use affine
to apply the transform) with δs = 1/npoints.

10. Add in the previous function the display of the 4 points (red for extremities, green for P1 and P2),
disks of radius= 3 pixels.

11. Make the main function display an initial Bezier curve and wait for a click to continue.

1.4 Animation

12. Write a function animate in the main file that applies 100 iterations of rotation around P0 of P1 =
(3/4, 0) and of P2 = (2/3, 0) around P3. At iteration i, P1 rotates of i ∗ 10◦ and P2 of i ∗ 3◦. After each
display, a small pause is observed. At the end, the function should wait a point click.

13. Enrich the function draw by linking the control points by lines in gray color of intensity 200. This
should be done at the beginning of the function, so that it does not overlap with the rest.

1.5 User interaction

14. Write a function selectPoint, taking a curve and waiting until the user clicks on P1 or P2. A right
click exits and returns false , whereas a left click stores the pixel coordinates of the click and the point
number selected. While the left click occurs elsewhere, it continues waiting for a click. Be careful
that the click coordinates are in pixels while the points are around the interval [0, 1], so that an affine
transform must be applied to compare.

15. Write a function interactive. It displays an initial Bézier curve and loops undefinitely until selectPoint
returns with a right click. Inside the loop, it lets the user move the selected controlled point and dis-
plays interactively the curve. The function track (see figure) is used to detect a mouse motion or the
mouse button release. In case of motion, the shift from the previous position in pixels is applied to the
control point. Be careful that the scale of display is not the same as the point coordinates.

16. Bonus: (i) Move the interactive control in a separate program (within the same project CMake-
Lists.txt), and (ii) create a library for the common functions of the two programs.

2

