Introduction to Programming

— Practical #1 —

1 Programming environment

1.1

1.

Hello, World !

Connection :

Log in on your machine.

Project :

Download archive Tpl_Initial.zip from the course web page, decompress it. The file CMakeLists.txt
describes the project. The line of interest to us is the following :

add _executable (Tpl Tpl.cpp)

It indicates that our program will be called Tp1 (Tp1l.exe under Windows) and that the source code to build
it is the file Tp1.cpp.

Qt Creator W is the programming environment that we will use, it has the advantage to work on all main
platforms (Linux, Windows or Mac) and to control directly CMake. ! To start, launch Qt Creator and choose

,2 that

“Open Project” to fetch the file CMakeLists. txt. Look at the window bottom tab kb
should print a lot of messages : it is the result of the file read and its interpretation by CMake.

. Programming : insert a comment line with your name at the top of file Tp1.cpp. Comments are introduced

with // and go until the line end. They are ignored by the compiler, but useful for the programmer. Insert
then the command

cout << "Hello" << endl;

on a line before return 0; in file Tpl. cpp.

. Generation : Push the hammer button at bottom left to generate the program. Look in tab 4 “Compile

Output”, it says it created the file Tpl.cpp.o. Check with the file explorer (outside Qt Creator) that the
file is indeed present in the “build” folder. Observe that the program Tp1 is also there.

. Ezxecution :

(a) Launch the program with the green arrow in Qt Creator, observe the result in tab 3 “Application Output”.

(b) Check that we created an independent program that we can launch from the command line :
— Open a terminal (under Windows : Start menu, type the command cmd)
— In the terminal, type the command : "cd C:\...\build-Tpl..."
(learn to take profit of automatic completion with tabulation key TAB, just above Caps lock). Under
Linux and Mac, the path is different, and replace all \ with / to delimit folders.
— Check the presence of Tpl.exe or Tpl with the command "dir" (Windows) or "1s" (Linux).
— Type "./Tp1".

6. Compress :

With a right mouse click on folder Tp1, build a compressed archive Tpl.zip (or Tpl.7z if proposed). Such
an archive, comprising all files necessary to compilation, will be the format used to upload your exercises
and practical session returns under Educnet.

Note that with CMake we have two folders :

— The source folder containing files Tpl.cpp and CMakeLists.txt;

— The build folder, with name chosen by Qt Creator.

1. Most other environments, such as Visual Studio (Windows) and Xcode (Mac), do not know CMake, and we must use beforehand
CMake to convert into a native project for the environment.
2. If you do not see it, you can display it with the small arrow at the right of the tabs

1.2

The most important one is the first, since the second can always be generated again with CMake. Send
your instructor only the source folder, the build will be done on his machine. Your build folder is useless on
another machine if its system is not the same. When you have finished a project, do not hesitate to clean
up by removing your build folder, but keep cautiously your source folder, it is the result of your hard work.
Though CMake allows using the same folder for both, it is better to avoid it, to separate clearly sources and
automatically generated files. To understand a little how these tools coordinate, you can read Appendix C
of the lecture notes.

The precious folder containing your work is the source folder, Tpl_Initial. The dis-
posable one is the build folder, build-Tpl_Initial-....

. Check that everything could be restarted from scratch : quit Qt Creator, erase your source and build folders,

extract the source folder from your archive; if a file CMakeLists.txt.user remains, it was created by Qt
Creator, remove it before launching Qt Creator and opening the project.

First errors

You will make many, ? it is perfectly normal. Let’s get used to it right now.

1. Modify the program :

Modify the program by changing for example the displayed sentence.

(a) Test a new generation/execution. Check that Qt Creator saves the file automatically (or proposes to save
it) before generating.

’Launching directly an execution saves and builds automatically.

Knowing that, the hammer tool may seem useless. However, it is good when coding to check simply
compilation very frequently, even before taking care of execution because there is nothing to observe yet.

2. Compilation errors

Provoke, observe and learn to recognize some compilation errors :
(a) includ instead of include
(b) iostrem instead of iostream
) Forget the ; after std
d) inte instead of int
) cou instead of cout
) Forget the double quotes " ending the string "Hello_ ... "
(g) Add a line i=3; before return.

Talking about errors, it is useful to discover that :

Double-clicking on an error message (Tab 1 “Issues”) shows in the editor the code
line where it occurs.

Note that tab 1 is only an automatic and clickable extract of tab 4, the full error message is found in tab 4.
Sometimes, the automatic extraction may have defects and the error message in tab 1 is not clear since
incomplete.

. Linker errors

It is a bit early to have the linker fail,* but it will happen at some point. It is still necessary to know the

difference between linker and compiler errors. In general, the linker will notify an error if it does not find a

function or some variables because some object file or a library is missing. It is also an error if it finds twice

the same function. ..

(a) Add a line £(2) ; before return and build. It is for now a compilation error (the compiler does not know
what f designates).

(b) Fix the compilation error by adding the line (for the moment "magic")
void f(int i); before the line with main. Build the program : the linker complains about the absence of
the function f () used by main().

(¢) Remove now the call to f in main(). Everything works again. Rename main as main2. The absence of
function main will be noticed by the linker, and it will refuse to build the program.

4. Indents :

With all these changes, the code may not correctly “indented” anymore. It is still essential for a good
understanding and to spot some parenthesis error, curly brace, etc. The menu Edit/Advanced includes an
option to reindent automatically.

3. Even the expert programmer will make some.
4. Tt will happen more often when we separate our source in several files.

To spot errors, always indent. Ctrl4+I = indent the selected zone. Ctrl+A,Ctrl+I =
indent all file.

5. Warnings of the compiler

Modifying the main(), provoke some warnings : >

(a) int i;
i=2.5;
cout << i << endl;

Execute to see the result.

(b) int i;
i=4;
if (1i=3) cout << "hello"<< endl;

Launch!

(¢) Add exit; as first instruction of main. Trying to call a function without arguments can happen (and
does nothing)! Launch to see. Correct by putting exit (0); (The function exit() ends the program at
once!)

Some warnings are not not meaningful (false positives) and are not programmer errors. The problem with

not correcting them is that they can drown the true positives, you should thus try to fix all of them.

It is advised not to leave warnings in your code! Correct them as they appear.
A compiler option can even propose to consider them as errors and prevent the
compilation to go through!

1.3 Debugger

Knowing how to use the debugger is fundamental. It should be the first reflex in front
of an incorrect program. It is a true investigative tool, simpler and more powerful than
stuffing the code with additional instructions to spy its run.

1. Type the following function main.

int main ()

{

int i,j,k;
i=2;
j=3*i;
if (j==5)
k=3;
else
k=2;
return O0;

}

2. To use the debugger with Qt Creator, we need to compile in Debug mode. The mode is chosen by clicking

. . . .
on the small terminal B8 on top of the green start triangle. Observe that the variable CMAKE_BUILD_TYPE
takes then value Debug in tab “Projects”.
3. Launch the program “under the debugger control” with the green triangle button with superimposed bug.
The program executes but nothing seems to happen.
4. Put a “breakpoint” by clicking on the left margin at the level of line i=2; then relaunch the debugger.
5. Advance in “Step over” with key F10 or the corresponding button and observe the values of variables (in

the special window on the top right or by placing the mouse cursor without click on the variable in source
code).

6. Place a second breakpoint and note that F5 continues the program until the next reached breakpoint.

7. Add i=max(j,k); before the return. Use “Step into” or F11 or the corresponding button when the cursor
is on this line. Note the difference with F10 : max is a function call and we indicate the debugger we want
to follow what happens inside.

5. Warnings are not errors : they may be present to warn the programmer about possible mistakes, but the sense for the compiler
is clear. Hence, depending on compiler options, the warnings may not appear.

Disassembler {(main) - Qt Creator v A~ e

File Edit Build Debug Analyze Tools Window Help
T & B =3 (Disassembler (main) | X Line: 19, Col: 1 il Name value | Type
- @ TestQtCreator 11 0x555555554aaf <+0x0025> 48 89 cb mov %rax,%rsi a 2 int
S CMakeLists.txt 12 Ox555555554ab2 <+0x0028> 48 89 d7 mov %rdx,%rdi b 1 int
o & Testquoreator | 13 ©x555555554ab5 <+0x082b> e8 96 fe ff ff callq ©x555555554950 c 0 nt
- <_ZNSolsEPFRSoS_E@plt>
& main.cpp
14 9 [1] a=2;
13 0x555555554aba <+0x0030> c7 45 f4 02 00 00 00 movl $0x2,-0xc(%rbp)
® 16 10 [1] b=1;
7 0x555555554acl <+0x0037> c7 45 f8 01 00 60 00 movl $0x1,-0x8(%rbp)
18 11 [1] c=3xa+b;
= 19 bx555555554ac8 <+Qx003e> 8b 55 f4 mov -0xc (%rbp) ,%edx
20 0x555555554ach <+0x0041> 89 do mov %edx ,%eax
21 0x555555554acd <+0x0043> 01 co add %eax,%beax
22 Ox555555554acf <+0x0045> 01 c2 add %eax ,%edx
23 0x555555554adl <+0x0047> 8b 45 f8 mov -0x8(%rbp) ,%eax
24 0x555555554ad4 <+0x004a> 01 do add %edx ,%eax
25 0x555555554ad6 <+0x004c> 89 45 fc mov %eax,-0x4 (%rbp)
—— 26 12 [1] return @;
OpenDo.. ~| B = 27 0x555555554ad9 <+0x004f> b8 00 00 G0 0O mov $0x0,%eax
T CMake...s.txt 28 13 [11 %
|:_| M oisas...main) 29 Ox555555554ade <+0x0854> c9 leaveq
PR main.cpp 30 0x555555554adf <+0x0055> c3 retq —
Views
b Level | Function File Line Name Value '
[1 main main.cpp 1" > rax 0000555555755020
3 > rbx 0000000000000000
> rex 00007 ffff7769224
Ll . Type cate (C < ssue 2 Search Results 3 Application Output 4 Compile Output 5 Debugger Console & General Mi

FIGURE 1 — Qt Creator showing machine code and registers.

8. At last, see how machine code looks like : execute until some breakpoint then activate menu Debug/Operate by Inst
We can also in the same menu see the registers of the microprocessor. It can happen we fall in the window
“machine code” unwillingly when we debug a program for which we do not have the source file anymore.

This display is actually very useful to the programmer to check what the compiler produced and check it
optimizes well.

9. The registers are visible by going in the menu Window then Views. See Figure 1.

F5 = E = Debug
Useful keys : F10 — EE — Step over
¥z
F11 =— ~ = Step inside

1.4 If there is time left

Download the supplementary program Tpl_Final.zip on the course web page
(http://imagine.enpc.fr/ “monasse/Info)
play with it... and complete it with the right rebounds!

1.5 Install Imagine++ at home

Go to http://imagine.enpc.fr/“monasse/Imagine++. Install on your laptop computer and try the supple-
mentary program with Qt Creator.

http://imagine.enpc.fr/~monasse/Info
http://imagine.enpc.fr/~monasse/Imagine++

	Programming environment
	Hello, World!
	First errors
	Debugger
	If there is time left
	Install Imagine++ at home

