
PROGRAMMING FOR. . .

2� engineering students
2� . . . or secondary school pupils

2� beginners
2� . . . or geeks

Lectures of Ecole des Ponts ParisTech - 2023/2024
Renaud Keriven and Pascal Monasse
IMAGINE - École des Ponts ParisTech
pascal.monasse@enpc.fr

Electronic version and programs:
http://imagine.enpc.fr/~monasse/Info/

http://imagine.enpc.fr/
mailto:pascal.monasse@enpc.fr
http://imagine.enpc.fr/~monasse/Info/

“Do not consider your computers as living entities. . .
They don’t like it”

• “This d*d computer does not do what I want!”

• “Indeed. . . It does what you asked it to!”

CONTENTS CONTENTS

Contents

1 Preamble 7
1.1 Why learn programming? . 9
1.2 How to learn? . 10

1.2.1 Language choice . 10
1.2.2 Choice of environment . 10
1.2.3 Principles and advice . 11

2 Hello, World! 13
2.1 The Computer . 15

2.1.1 The microprocessor . 15
2.1.2 The memory . 17
2.1.3 Other Components . 18

2.2 Operating System . 20
2.3 The Compilation . 21
2.4 The Programming Environment . 22

2.4.1 File Names . 22
2.4.2 Debugger . 23

2.5 The bare minimum . 23
2.5.1 To understand the practical session 23
2.5.2 A bit more. 25
2.5.3 The debugger . 25
2.5.4 Practical Session . 25

3 First programs 27
3.1 Everything in main()! . 27

3.1.1 Variables . 27
3.1.2 Tests . 31
3.1.3 Loops . 33
3.1.4 Recreations . 34

3.2 Functions . 36
3.2.1 Return . 39
3.2.2 Parameters . 40
3.2.3 Reference passing . 41
3.2.4 Scope, Declaration, Definition . 43
3.2.5 Local and global variables . 44
3.2.6 Overload . 45

3.3 Practical . 46
3.4 Reference Card . 47

CONTENTS CONTENTS

4 Arrays 49
4.1 First arrays . 49
4.2 Initialization . 51
4.3 Specifics of arrays . 52

4.3.1 Arrays and Functions . 52
4.3.2 Assignment . 54

4.4 Recreation . 55
4.4.1 Multi-balls . 55
4.4.2 With shocks! . 57
4.4.3 Shuffling letters . 59

4.5 Practical . 61
4.6 Reference card . 61

5 Structures 65
5.1 Reminders . 65

5.1.1 Classic mistakes . 65
5.1.2 Original mistakes . 66
5.1.3 Advice . 67

5.2 Structures . 67
5.2.1 Definition . 67
5.2.2 Usage . 68

5.3 Recreation: Practical . 70
5.4 Reference card . 70

6 Several Files! 73
6.1 Separate Files . 74

6.1.1 Principle . 74
6.1.2 Advantages . 75
6.1.3 Usage in another project . 76
6.1.4 Header files . 76
6.1.5 Don’ts. 79
6.1.6 Implementation . 79
6.1.7 Mutual inclusions . 79
6.1.8 Inclusion path . 80

6.2 Operators . 81
6.3 Fun: Practical continued and finished . 82
6.4 Reference card . 82

7 The memory 85
7.1 Call of function . 85

7.1.1 Example . 85
7.1.2 Call stack and debugger . 87

7.2 Local variables . 89
7.2.1 Parameters . 89
7.2.2 The stack . 89

7.3 Recursive functions . 90
7.3.1 Why does it work? . 90
7.3.2 Efficiency . 91

2

CONTENTS CONTENTS

7.4 The heap . 92
7.4.1 Limits . 92
7.4.2 Variable size arrays . 93
7.4.3 Explanation (or trial of) . 94

7.5 The optimizer . 94
7.6 Assertions . 95
7.7 Bidimensional arrays . 95
7.8 Reference card . 96

8 Dynamic Allocation 99
8.1 Bidimensional arrays . 99

8.1.1 Principle . 99
8.1.2 Limitations . 100
8.1.3 Solution . 101

8.2 Dynamic allocation . 102
8.2.1 Why does it work? . 102
8.2.2 Classical errors . 103
8.2.3 Consequences . 104

8.3 Structures and dynamic allocation . 105
8.4 Loops and continue . 108
8.5 Practical . 109
8.6 Reference card . 109

9 First objects 113
9.1 Philosophy . 113
9.2 Simple example . 114
9.3 Visibility . 115
9.4 Example with matrices . 116
9.5 Case of operators . 118
9.6 Interface . 120
9.7 Protection . 121

9.7.1 Principle . 121
9.7.2 Structures vs Classes . 123
9.7.3 Accessors . 123

9.8 Practical . 123
9.9 Reference card . 125

10 Constructors 129
10.1 The problem . 129
10.2 The solution . 130
10.3 General case . 131

10.3.1 Empty constructor . 131
10.3.2 Several constructors . 132
10.3.3 Array of objects . 133
10.3.4 Field of object type . 134

10.4 Temporary objects . 135
10.5 Practical . 136
10.6 Constant References . 136

3

CONTENTS CONTENTS

10.6.1 Principle . 136
10.6.2 Constant methods . 137

10.7 Reference card . 140

11 Destructor 145
11.1 Destructor . 145
11.2 Destructors and arrays . 147
11.3 Copy constructors . 147
11.4 Assignment . 148
11.5 Objects with dynamic allocation . 150

11.5.1 Construction and destruction . 150
11.5.2 Problems! . 151
11.5.3 Solution! . 152

11.6 Reference card . 154

12 Strings, files 159
12.1 Strings . 159
12.2 Files . 161

12.2.1 Principle . 161
12.2.2 String and file . 162
12.2.3 Objects and files . 163

12.3 Default values for parameters . 164
12.3.1 Principle . 164
12.3.2 Usefulness . 164
12.3.3 Frequent errors . 165

12.4 Accessors . 165
12.4.1 Reference as return type . 165
12.4.2 Usage . 166
12.4.3 operator() . 166
12.4.4 Overload and constant method . 167
12.4.5 Inline functions . 168

12.5 Assertions . 169
12.6 Enumerated types . 170
12.7 Reference card . 170

13 Parameterized functions and classes (templates) 175
13.1 template . 175

13.1.1 Principle . 175
13.1.2 template and files . 176
13.1.3 Classes . 177
13.1.4 STL . 179

13.2 Bitwise operators . 181
13.3 Conditional values . 183
13.4 Loops and break . 183
13.5 Static variables . 184
13.6 const and arrays . 185
13.7 Reference card . 186

4

CONTENTS CONTENTS

A Practicals 193
A.1 Programming environment . 193

A.1.1 Hello, World! . 193
A.1.2 First errors . 195
A.1.3 Debugger . 196
A.1.4 If there is time left . 198
A.1.5 Install Imagine++ at home . 198
A.1.6 Launching the program from the command line 198

A.2 Variables, loops, conditions, functions . 199
A.2.1 First program with functions . 199
A.2.2 First program with Imagine++ . 200
A.2.3 Tennis . 202

A.3 Arrays . 204
A.3.1 Text Mastermind . 204
A.3.2 Mastermind in graphics mode . 206

A.4 Structures, Separate Files . 208
A.4.1 Part 1: Single file . 208
A.4.2 Reorganization, suns galore . 209
A.4.3 A third program: Duel . 211
A.4.4 Help . 212
A.4.5 Physics . 213

A.5 Images . 216
A.5.1 Allocation . 216
A.5.2 Static arrays . 216
A.5.3 Dynamic arrays . 217
A.5.4 Load a file . 217
A.5.5 Functions . 218
A.5.6 Structure . 218
A.5.7 Final clean-up . 219

A.6 First objects and fractals . 220
A.6.1 Sierpinski triangle . 220
A.6.2 A class rather than a structure . 221
A.6.3 Change the implementation . 221
A.6.4 The snowflake . 222

A.7 Tron . 223
A.7.1 Snake . 223
A.7.2 Tron . 224
A.7.3 Graphics . 224
A.7.4 Make the code great . 225

B Imagine++ 227
B.1 Common . 227
B.2 Graphics . 228
B.3 Images . 229
B.4 LinAlg . 230
B.5 Installation . 230

5

CONTENTS CONTENTS

C Compiler, CMake, Linker, Qt. . . Help! 233
C.1 Compilation . 233

C.1.1 Compiler and linker . 233
C.2 With command line . 235
C.3 Make and CMake . 235
C.4 Usage of an IDE . 237
C.5 Configuration of Qt Creator . 238

C.5.1 CMake and Qt . 238
C.5.2 Kit . 238
C.5.3 Project . 239

D Final reference card 241

6

1. Preamble

Chapter 1

Preamble

Note: This clumsy first chapter corresponds to the environment when this course
started in 2003, a time where computer science had a bad reputation at Ecole des Ponts.
We keep it as testimony of what was required to entice students not to neglect com-
puter science. If we go beyond the simplicity of this redaction (fortunately, the success
of Star Wars endures through the years), the analysis and advice that follow are still
current.

—

(This first chapter tries mostly to motivate engineering students in their learning of pro-
gramming. Younger people who would happen to read this to learn programming are probably
already motivated and can skip directly to next chapter!)

—

• The Master Programmer:1 “Do not worry! Computers are stupid! Programming is
thus easy.”

• The Apprentice Programmer:2 “Master, computers are indeed only machines and
mastering them should be possible for me. Still. . . Their lack of intelligence
makes it difficult for me to have them do what I want. Programming requires
precision and the least error is punished by an undecipherable message, a bug3

or even a crash of the machine. Why be so. . . precise?” Programming makes someone
maniac! Besides, programmers are all maniac. And I don’t want to turn like that. . .

• M.P.: “Precision is mandatory to communicate with a machine. It is the human’s
task to adapt. You must persevere. In return, you will become its master. Rejoice.
Soon, you will create these obedient creatures programs are.”

• A.P.: “Fine, Master. . . ” What a lunatic! He takes himself as God almost. The truth is
he talks to machines because he doesn’t know how to talk to people. He compensates with
his computers his lack of human contact. The typical programmer. . . Only big spectacles
and greasy hair are missing.4 “Master, I am not sure I wish this. I am not able to

1Please allow this term openly Lucasian (George Lucas was the inventor of Star Wars, before it was
sold to Disney). It seems more appropriate that the usual Guru. We are really talking about a know-how
to transmit from Master to Apprentice and not a sect. . .

2The young Padawan, thus, for those in the know. . .
3Our first term in the programmer’s vocabulary. You will meet others, it is important to get familiar

with them.
4Any resemblance to real persons, etc.

1. Preamble

do it. Do not take it badly, but I am much better in mathematics! Moreover, what
will programming bring me?”

• M.P.: “The real problems you will face, you will not be able to solve always with
mathematics only. Programming you will need!”

• A.P.: “I will try. . . ” I wonder if he is right! Surely, he is a failure in math. That must be
the explanation!

• . . .

—

Let’s leave here this dialog, as much caricatural as clumsy. It exposes still clearly
the situation. Let’s sum up:

• For the one who knows, programming:

– is easy.

– is necessary.

– is a creative and fun activity.

• For the one learning, programming:

– is difficult.

– is useless.

– is an ungrateful activity that promotes self-containment.5

In the case the student is an engineer, we can complete:

• For the instructor, learning to program:

– should be simple and quick for engineering students.

– is more useful than learning more math.

• For the student, programming:

– is a task for “technicians”6 that others will take care of.

– is not as noble as mathematics, in short, it is not worthy of the student.

Actually, both are wrong:

• The instructor:

– does not realize the students have an advanced level in math because they
have practiced them for more than ten years, and it will take time to learn
even the basics of programming. Time. . . and practice, since, if program-
ming is actually easy compared to what the students know in math, it re-
quires a different way of thinking and much personal work in front of the
machine.

5Using a computer to program has the same bad press as playing video games. Still, programming
is often a team work.

6With all the subtext this term means for the student

8

1. Preamble 1.1. Why learn programming?

– forgets he learned often alone, programming simple and playful things.7

The students must therefore be drawn toward programming by the playful
side and not the same old examples.8

• The student:

– does not realize that to know programming will be useful. It is however a
basis that comes again in all languages and even modern software.9 Later,
considered as “the young one” hence the less allergic to computers, the stu-
dent will be tasked on top of the first job with building a few little programs.

– is easily inclined to despise programming. It is simpler to learn a new branch
of mathematics than to make the effort to acquire a new mindset.

As should be clear, it is at the same time easy and difficult to learn programming.
For the engineer, it will take some effort and motivation: mostly to keep the math skills
on the side and retrieve the taste for basic things. For the secondary school pupil, moti-
vation and taste for effort will be present, but there will be a few bases of arithmetic to
learn also. As announced in the title page of this course, secondary school pupils and
engineers are at the same level to learn programming. Moreover, it is the same for the
beginner and the geek. Let us explain: the geek has today so many things to do with
the computer, knowing games, internet, graphics and music software, installation or
system configuration, etc., but has no advantage relatively to programming. Not so
long ago, apart from office work, there was little else to do with the personal computer
other than programming, in order to complete the missing functionalities of the com-
puter. Today, mastering the full capabilities of the computer is a full time job! At the
end of the day, all students are at equality. The engineer should not be ashamed to
learn programming at the same time as the neighbor’s child.

1.1 Why learn programming?

We already gave a few reasons. Let’s sum them up and complete:

1. It is the basics. Learning some specific language is not a waste of time since the
same concepts appear in most languages. Moreover, event current software can
be programmed.

2. An internship or a first job often involves some programming, even, or maybe
even more, in environments where few people program.

3. Knowing programming, it is also a better understanding of hardware and soft-
ware, what is technically possible or not. Even at a non technical position, it is
important in order to take the right decisions.

7It is an error to believe the students will be interested with programs centered on mathematics or
scientific computing. Such programs will maybe be useful to the students later but may not be so moti-
vating. Linear algebra or numerical analysis are exciting to study. . . but certainly not to program. One
has to admit without complex that programming a pinball, a mastermind of a 3D maze is as formative
and more motivating than inverting a sparse matrix.

8The list is long but quite true: which programming course does not repeat the famous “factorial”,
“Fibonacci sequence”, “Quick Sort”, etc?

9Knowing how to program is not only useful for C++, Java or Python, but also for Scilab, Matlab or
Maple: advanced usage of Excel may require some programming!

9

1.2. How to learn? 1. Preamble

1.2 How to learn?

1.2.1 Language choice

First, a programming language must be chosen. An engineer would be tempted to
learn Maple, Matlab, Scilab or other. However, they are specialized tools for mathe-
maticians and engineers, that indeed will prove useful and can also be programmed,
but are not full fledged generalist programming languages. Without emphasizing the
defects of these languages, it is obvious that they are not a good choice to learn pro-
gramming.

In practice, the current choice is often between C++, Java, and Python. Even though
Java was meant as a simplification of C++, among other motivations,10 and Python
makes many complex things simple, we prefer C++ for pedagogical reasons:

1. C++ is more complex as a whole, but knowing its basics is already largely suffi-
cient. We will see thus in this course only a subset of C++, sufficient in practice.

2. More complete, C++ allows high level as well as basic programming.11 C++ al-
lows programming close to the machine, which is important to the specialist but
also for the beginner, because only a good understanding of the machine leads to
a decent and efficient programming.12

3. C++ is the lingua franca in certain domains, such as finance.

4. At last, some practical and useful features of C++ have disappeared in Java and
Python.13

In the last few years, the language that has risen more and more is Python. The
reason is that it is portable, powerful and with a low cost of entry. It has still some
drawbacks: it is constantly evolving, is not standardized, and compatibility between
versions is not guaranteed.14 The data structures of Python are quite convenient, but
hide the complexity of what is involved, especially concerning memory management,
and an engineer has to understand how things work. Once again, let us repeat that the
choice of language is not paramount, the essential thing is to learn programming.

1.2.2 Choice of environment

We could discuss at length the respective merits of the three main platforms, Windows,
Mac, and Linux, and the best choice to learn programming. Actually, we do not have
to prescribe some choice, as some tools are common to all. We think that for pedagog-
ical reasons, an integrated development environment is more appropriate than multiple

10We do not reduce Java to a subset of C++, on certain things it is even better, but it has a more reduced
expressivity.

11Java forces to learn object oriented programming, which may be complex for the beginner.
12Many of these “details” are hidden from the Python programmer for ease of use. Not understand-

ing what is required from the machine to execute a program leads to programs too greedy in time or
memory.

13Overload of many operators, for example.
14The operation 3/4 gave 0 in Python 2 (Euclidean division) and 0.75 in Java 3.

10

1. Preamble 1.2. How to learn?

software tools (editor, compiler, debugger, etc.).15 It is crucial for the beginner. A de-
velopment environment consists of the following features:

• All the steps of programming are grouped in a single tool in a coherent fashion.

• Editing files, transforming them into a program, finding errors, detecting bugs,
browsing the documentation, etc. All that can be done with a single ergonomic
tool.

Different development environments can be chosen. Both the most widespread plat-
forms promote their own product: Visual Studio for Microsoft (Windows) and XCode
for Apple (MacOS). They work on their own platform and cannot be used on another.
Linux, being all about choice, proposes several, such as KDevelop. Anyway, using a
portable environment is easier for a class, so that each can continue using their pre-
ferred platform. We advise Qt Creator, which, on top of being portable, has other
advantages: keyboard shortcuts are the same as Visual Studio, and it understands na-
tively CMake (which we will use in practical sessions).

This course is oriented toward Qt Creator. As the name indicates, it relies on Qt
libraries for its portability and graphics. We think using directly Qt for graphics is too
difficult for a beginner, and we use a less powerful but simpler layer on top of Qt,
Imagine++. Moreover, under Windows, there is no C++ compiler by default,16 but
installers of Qt and Qt Creator propose the MinGW compiler.17

1.2.3 Principles and advice

At the level we aim at teaching it, programming does not require a big theory or en-
cyclopedic knowledge. The concepts are elementary but it is their application that can
prove delicate. If we had a single piece of advice to give, it would be the rule of the three
“P”:

1. Program

2. Program

3. Program

Practice is indeed essential. Let us still add a few more:

1. Have fun. It is obvious for pedagogy, but it is so easy in the case of programming
that it would be a pity not to use it! At worst, if programming is not a pleasure
for some, at least the obtained program, reached through suffering, is interesting!

2. Tinker. What we mean is you should not hesitate to test, sift, do, undo, break, etc.
The computer is an experimental tool, and programming is also an experimental
activity at its basis. Even if the experienced programmer will find the right solu-
tion at once, it is important for the beginner to learn to know the language and
the programming tool by playing with them.

15Though many hard-liners learned with these individual tools and would not be lured to using an
IDE.

16Under Linux, the usual and reference compiler is GCC (GNU Compiler Collection). Under Mac, it
is Clang, whose interface mimics GCC, and is promoted by Apple.

17MinGW is a port of GCC to Windows.

11

1.2. How to learn? 1. Preamble

3. Do mistakes voluntarily. Provoking errors during learning to know them better
is the best way to understand many things and also to spot these errors when
they are no longer made on purpose.

4. Stay the master18 (of the machine and of the program). That programming is
experimental does not mean that we have to do anything until it works more
or less. The advance should be progressive, methodical, testing along the way,
without leaving the least error or imprecision.

5. Debug. Often, the knowledge of the debugger (the tool to find bugs) is neglected
and its knowledge is reserved for advance usage. However, this tool is very con-
venient to understand what happens in a program, even in the absence of bugs.
It should thus be considered as essential and an integral part of programming.
Here again, a good development environment makes its usage easier.

—

Keep in mind these few principles since it now time to. . .

jump to our first program!

18The vocabulary is not random: a program is a sequence of orders, commands or instructions. We see
who the boss is!

12

2. Hello, World!

Chapter 2

Hello, World!

(If some secondary school pupils reached this point, they are brave! When I said that they could
easily learn programming, I really meant it. Though it was with a bit too much optimism that I
pretended they could do it while reading lecture notes written for engineers. Well, I shot myself
in the foot! So, I will try to explain along the road the mathematics that could be obscure to
them.)

—

If you believe many programming manuals, the first program should look like this:

inc lude <iostream >
using namespace std ;

i n t main () {
cout << " Hello , World ! " << endl ;
re turn 0 ;

}

Very well, let’s go! Let’s analyze it! In this program, that outputs on screen1 the text
"Hello, World!", lines 1 and 2 are magical instructions2 that allow using later cout
and endl. Line 4 int main() defines a function called main(), that returns3 an integer
number.

This function is special since it is the main function of the C++ program, that is
called automatically4 when the program is launched5. Delimited by curly brackets ({

1That expression, remains of the time where computers had screen capable of displaying characters
only and not graphics (curves, images, etc.), means today that the display will occur in a window simu-
lating the screen of that time. This window is called a terminal, console, command window, DOS win-
dow, xterm, etc. according to cases. Let’s remember with utmost respect that it was already a progress
compared to previous generation, without screen and that used a printer to communicate with hu-
mans. . . which was relatively poor interactivity!

2Let’s say instructions that we won’t explain right now. There is (un)fortunately no magic in
programming.

3To whom? To the one that called it, stupid!
4Hear, now you know who called main(). In a program, functions call each other, but main() is

called by none since it is the first of them all. (At least apparently because actually the program has
plenty to do before arriving in main() and it begins by several other functions that the programmer
needs not know and that end up calling main(). Besides, if nobody called it, to whom would main()
return an integer?)

5I knew that intending to explain all barbarisms specific to computer scientists would impede me

2. Hello, World!

line 5 and } line 8), the function main() terminates line 7 with return 0; that mandates
to return the integer value 0. Note along the way that all instructions end with a semi-
colon ;. Finally, at line 6, the only “interesting” one, cout << "Hello, World!"<< endl;
displays, thanks to the variable6 cout corresponding to the console7, data separated by
<<. The first piece of data is the character string8 "Hello, World!". The second one, endl,
is a line end9.

Phew! So many terms in italics! So many concepts to explain! All for such a sim-
ple program! But this is not the problem. Beginning to explain such a program, it is
still being in the void, in magics, in the abstract, in the approximate. We do not really
master the machine and seeing what happens without understanding what happens
is not sensible. In fact, it is even damaging for what follows. We do not order some-
one without understanding how it works and what the given order involves as work.
Likewise,

we do not program suitably without understanding what the computer will
need to do to execute the program.

It is this whole approach that is neglected when we begin like we did. Hence,. . .

Stop! Wrong start! Let’s start again the:

much. Whatever. Therefore, a program starts or is launched. After which, it executes or runs. At last, it
terminates or dies.

6The data is stored in variables that memorize values. These variables are not always variable in the
usual sense, since some may be constant!

7What did I say! We display in a console window!
8To be clear, some text.
9Which means that next displays, if any, will happen on a new line.

14

2. Hello, World! 2.1. The Computer

Chapter 2 (second trial)

How does it work?

The problem with the preceding program is that it is very far from what a computer
is able to do naturally. Actually, a computer doesn’t talk C++. It knows only numbers,10

transforming numbers into other numbers. Though hardly understandable for the be-
ginner, a C++ program intends to be as close as possible to the human, whereas being
accessible to the machine.11 C++ is a very complete language, maybe too much. It can
be relatively close to the machine when necessary and on the contrary be “high level”
when needed. The width of its spectrum is one of the reasons of its success. Which is
also what makes its complete learning a long work and we will study only a restricted
part of C++!

2.1 The Computer

To know what a computer can really do, we need to begin with its principal organ: the
microprocessor.

2.1.1 The microprocessor

Whatever its architecture12 and whatever its speed,13 a microprocessor can only do
somewhat basic things. Without being exhaustive, let’s just remember this:

• It knows how to execute a sequential list of instructions.

• It owns a small number of internal memory units called registers.

• It communicates with outside world through memory14 in much larger quantity
than its registers.

• This memory holds, in the form of numbers, the instructions to execute as well
as the data on which to work.

• The instructions are typically:

10A computer, indeed!
11This notion is obviously dependent on our know-how for the time being. First programming lan-

guages were further away from humans since closer to the machine, which was rather rudimentary, and
we can expect future languages to be closer to humans.

12Intel Pentium derivative or other
13More precisely the frequency at which it executes its instructions. Today, the clock runs at roughly

3 GHz. (But beware: instructions may take more than one clock cycle!)
14Today, at least 4 GB (gigabytes), that is, 4× 1024× 1024× 1024 memory units of 8 bits (each unit able

to hold a number between 0 and 255). Notice that computer scientists count prefix of bytes with basis
1024 and not 1000, as everybody else! Why? Because 1024= 210 is the closest power of 2 to 1000=103,
and it is more logical to have as basis 2 than 10 for a computer.

15

2.1. The Computer 2. Hello, World!

– Read or write a number in a register or in memory.

– Do elementary operations: addition, multiplication, etc.

– Test of compare values and decide possibly to jump to another part of the
instruction list.

Here is for example what the microprocessor must do when we require it to execute
"c=3∗a+2∗b;" in C++, where a, b, c are three integer variables:

00415A61 mov eax,dword ptr [a] // put in register eax
// the contents of the address where
// variable a is memorized

00415A64 imul eax,eax,3 // do eax=eax*3
00415A67 mov ecx,dword ptr [b] // idem put b in ecx
00415A6A lea edx,[eax+ecx*2] // do edx=eax+ecx*2
00415A6D mov dword ptr [c],edx // put the contents of register edx

// to the address where variable c
// is stored

This program is called Machine Code. The first number of each line is an address.
We will come back to this later. Apart from it, the rest is quite readable for a human
(attention, that is me who added the remarks on the right!). This is because it is a
program in assembler language, a language where each instruction is really a micro-
processor instruction, but where the name of the instructions and their arguments are
explicit. In reality, the microprocessor does not understand assembler. Understand-
ing "mov eax,dword ptr [a]" would require not only decoding the symbols but
also where the variable a is stored. The real language of the microprocessor is the ma-
chine language, in which the instructions are numbers. Here is what it yields for our
"c=3∗a+2∗b;":

00415A61 8B 45 F8
00415A64 6B C0 03
00415A67 8B 4D EC
00415A6A 8D 14 48
00415A6D 89 55 E0

Apart once again from the left column, each number list15 corresponds obviously
to a single precise instruction. It is quite less readable!16 Let us note that each mi-
croprocessor model has its own instruction set17 which means that the translation of
c=3∗a+2∗b; in the sequence of numbers 8B45F86BC0038B4DEC8D14488955E0 is spe-
cific to the Pentium architecture (known as x86) that we used for our example:

Once translated in machine language, a C++ program makes sense only for
this microprocessor.

Let us notice also that the architects of Pentium decided to create a specific instruc-
tion to compute edx=eax+ecx∗2 in one shot since it is very common. If we asked
c=3∗a+3∗b;, our program would have become:

15Numbers a bit weird, all right, since they contain letters. Be patient, young Padawan! We will come
back to it right away!

16Nevertheless, computer scientists programmed like that not so long ago. That was already very
good compared to the previous time when it was required to program in base 2. . . and a lot less good
than when they could at last program in assembler!

17The standard acronym is ISA, Instruction Set Architecture.

16

2. Hello, World! 2.1. The Computer

00415A61 8B 45 F8 mov eax,dword ptr [a]
00415A64 6B C0 03 imul eax,eax,3
00415A67 8B 4D EC mov ecx,dword ptr [b]
00415A6A 6B C9 03 imul ecx,ecx,3
00415A6D 03 C1 add eax,ecx
00415A6F 89 45 E0 mov dword ptr [c],eax

as "lea edx,[eax+ecx*3]" does not exist! But let’s come back to our numbers. . .

2.1.2 The memory

The internal memory of our microprocessor is handled by registers, comparable to
variables of C++, but their number is predefined. To store the sequence of instructions
to execute, one has to use memory in much higher quantity, known as the main memory
of the computer. It is the famous “memory modules”18 of memory that we can buy to in-
crease the capacity of our machine and whose price fluctuates more strongly than other
components of a computer. This memory is split into bytes. One byte19 corresponds
to a binary number of 8 bits,20 hence 28 = 256 possible numbers. To locate oneself
in memory, it is out of question to give names to each byte. They are simply num-
bered and we get memory addresses. The numbers 00415A61, etc. from above were
addresses! At the beginning, these numbers were written in binary, which matched
exactly what the computer understands. It became unwise when the size of memory
reached above a few hundreds of bytes. The content of a byte in memory being itself
stored in the form of a number, a counting system was adopted, which is convenient
for 8 bits: rather than writing numbers in binary, the choice of base 16 allows repre-
senting the content of a byte with two digits (0,1,. . . ,9,A,B,C,D,E,F). The hexadecimal
system21 was adopted. . . Conversions from binary to hexadecimal are simple, each
hexadecimal digit being worth a packet of 4 bits, whereas between binary and deci-
mal, it is more complex. This system is still used when we designate the content of a
byte or an address.22 In that manner, our famous c=3∗a+2∗b; becomes in memory:23

18Today, typically modules of 2 to 8GB. Let’s have a thought for the first PC that had 640KB (kilobytes,
that is, 1024 bytes), even for the older ones among us about the first personal computers with 4KB, or
even the first programmable cards with 256 bytes!

19Beware to distinguish byte and bit, overall in abbreviations like 100Mb/s for internet access
debit. . . b=bit, B=byte=8 bits

20For secondary school pupils: in binary, or base 2, we count with two digits instead of the usual ten
(i.e., in decimal or base 10). It gives: 0, 1, 10, 11, 100, 101, 110, 111, . . . So that 111 in binary is 7 in decimal.
Each digit is called a bit. We see easily that with one digit we count from 0 to 1, two possible numbers;
with two digits, from 0 to 3, hence 4 = 2 × 2 numbers; with 3 digits, from 0 to 7, hence 8 = 2 × 2 × 2
numbers. In short with n bits, we can code 2n (2 multiplied by itself n times) numbers. I can remember
having learned base 2 in kindergarten with plastic cubes! Strange school program. And I do not say that
to find an excuse for turning up computer scientist. Though. . .

21For secondary school pupils (again): in base 16, or hexadecimal, we count with 16 digits. This
needs inventing digits beyond 9 and we take A,B,C,D,E,F. When we count, we get: 0, 1, 2, . . . , 9, A, B, C,
D, E, F, 10, 11, 12, 13, . . . , 19, 1A, 1B, 1C, . . . Hence 1F in hexadecimal is worth 31. With 1 digit, we count
from 0 to 15, that is, 16 possible numbers; with 2 digits, from 0 to 255, hence 256 = 16 × 16 possible
numbers, etc. A byte can be written with 8 bits in binary, or 2 digits in hexadecimal, and goes from 0 to
255, or 11111111 en binary, or FF in hexadecimal.

22In the latter case case, with more than 2 digits: 8 for processors 32 bits, 16 for processors 64 bits.
23You may notice that instructions can have different lengths.

17

2.1. The Computer 2. Hello, World!

memory address content represents
00415A61 8B
00415A62 45 mov eax,dword ptr [a]
00415A63 F8
00415A64 6B
00415A65 C0 imul eax,eax,3

.

The memory is not only useful to store the sequence of instructions to execute but
also all variables and data of the program, the registers of the microprocessor are not
enough. Therefore our variables a, b, c are stored somewhere in memory with a suffi-
cient number of bytes24 to represent integers (here 4 octets) and at a location decided
by the C++, so that the instruction 8B45F8 fetches the variable a! It is hard work, that
the C++ does for us and that programmers had to do by hand in the past.25 In short,
we have furthermore:26

memory address content represents
.

00500000 a1
00500001 a2 a
00500002 a3
00500003 a4
00500004 b1
00500005 b2 b
00500006 b3
00500007 b4

.

where bytes a1, . . . , a4, when combined, give the integer a on 32 bits. Some processors
(called big-endian)27 decide a = a1a2a3a4, others (little-endian)28 a = a4a3a2a1. It means
that

So as instructions, a number written by one microprocessor in a file can be
unreadable by another microprocessor that reads the file!

2.1.3 Other Components

Microprocessor and memory: we have seen the two main blocks. Let us complete the
table with other important components of the computer.

24Variables having more than 256 possible values need to be stored on several bytes. With 4 bytes we
can count in binary on 4× 8 = 32 bits, hence 232 possible values (more than 4 billions).

25The hardest part was not to decide where to store the variables, but to adjust the instructions accord-
ingly. If we made a mistake, we could write at the wrong location in memory. At best, it erased another
variable—this behavior is still possible nowadays—, at worst, it erased instructions and the program
could do “big mistakes”—that is now impossible under Windows or Linux, and only still a danger on
certain low-end systems.

26We lie horribly here for a simplification purpose. In our case, the variables were local variables to
the function main() hence stored on the stack. They are not at a predefined memory location but at
an address relative to where the function will store its local variables, depending on what the program
will have done before. This explains the simplicity of the instruction mov eax,dword ptr [a] in our
case. We will see all that later.

27Such as the PowerPC of older time Macs
28The majority, such as processors Intel and AMD

18

2. Hello, World! 2.1. The Computer

Memory types

The memory we talked about is known as RAM (Random Access Memory). It is fast29

but has the bad idea to be erased when we switch off the computer. We also need ROM
(Read Only Memory), that is memory holding its data when the computer is switched
off but that cannot be modified30. This memory contains in general the minimum the
computer needs to start and executes a predefined task. Initially, it stored instructions
so that the programmer could fill later the RAM with the instructions of the program.
It was required to input the program each time!31 Quite soon, recording media were
used to save programs and data when the computer was switched off. It was enough
then to put in ROM the necessary capability to handle these storage devices.

Recording media

Some allow to read data, others also to write. Some deliver data only in order, sequen-
tially, others in the order we choose, randomly. They are in general much slower than
main memory and it should be remembered! We copy in RAM the part of the recording
media on which we work.

Make the microprocessor work with the hard drive is MUCH slower than
with main memory (1000 times slower in access time, 100 times in through-
put)a

aAdd a factor 50 between main memory and memory cache of the processor!

At the beginning, storage media were mechanical: cards or bands. Then they be-
came magnetic: mini-tapes32, disks33 or hard drives34. Today, we can have CD, DVD,
memory cards, “USB drives”, etc.

Peripherals

We call peripherals different devices connected to the computer: keyboard, mouse,
screen, printer, modem, scanner, etc. They were initially present to serve as interface
with the user, as input and output between the microprocessor and the real world.
Nowadays, it becomes more difficult to see things that way. For instance, graphics
cards, which were a peripheral coming with the screen, have become themselves es-
sential parts of the computer, true workpowers, to the point that an increasing number
of programs use them to perform computations without ever displaying anything on
the screen. Even more, it is the computer itself that can be considered as a link between

29Though less than registers, or even than the memory cache of the microprocessor, which we won’t
talk about.

30It is unfortunate that a ROM cannot be modified. Hence, once, we used memory that still could
be modified, but with specialized hardware (EPROMS). Nowadays, we use often memory that can be
modified by software (“flash” memory) or, for very small amounts of data, energy efficient memory
(CMOS) completed with a small battery. In a PC, the memory that is used to start the computer is the
BIOS. It can be flashed and its parameters are in CMOS. Beware of the usage of the battery!

31Each time the computer was switched on but also each time the program crashed and erased itself,
which was most of the time!

32Very slow and low reliability, but the everyday of PC at the time.
33Some luxury. A reader of 40KB cost 5000F or 1000 euros!
34First ones were true motor vehicles, reserved for big computer centers.

19

2.2. Operating System 2. Hello, World!

different devices. Who would call peripheral a camera that is linked to a computer to
send the video on the internet or transfer them on DVD? The computer would almost
be a peripheral of the camera!

2.2 Operating System

Our vision at this point is the following:

1. The processor starts with instructions present in ROM.

2. These instructions allow it to read other instructions written on hard drive, that
are copied into RAM.

3. It executes these instructions pour read input data present on the disk and gener-
ate new data (output). Unless input or output were exchanged through periph-
erals.

Quickly, this principle evolved:

1. The contents of the hard drive was organized in files. Some files represented
data35, others programs36, still others contain themselves files37.

2. Processors becoming faster and hard drive capacity increasing, we wanted to
handle several programs and execute several: one after the other then simulta-
neously (multi-tasking) and even for several users simultaneously (multi-user)38,
finally with several processors per machine.

To handle all this complexity, the concept of Operating System (OS) emerged. Win-
dows, Unix (include notably Linux) and MacOS are the most widespread.39 The OS is
responsible today of handling files, interfacing with peripherals or users,40 but its most
delicate responsibility is to handle the programs (or task or process) executing at once.
It has to face two problems:41

1. Make the processor work successively by small time intervals on different pro-
grams. It has to give the hand smartly and fairly, but also to resume an inter-
rupted process in the same state as when the interruption occurred.

2. Handle the memory of each process. In practice, an adjustable part of the mem-
ory is reserved for each process. The memory of a process becomes virtual mem-
ory: if a process is moved to another location of the physical memory (RAM), it
does not notice. The OS can even put temporarily outside the RAM (hence on
hard drive) an idle process. With that principle, the hard drive can even be used
as memory for a process requiring more than the physical memory: but beware,
the hard drive is very slow, the process can become hardly responsive.

35Most were text, where each byte represented a character. That was the famous ASCII (65 for A, 66
for B, etc.). At the multimedia era, formats are numerous, concurrent, and more or less normalized.

36We talk about executable files. . .
37The folders.
38Today, it is even worse. A program can be several parts executing simultaneously (the threads).

Concerning the processor, it executes all the time several instructions at once (it is said super-scalar)!
39Android, based on Linux kernel, in smartphones and iOS in iPhones
40Let’s hope the users won’t become themselves peripherals!
41The processors obviously evolved to help the OS to do that efficiently.

20

2. Hello, World! 2.3. The Compilation

When a process needs too much memory, the OS can decide without
warning to use hard drive space as additional logical memory and be-
come quite slow. We say it swaps. Only the slowness (and possibly the
sound of hard drive working at full speed!) allows to realize that (this
can be checked with the task manager of the system).

Another progress: the virtual memory is separated between the different pro-
cesses, and inside a given process, the memory containing instructions from the
memory for data. It is strictly impossible that a faulty process could modify its
instructions or the memory of another process by writing at a wrong memory
location.42

With the arrival of operating systems, executable files should adapt for numerous
reasons of management and sharing of memory. In practice, a Linux executable cannot
run under Windows and reciprocally, even it they contain instructions for the same
processor.

An executable file is specific not only to a processor type, but also to a given
OS.

At best, successive versions of a processor family try to continue to understand instruc-
tions of its predecessors, so as successive versions of a software try to be able to read
data produced by earlier versions, different versions of an OS try to be able to execute
programs written for earlier versions. This is called ascending compatibility, that may
cost more complexity and slowness.

2.3 The Compilation

While we tried to understand what happens below the surface to draw some useful
info like the memory handling, we have glimpsed that the transformation of a C++
program into an executable file is a difficult task. Some software dispose of their own
language, such as Maple, Scilab or Matlab, the Python interpreter, and do not translate
their programs into machine language. The translation is done when the program is
executed and analyzed along the way:43 we call it an interpreted language. Execution is
then quite slow. Other languages, like Java, decide to deal with portability problems,
that is, the dependency on the processor and on the OS, by inserting an intermedi-
ate layer between the processor and the program: the virtual machine. This machine,
obviously written for a given processor and system, can execute programs in a virtual
machine language,44 the “byte code”. A Java program is then translated into its equiva-
lent in that machine language. The result can be executed on any virtual Java machine.
The drawback of such an approach is obviously a loss of efficiency.

The translation of native code or byte code of a program is called compilation.45 In
the case of C++ and of most compiled languages (Fortran, C, etc), the compilation

42It can only modify savagely its own data, which is already sufficient havoc!
43even if it is sometimes preprocessed to accelerate execution
44By contrast, the “true” machine language of the processor is then called native code.
45The principles of compilation are one fundamental topic of computer science, traditional and very

instructive. When one knows how to write a compiler, one can program everything. (Obviously, a
compiler is a program. It is compiled with the previous compiler! Same thing for operating systems. . .)
It requires a full course by itself and is quite out of the scope of an introduction to programming!

21

2.4. The Programming Environment 2. Hello, World!

happens to native code. It transforms a source file, the C++ program, into an object file,
sequence of instructions in native language.

Nevertheless, the object file by itself is not self-sufficient. Some additional instruc-
tions are necessary to build a full executable file:

• something to launch the main()! More precisely, everything the process needs to
run before and after the execution of main().

• functions of variables that belong to the language and that the programmer uses
with programming them, such as the object cout, the function min(), etc. The set
of these instructions constitutes a so-named library.46

• functions or variables written by the programmer in other source files, then com-
piled info object files, but that the programmer wants to use in the program.

The synthesis of these files to an executable file is called the link edition. The program
dealing with that is called linker.

To sum up, the production of an executable file happens in two steps:

1. Compilation: source file→ object file (for each source file).

2. Link: object files + standard library and other libraries → executable
file.

2.4 The Programming Environment

The programming environment47 is the software allowing to program directly. In our
case it is Qt Creator. In other cases, it can simply be a set of programs. An environment
includes at minimum an editor to write source files (the knowledge of the language by
the editor can help the programmer write syntactically correct code), a compiler/linker
to write executables, a debugger to track programming errors, and a project manager to
manage the different source and executable files.

The reader is here invited to read the text of first practical session and the Ap-
pendix C. On top of a few rudimentary C++ notions we will see in next chapter, some
supplementary information is useful to understand it.

2.4.1 File Names

The extension (the suffix) is useful to differentiate the different file types:

• A C++ source file (your code!) ends with .cpp.48

• An object file ends with .obj (Windows) or .o (Linux/Mac).

• An executable file ends with .exe (Windows) or with no extension (Linux/Mac).
46A library is actually a set of object files (hence already compiled) in a single file. It can be a library

of functions furnished by C++, then called standard library, but also an additional library furnished by
someone else.

47often called IDE, Integrated Development Environment.
48a file in .c is considered as C code.

22

2. Hello, World! 2.5. The bare minimum

We will also meet later:

• The “header” C++ files that are included in other source files: files in .h

• The libraries: files .lib or .dll (Windows), .a or .so (Linux/Mac)

2.4.2 Debugger

When a program misbehaves, one can try to understand what goes wrong by stuffing
the source code with instructions to output the value of some variables or simply to
follow its run. Obviously, it is not very practical. It is better to be able to follow in-
struction by instruction and display variable values on demand. That is the role of the
debugger.

For an interpreted language (such as Python), it is fairly easy to run the program
step by step since it is the language itself that runs the program. In the case of a com-
piled language, it is the microprocessor that executes the program and one cannot stop
it at each instruction! One needs then to put breakpoints by modifying temporarily the
machine code of the program so that the microprocessor stops when it reaches the in-
struction corresponding to the source line to debug. Whereas it is complex to set up, it
is very easy to use, especially in a graphical programming environment.

We will see along the practical sessions how the debugger can also check function
calls, spy on variable changes, etc.

2.5 The bare minimum

2.5.1 To understand the practical session

Here is a strictly minimal C++ program, written in a file main.cpp:

i n t main () { }

The reserved word main indicates the entry point of the program. It is a function (a
block of code). Like a mathematical function, it takes one or several input and gives
an output. For this function, there is nothing between the parentheses, meaning there
is no input argument. On the contrary, it returns an integer value (type int like inte-
ger). This function does nothing, the list of instructions is empty (block between curly
brackets). But where does it specify the value returned? This function returns value
0, which means by convention that everything went normally. To be more explicit, we
would have written:

i n t main () {
re turn 0 ;

}

which has exactly the same effect, since function main returns 0 by default. But the
case of this function is special, it is better to be more explicit and to indicate that the
function returns 0. Let us note that we wrote the return on a new line, that every
instruction ends with a mandatory semicolon, and that we shifted the instruction to the
right (we say “indented”) to show that we are inside the block. Actually, the compiler
is indifferent to line returns and to indentations, they are present uniquely to facilitate

23

2.5. The bare minimum 2. Hello, World!

the readability of the code for us, the programmer. However, do not consider them
as optional, it is very important to write a clean and readable code. Those who know
Python remember that it does not use curly brackets for blocks but uses indentation,
that becomes mandatory. The fact it is not in C++ does not mean that everything goes
equally. Let us insist that indenting properly is important.

This program does nothing, but we still need to check it is correct, meaning it fol-
lows the syntactic rules and that it is enough to create an executable. For that, we
will use CMake, which has the advantage to be multi-platform and compatible with
all widespread development environments. Let us first create a file CMakeLists.txt
containing:

add_executable (EssaiQtCreator main . cpp)

It indicates we have a source code, main.cpp, and that our executable will be called
EssaiQtCreator. We create this file in the same folder as source main.cpp (source
folder). We launch Qt Creator and choose the option “Open file or project” in menu
File. We indicate as project the file CMakeLists.txt. In the configuration window
that pops up, we normally just have to proceed. The first time we do that on a new
project, it can take up a few tens of seconds, checking compiler availability and various
things, until the message ends with something like:

Configuring done
Generating done
CMake Project was parsed successfully.

Behind the scene, Qt Creator launched the program CMake and we see the information
messages of this program (this appears in window number 6 “General Messages”). We
can then compile the program by clicking the hammer tool on the bottom left, which is
a shortcut for option “Build All” of menu “Build”. We can see in Figure 2.1 the contents
of window number 4 “Compile Output” what it did:

• create the file main.cpp.o by compiling main.cpp;

• linking;

• creating the executable (“target”) EssaiQtCreator.

Clicking on the “Projects” button, it indicates the “Build directory”, where all output
files were created. Going into that folder, we can see a file CMakeCache.txt, from
CMake. This file is simply a list of variable/value pairs, we won’t modify it by hand.
Among other files, we can also see our executable program. Then, clicking the green
triangle on the left of the window runs the program. The result can be checked in
window number 3 “Application Output”:

Starting /home/pascal/TEMP/Build/EssaiQtCreator...
/home/pascal/TEMP/Build/EssaiQtCreator exited with code 0

The program launched and exited with value 0.

24

2. Hello, World! 2.5. The bare minimum

Figure 2.1: Qt Creator after compilation of the test program

2.5.2 A bit more. . .

In the practical session, we also use cout meaning “character output” and allowing
writing in the terminal (endl means end of line). We could also test cin, which reads
what the user inputs:

i n t i =2 , j ;
cout << " i =" << i << endl ;
cout << " Input an i n t e g e r : " ;
c in >> j ;
cout << " The double of "<< j << " i s " << 2∗ j << endl ;

It is to be noticed that the integrated terminal of Qt Creator (window number 3) does
not handle input. Therefore, we need an external terminal, which can be selected by
going into “Projects”, section “Run” and clicking radio button “Run in terminal”.

At last, our first practical session contains a condition command if - else.

2.5.3 The debugger

The green triangle with a small bug on it allows following the program with the de-
bugger. It offers buttons to set breakpoints, execute up to next instruction, etc.

2.5.4 Practical Session

You are now ready to practice with the session of Appendix A.1. If practice is essential,
remembering something of it is mandatory! You will also find how to install the needed
tools on your computer (link http://imagine.enpc.fr/~monasse/Imagine++
at the end).

25

http://imagine.enpc.fr/~monasse/Imagine++

2.5. The bare minimum 2. Hello, World!

Useful keys:

F5 = = Debug/Continue

F10 = = Step over

F11 = = Step inside

Ctrl+A, Ctrl+I (Qt Creator) = Indent the whole file

Figure 2.2: To be remembered from Practical Session 1

—

We know enough to learn a bit of C++. . .
We begin now to build our “reference card” that can help us while programming.

We will complete it after each chapter with the new notions, which are highlighted in
red. The final card is in Appendix D.

Reference Card (1/1)

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Keyboard

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

26

3. First programs

Chapter 3

First programs

Ready to experiment along the way with our programming environment, it is time to learn
the basics of C++. We begin programming without method. . . then we will add a minimum of
organization by using functions.

—

Classically a programming manual is organized in a logical way with respect to
the language, with different successive points: expressions, functions, variables, in-
structions, etc. The result is difficult to digest because we need exhaustivity on each
point. We will rather try to see things as the appear when one learns: progressively
and everything at once!1 For instance, it is not in the current chapter we will see how
functions memorize their variables on the “stack”.

3.1 Everything in main()!

Without further ado, we can put everything in main(). That is how a beginner pro-
grams.2

It is already an important step to program on the road, putting everything
in function main(). The important point is to have a working program!

3.1.1 Variables

Types

Variables are memories where values (or data) are stored. A piece of data cannot be
stored anyway, there needs to decide each time the space in memory (number of bytes)
and the format, that is, the way the bytes are used to represent the value stored by
the variable. We already met int that are stored with 4 bytes (32 bits) and so can take
232 = 4 294 967 296 possible values.3 It is understood that int stores relative integers,4,

1The drawback of this presentation is that this manual, if made to be read from beginning to end, is
less adapted to serve as reference.

2So as many students when the instructor does not check!
3We have already seen that this simple idea can give two ways to use the bytes: big-endian or little-

endian.
4Dear secondary school pupils: that is, 0, 1, 2, . . . but also −1,−2,−3, . . .

3.1. Everything in main()! 3. First programs

with as many negative as positive numbers5 therefore, in the case of 32 bits,6 from
−2 147 483 648 to 2 147 483 647.7

Saying that a variable is int, it is precising its type. Some languages do not have
types or guess the types of variables. For example in Python, the type is inferred from
the values put in the variable, and can even change during the program execution. In
C++, no such liberty, variables have a type from the start and cannot change it. We will
see the compiler is rather strict in the usage of types and checks everything.

Precising a type fixes exactly the memory space and the format of a variable.
The compiler, if it can make good usage of the information to detect errors,
needs that before all to translate the code into machine language.

Definition, Assignment, Initialization, Constants

Before seeing other types, let us look at the syntax on an example:

1 i n t i ; / / D e f i n i t i o n
2 i =2; / / Assignment
3 cout << i << " " ;
4 i n t j ;
5 j = i ;
6 i =1 ; / / Modify i , no t j !
7 cout << i << " " << j << " " ;
8 i n t k , l ,m; / / M u l t i p l e d e f i n i t i o n s
9 k= l =3; / / M u l t i p l e a s s i g n m e n t s

10 m=4;
11 cout << k << " " << l << " " << m << " " ;
12 i n t n=5 ,o=n , p=INT_MAX; / / I n i t i a l i z a t i o n s
13 cout << n << " " << o << " " << p << endl ;
14 i n t q=r =4; / / Wrong !
15 const i n t s =12;
16 s =13; / / Wrong !

In this piece of program:

• Lines 1 and 2 define a variable called i8 of type int then assigns value 2 to this
variable. The binary representation of 2 is thus stored in memory where the com-
piler decided to place i. What follows the “double slash” (//) is a remark: the
compiler ignores all the rest of the line, it is only intended to help readability for
the programmer.

• Line 3 displays the value of i then a blank space (without going to next line)

5up to one!
6Actually, the exact size of int is not prescribed by the C++ norm, it is a compiler choice, though most

would use 32 bits. Anyway, constants INT_MIN and INT_MAX allow to retrieve the extreme values of
the type.

7Though the norm does not even mandates that INT_MIN=-INT_MAX-1, but only that taking twice
the negative of a positive value yields the original value.

8The name of a variable is also called identifier. Error messages from the compiler with rather use this
vocabulary!

28

3. First programs 3.1. Everything in main()!

• Lines 4, 5 and 6 define an int named j , copy its value of i, which is 2, in j , then
put 1 in i. Note that i and j are two distinct variables: i becomes 1 but j stays at
2!

• Line 8 shows how to define simultaneously several variables of same type.

• Line 9 teaches us that we can assign the same value to several variables at once.

• At line 12, variables are defined and assigned at once. Actually, we call these
variables initialized: they take an initial value at the same time they are defined.
Note that, for reasons of efficiency, variables are not initialized by default: as
long as no value was put in them, they are worth whatever, an arbitrary value!9

• Beware still, it is useless and not permitted to try simultaneous initialization. Line
14 is a mistake that the compiler will not allow.

• At last, one can add const in front of the variable type: it becomes then a constant
and we cannot modify its value later. Line 15 defines such a constant and line 16
is a compiler error.

In summary, after removal of lines 14 and 16, this (amazing!) piece of code dis-
plays:10

2 1 2 3 3 4 5 5 2147483647

Variable names (actually, all identifiers, including function names) are composed
only of characters a to z (and capitals), digits and underscore _, but cannot begin with
a digit. Do not use accented characters, it is a portability issue.

Scope

In the previous example, variables were defined when needed. This is not such an ev-
idence. For instance, in C all variables needed to be defined before the first instruction
of the function. In C++, we have more leeway, but beware:

the variables do exist (and cannot be used before) only from the line they
are defined. They have a limited lifespan and die as soon as we exit the
block limited by curly brackets they belong to.a. This is what is called the
scope of a variable.

aIt is a bit more complex for global variables. We will see that also. . .

Therefore, taking a bit of advance on test syntax, the following program presents scope
errors at lines 2 and 8:

1 i n t i ;
2 i = j ; / / E r r o r : j no t y e t d e f i n e d !
3 i n t j =2 ;
4 i f (j >1) {

9It is an error to use the value of a variable before its first assignment. The compiler will not warn
about that in general.

10Generally, cf. preceding remark about INT_MAX

29

3.1. Everything in main()! 3. First programs

5 i n t k =3;
6 j =k ;
7 }
8 i =k ; / / E r r o r : k d o e s not e x i s t anymore

Other types

We will see the different types along the way. Here are the most usual:

i n t i =3 ; / / R e l a t i v e i n t e g e r
double x = 1 2 . 3 ; / / Rea l number (d o u b l e p r e c i s i o n)
char c= ’A ’ ; / / C h a r a c t e r
s t r i n g s=" hop " ; / / S t r i n g o f c h a r a c t e r s
bool t =true ; / / B o o l e a n (t r u e or f a l s e)

Real numbers are generally approached by variables of type double (“double precision”,
8 bytes usually). Characters are represented by a single byte, the correspondence char-
acter/value being defined by the ASCII table (65 pour A, 66 pour B, etc.), that we don’t
need to learn since the syntax ’A’ with single quotes is translated to value 65 by the
compiler, etc. Double quotes are reserved for “strings” of characters.11 At last, booleans
are variables that can take only two values, true and false .

Without being exhaustive, here are some additional types:

f l o a t y =1.2 f ; / / Rea l number (s i n g l e p r e c i s i o n)
unsigned i n t j =4 ; / / Natura l i n t e g e r
signed char d=−128; / / One−b y t e i n t e g e r
unsigned char d=254; / / One−b y t e n a t u r a l i n t e g e r
complex<double > z (2 , 3) ; / / Complex number

where one finds:

• the float , real numbers less precise than double but faster, on 4 bytes (curious
ones can explore the language documentation and see that a float has a maxi-
mum value FLT_MAX (about 3.4e+3812) and that their smallest strictly positive
value is FLT_MIN (about 1.2e−38), in the same manner as double have constants
DBL_MAX and DBL_MIN of value roughly 1.8e+308 and 2.2e−308);

• the unsigned int, positive integers used to go further than int in positive values
(from 0 to UINT_MAX, generally 4294967295);

• the unsigned char, from 0 to 255;

• the signed char, from -128 to 127;

• and at last complex numbers.13

11Beware, usage of string requires #include<string> at the beginning of the program.
12Read 3.4 × 1038. Secondary school pupils: 1038 is 1 followed by 38 zeros, 10−38 or 1e−38 is

0.000 . . . 01 with 37 zeros before the 1. 3.4e+38 is 34 followed by 37 zeros (38 digits after 3) and 1.2e−38
is 0.00 . . . 012 still with 37 zeros between the decimal separator and 1 (1 is at place 38).

13It is too early to learn the syntax of this definition but it is good to know that complex are readily
available in C++. Secondary school pupils: do not panic! You will learn complex numbers when you
grow up, we won’t use them in this manual any more.

30

3. First programs 3.1. Everything in main()!

3.1.2 Tests

Simple Tests

Tests are used to executed one instruction or another based on the value of variables.
The condition is between parentheses and must be a bool value. Comparison operators
are equality == and difference !=, and inequalities>,>=,< and<=. Several conditions
can be combined by “and” &&, “or” ||. Negation of a boolean is ! (before the boolean).
Depending on the value true or false of the condition, one instruction or another is
executed. Many times, we need several instructions, they can be grouped in a block by
curly braces. Look at the example:

i f (i ==0) / / i i s n u l l ?
cout << " i i s n u l l " << endl ;

. . .
i f (i >2) / / i g r e a t e r than 2?

j =3 ;
e l s e

j =5 ; / / I f we a r e he r e , th en i <=2
. . .
/ / More complex !
i f (i !=3 || (j ==2 && k ! = 3) || ! (i > j && i >k)) {

/ / Here , i i s no t 3 or
/ / j i s 2 and k not 3 or
/ / i i s no t g r e a t e r than b o t h j and k
cout << " F i r s t i n s t r u c t i o n " << endl ;
cout << " Second i n s t r u c t i o n " << endl ;

}

Notice that the condition of if can be a bool variable, but most of the time it is directly
the test. But if we want to expand it, no problem:

bool t = ((i ==3)||(j = = 4)) ;
i f (t)

k =5;

Finally, some very important thing: the test operator == should be distinguished
from assignment =.14 It could be the most frequent error among beginners. Fortunately,
the compiler should emit a warning.15

Warning: Use if (i==3) and not if (i=3)!

The "switch"

We may have to do one or two things depending on the values of a variable. For
clarity purposes, we then use the switch statement that looks more elegant than a series
of if /else. Each possible case for the values of the variable is introduced with case

14Writing if (i=3) puts 3 in i then gives 3, which is not a bool, but is considered as true because by
convention any value except 0 is considered true.

15The compiler is your friend, even though it may be annoying sometimes (friends can also be)!

31

3.1. Everything in main()! 3. First programs

and must end with break.16 Several case can be next to each other for multiple cases.
At last, the keyword default, which must appear last, gets used for all other cases.
The following program17 reacts to pressed keys on the keyboard and uses a switch
statement to display amazing comments!

1 # inc lude <iostream >
2 using namespace std ;
3 # include <conio . h> / / Avoid : non s t andard , c u r s e s . h under Linux
4
5 i n t main ()
6 {
7 bool end= f a l s e ;
8 do {
9 char c=_getch () ; / / Avoid : non s t andard , g e t c h () under Linux

10 switch (c) {
11 case ’ a ’ :
12 cout << "You pressed ’ a ’ ! " << endl ;
13 break ;
14 case ’ f ’ :
15 cout << "You pressed ’ f ’ . Bye ! " << endl ;
16 end=true ;
17 break ;
18 case ’ e ’ :
19 case ’ i ’ :
20 case ’ o ’ :
21 case ’u ’ :
22 case ’ y ’ :
23 cout << "You pressed another vowel ! " << endl ;
24 break ;
25 d e f a u l t :
26 cout << " S t i l l some other key ! " << endl ;
27 break ;
28 }
29 } while (! end) ;
30 re turn 0 ;
31 }

Except the do/while loop, which we will soon see, you should have understood ev-
erything and you should realize it is equivalent to:

i f (c== ’ a ’)
cout << "You pressed ’ a ’ ! " << endl ;

e l s e i f (c== ’ f ’) {
cout << "You pressed ’ f ’ . Bye ! " << endl ;

16It is a frequent and damaging error to forget the break. Without it, the program executes also the
instructions of the next case

17Beware, a cin >> c, instruction we will see later, reads the keyboard but does not terminates at each
pressed key: it waits the key Enter! Reading just a single keystroke is not standard and is not so
used in our world of graphical interfaces. Under Windows, we would use the function _getch() after
#include <conio.h> (cf. lines 3 and 9) and under Linux getch() after #include <curses.h>.

32

3. First programs 3.1. Everything in main()!

end=true ;
} e l s e i f (c== ’ e ’ || c== ’ i ’ || c== ’ o ’ || c== ’u ’ || c== ’ y ’)

cout << "You pressed another vowel ! " << endl ;
e l s e

cout << " S t i l l some other key ! " << endl ;

Before all, remember the main error source with switch:

In a switch, do not forget the break!

You could have noticed a line 2 somewhat cryptic. A namespace is like a prefix for
certain things. The prefix of standard objects is std. Hence cout and endl, provided by
#include <iostream>, have full name std :: cout and std :: endl. Line 2 allows to omit
the prefix in the rest of the file.

3.1.3 Loops

It is difficult to do anything interesting without the possibility to execute several times
the same instruction (with different data!). That is the role of loops. The most powerful
is for () , but it is not the simplest to understand. Let’s begin with do ... while, that
loops until a test is valid. The next program waits from the user an integer between 1
and 10 and asks again until the input is correct:

1 # inc lude <iostream >
2 using namespace std ;
3
4 i n t main ()
5 {
6 i n t i ;
7 do { / / Loop b e g i n s
8 cout << "A number between 1 and 10 , p lease : " ;
9 c in >> i ;

10 } while (i <1 || i > 1 0) ; / / Go b a c k t o b e g i n n i n g i f
11 / / t h e t e s t i s t r u e
12 cout << " Thanks ! Your number i s " << i << endl ;
13 re turn 0 ;
14 }

Note line 9 that puts in i a number input by the user. The variable cin is the counterpart
(“console in”) of cout.

Next comes the while loop (without do) that performs a check before entering the
loop. The next program displays digits from 1 to 100:

i n t i =1 ;
while (i <=100) {

cout << i << endl ;
i = i +1;

}

Finally, we have a special loop, the most frequent: for () that executes an instruction
before starting, does a test at each iteration so as while, and executes an instruction at

33

3.1. Everything in main()! 3. First programs

the end of each iteration. Initial instruction, test and final instruction are separated by
a semicolon ; , which yields the following program, equivalent to the preceding one:

i n t i ;
f o r (i =1 ; i <=100; i = i +1) {

cout << i << endl ;
}

Most frequently, the for () is used as in the previous example to increase an index and
span an interval. We will find often:

f o r (i n t i =1 ; i <=100; i ++)
cout << i << endl ;

when we know that:

• We can define a variable in the left part of for () . Beware, this variable admits as
for () the scope limit: the variable does not exist after the for () .18

• i++ is an abbreviation of i=i+1. The ++ can also be written as prefix ++i. The
same is valid for the decrement operator −−.

• Since there is a single instruction in the loop, curly braces are not mandatory.

We can also use the comma , to include several instructions19 in the right part of for.
The following program starts with i = 1 and j = 100, and increases i by 2 while
decreasing j by 3 at each iteration until their values cross:20

f o r (i n t i =1 , j =100; j > i ; i = i +2 , j = j −3)
cout << i << " " << j << endl ;

Note also we could abbreviate i=i+2 in i+=2 and j=j−3 in j−=3.

3.1.4 Recreations

We are now able to write many programs. For example, play the game of the secret
price. The program chooses a price and the user has to guess it:

1 # inc lude <iostream >
2 # include < c s t d l i b >
3 using namespace std ;
4
5 i n t main ()
6 {
7 i n t n=rand ()%100 ; / / Number be tween 0 and 99
8 i n t i ;
9 do {

10 cout << " Your p r i c e : " ;

18Some very old C++ compilers did not allow defining a variable in for () . Some more recent ones (but
still old!) allowed it but the variable survived the for () ! Forget that, the standard says that it should be
as we explained it.

19For the curious ones: it is not out of the ordinary, as several instructions separated by a comma
count in C++ as a single instruction.

20The last printed line will be 39 43, meaning that the loop exits when i = 41 and j = 40.

34

3. First programs 3.1. Everything in main()!

11 c in >> i ;
12 i f (i >n)
13 cout << " Try l e s s " << endl ;
14 e l s e i f (i <n)
15 cout << " Try more " << endl ;
16 e l s e
17 cout << " Exact ! " << endl ;
18 } while (i !=n) ;
19 re turn 0 ;
20 }

Only line 7 requires more explanation:

• The function rand() returns a random number between 0 and a compiler-specific
constant RAND_MAX. We need to add #include <cstdlib> to use it.

• % is the modulo function.21

It is obviously more interesting when the program has to guess. It will work by
dichotomy to find in a minimum of trials:

1 # include <iostream >
2 using namespace std ;
3
4 i n t main ()
5 {
6 cout << " Choose a number between 1 and 100 " << endl ;
7 cout << " Answer my t r i a l s by + , − or =" << endl ;
8 i n t a =1 ,b =100; / / Extreme v a l u e s
9 bool found= f a l s e ;

10 do {
11 i n t c =(a+b) / 2 ; / / P r o p o s e mid d l e
12 cout << " I s i t " << c << " ? : " ;
13 char r ;
14 do
15 c in >> r ;
16 while (r != ’= ’ && r != ’+ ’ && r != ’− ’) ;
17 i f (r== ’= ’)
18 found=true ;
19 e l s e i f (r== ’− ’)
20 b=c−1; / / Too high , t r y be tween a and c−1
21 e l s e
22 a=c +1; / / Too low , t r y be tween c +1 and b
23 } while (! found && (a<=b)) ;
24 i f (found)
25 cout << "What t a l e n t do I have ! " << endl ;
26 e l s e

21Secondary school pupils: counting “modulo N”, it is going back to 0 when we reach N. Modulo 4,
it gives: 0,1,2,3,0,1,2,3,0,. . . . For example 12%10 is 2 and 11%3 also! Here, modulo 100 ensures we have
a result between 0 and 99.

35

3.2. Functions 3. First programs

27 cout << "You cheated ! " << endl ;
28 re turn 0 ;
29 }

One can also complete the supplementary program of the practical of Appendix A.1.
It is a ball bounding in a square. (See Appendix B for graphics instructions. . .)

1 # inc lude <Imagine/Graphics . h>
2 using namespace Imagine ;
3
4 i n t main ()
5 {
6 i n t w=300 , h=210;
7 openWindow (w, h) ; / / Graph i c window
8 i n t i =0 , j =0 ; / / P o s i t i o n
9 i n t di =2 , d j =3; / / Speed

10 while (t rue) {
11 f i l l R e c t (i , j , 4 , 4 ,RED) ; / / Draw b a l l
12 m i l l i S l e e p (1 0) ; / / Wait a l i t t l e b i t . . .
13 i f (i +di >w || i +di <0) {
14 di=−di ; / / H o r i z o n t a l rebound i f we e x i t
15 }
16 i n t ni= i +di ; / / New p o s i t i o n
17 i f (j +dj >h || j +dj <0) {
18 d j=−dj ; / / V e r t i c a l rebound i f we e x i t
19 }
20 i n t n j= j +d j ;
21 f i l l R e c t (i , j , 4 , 4 ,WHITE) ; / / E r a s e
22 i =ni ; / / Move t o new p o s i t i o n
23 j =n j ;
24 }
25 endGraphics () ;
26 re turn 0 ;
27 }

Notice the endGraphics() whose role is to wait a mouse click from the user before
terminating the program, so that the window remains visible as long as necessary.
This function is not standard and is in the namespace Imagine. Line 2 allows calling it
without providing its full name Imagine::endGraphics(). Other functions called in this
little program (openWindow, fillRect and milliSleep) come also from Imagine.

3.2 Functions

When everything is in main() one realizes fast that one has to copy/paste often pieces
of the program. If lines of code begin to look alike, it is likely an opportunity to build
functions. It is done for clarity, but also to preserve from typing too much on the
keyboard!

36

3. First programs 3.2. Functions

Figure 3.1: Random lines and circles. . .

One has to group identical pieces of code in functions:

• to get a clearer code. . .

• and to avoid getting tired!

It is important to understand when to make a function and not to decorate
a program in little pieces with any logic.a

aor just to please the instructor. Cutting randomly the program code is the best way to
dissuade doing it again.

Actually, the possibility of reusing previous work is the thread of good programming.
For the moment, we use functions only to reuse what we typed a few lines before.
Later, we will want to reuse what was written in other programs, maybe long before,
or in other people’s software, and we will see how to do it.

Let’s consider the following program that draws random lines and circles as shown
in Figure 3.1:

1 # inc lude <Imagine/Graphics . h>
2 using namespace Imagine ;
3 # include < c s t d l i b >
4 using namespace std ;
5
6 i n t main () {
7 openWindow (3 0 0 , 2 0 0) ;
8 f o r (i n t i =0 ; i <150; i ++) {
9 i n t x1=rand ()%300 ; / / I n i t i a l p o i n t

10 i n t y1=rand ()%200 ;
11 i n t x2=rand ()%300 ; / / F i n a l p o i n t
12 i n t y2=rand ()%200 ;
13 Color c=Color (rand ()%256 , rand ()%256 , rand () % 2 5 6) ; / / RGB
14 drawLine (x1 , y1 , x2 , y2 , c) ; / / L ine drawing
15 i n t xc=rand ()%300 ; / / C i r c l e c e n t e r

37

3.2. Functions 3. First programs

16 i n t yc=rand ()%200 ;
17 i n t rc=rand ()%10 ; / / Radius
18 Color cc=Color (rand ()%256 , rand ()%256 , rand () % 2 5 6) ; / / RGB
19 f i l l C i r c l e (xc , yc , rc , cc) ; / / C i r c l e
20 }
21 endGraphics () ;
22 re turn 0 ;
23 }

The first striking thing22 is the repeated call to rand() and to modulo to draw a random
number. We will often have to draw a number in a given interval and it is natural to
do it with a function. By the way, we fix another annoying thing: integers 300 and 200
come often. If we wanted to change the dimensions, we would have to replace 300 and
200 in numerous places.

From the beginning, one has to spot the constant parameters of the program
used several times and place them in constants. We save a lot of timea when
one wishes to change them later.

aAgain the rule of least effort. . . When we begin to do too much copy/paste or find/replace
with the editor, it’s a bad sign!

In short, our program becomes:

/ / Number be tween 0 and n−1
i n t chance (i n t n) {

re turn rand ()%n ;
}

i n t main () {
const i n t w=300 ,h=200;
openWindow (w, h) ;
f o r (i n t i =0 ; i <150; i ++) {

i n t x1=chance (w) , y1=chance (h) ; / / I n i t i a l p o i n t
i n t x2=chance (w) , y2=chance (h) ; / / F i n a l p o i n t
Color c=Color (chance (2 5 6) , chance (2 5 6) , chance (2 5 6)) ;
drawLine (x1 , y1 , x2 , y2 , c) ; / / L ine drawing
i n t xc=chance (w) , yc=chance (h) ; / / C i r c l e c e n t e r
i n t rc=chance (w/ 2 0) ; / / Radius
Color cc=Color (chance (2 5 6) , chance (2 5 6) , chance (2 5 6)) ;
f i l l C i r c l e (xc , yc , rc , cc) ; / / C i r c l e drawing

}
endGraphics () ;
re turn 0 ;

}

One could think that typing chance(w) is as long as typing rand()%w and that our
function is useless. This is not false, but in practice one could then forget the existence
of rand() and how to do a modulo. It is even better than that: we become independent

22besides obviously the syntax “object” of variables of type Color for which we indulge one
Color(r,g,b) well in advance on what we will learn. . .

38

3. First programs 3.2. Functions

of these functions and if you want to draw random numbers with another function,23

we would only have to change once function chance(). It is again an important rule.

We should also make a function when we want to separate and factorize
work. It is then easiera to modify the function than all the lines it replaced!

aLeast effort, always!

3.2.1 Return

We defined without explanation a function chance() that takes a parameter n of type
int and that returns a result, of type int also. There is not much more to know besides
that:

1. A function may not return anything. Its return “type” is then void and there is
no return at the end (though writing return; is admitted). For instance:

void say_he l lo_ to_ the_ lady (s t r i n g name_of_lady) {
cout << " Hello , Mrs " << name_of_lady << " ! " << endl ;

}
. . .

say_he l lo_ to_ the_ lady (" Germaine ") ;
say_he l lo_ to_ the_ lady (" F i t z g e r a l d ") ;

2. A function may have several return instructions. This allows exiting the function
when we want, what is much clearer and closer to our way of thinking:

i n t s ig n_ wi t h_ s i ng le _r e tu rn (double x) {
i n t s ;
i f (x==0)

s =0;
e l s e i f (x <0)

s =−1;
e l s e

s =1;
re turn s ;

}

i n t s ign_s impler (double x) {
i f (x <0)

re turn −1;
i f (x >0) / / Note no e l s e he r e , u s e l e s s

re turn 1 ;
re turn 0 ;

}

3. For a function void, one can use return without anything:

23What for? In our case the function rand() is enough for standard applications but may not be “ran-
dom enough” for math applications. At last, we forgot to initialize the random seed. If you please, we
will see another time what this means and how to do it.

39

3.2. Functions 3. First programs

void phone_with_single_return (s t r i n g name) {
i f (I_have_the_phone) {

i f (my_phone_works) {
i f (i n _ d i r e c t o r y (name)) {

i n t number=phone_number (name) ;
d i a l (number) ;
i f (answering) {

t a l k () ;
hang_up () ;

}
}

}
}

}
void phone_simpler (s t r i n g name) {

i f (! I_have_the_phone ||
! my_phone_works ||
! i n _ d i r e c t o r y (name))

re turn ;
i n t number=phone_number (name) ;
d i a l (number) ;
i f (! answering)

re turn ;
t a l k () ;
hang_up () ;

}

3.2.2 Parameters

We have only seen functions with a single parameter. Here is how to input several
parameters or none:

/ / Number be tween a and b
i n t chance2 (i n t a , i n t b) {

re turn a +(rand ()%(b−a + 1)) ;
}

/ / Number be tween 0 and 1
double chance3 () {

re turn rand () / double (RAND_MAX) ;
}
. . .

i n t a=chance2 (1 , 1 0) ;
double x=chance3 () ;

. . .

Beware to use x=chance3() and not simply x=chance3 to call a parameter-less function.
This simple program is also an opportunity to talk about a frequent error: the division
of two integers yields an integer! Writing double x=1/3; is a mistake since C++ first

40

3. First programs 3.2. Functions

computes 1/3 with integers, which yields 0, then converts 0 to double to put it in
x.24 It does not know when computing 1/3 that the result will be put in a double! One has
to ensure that 1 and 3 are in double and write double x=1.0/3.0;, double x=1.0/3; or
double x=1/3.0;. If, as in our case, we deal with variables of type int, one has to convert
one into double with syntax double (...) that we will see later.

1. Function without parameter: x=hop(); not x=hop;

2. Integer division:

• double x=1.0/3; not double x=1/3;

• double x=double(i)/j,a not double x=i/j, not double x=double(i/j)b

adouble x=double(i)/double(j); is fine also though more verbose.
bThis conversion into double arrives too late, division of integers was already performed!

3.2.3 Reference passing

When a function modifies the value of one of its parameters, and if that parameter
was a variable in the calling function, then this variable is not modified. The following
program fails its goal:

void t r i p l e (i n t x) {
x=x ∗3 ;

}
. . .

i n t a =2;
t r i p l e (a) ;
cout << a << endl ;

It display 2 and not 6. Actually, the parameter x of function triple is first 2, then 6. But
its turn to 6 does not modify a. We will see later that x is memorized somewhere else
than a, which explains everything! It is the value of a that is passed to function triple ()
and not the variable a itself! We talk about passing by value. One can still make sure
that the function modifies the parameter. We talk about passage by reference (or by
variable). We just need to append & after the parameter type:

void t r i p l e (i n t& x) {
x=x ∗3 ;

}

Generally, the following example is used to illustrate the need of references:

void swap1 (i n t x , i n t y) {
i n t t =x ;
x=y ;
y= t ;

}

24Version 2 of Python used to do the same. It was such a frequent error (and Python wants to be
friendly to beginners), that it was changed in Python 3. Future standards of C++ will never change that
for two reasons: (1) it is more logical not to change type between the operands and the result; (2) for
backward compatibility.

41

3.2. Functions 3. First programs

void swap2 (i n t& x , i n t& y) {
i n t t =x ;
x=y ;
y= t ;

}
. . .

i n t a =2 ,b =3;
swap1 (a , b) ;
cout << a << " " << b << " " ;
swap2 (a , b) ;
cout << a << " " << b << endl ;

. . .

It displays 2 3 3 2, swap1() doing nothing. Note that at the call site, nothing distin-
guishes the call by value or by variable, though your code editor may be smart enough
to put in slanted font the variables passed by reference and not by value.

A good way to understand passing by reference is to consider variables x and y of
swap1 as variables truly independent of a and b of the caller, whereas in the call swap2,
x and y of swap2 become “links” to a and b. Each time we use x in swap2, it is actually
a that is used. To understand even better, go see the first exercise of Practical 2 (A.2.1).

In practice,

one uses also reference passing for a function that needs to return several
things at once,

in the following manner:

void a_point (i n t& x , i n t& y) {
x = . . . ;
y = . . . ;

}
. . .

i n t a , b ;
a_point (a , b) ;

Our random drawing program can become:

1 # include <Imagine/Graphics . h>
2 using namespace Imagine ;
3 # include < c s t d l i b >
4 using namespace std ;
5
6 / / Number be tween 0 and n−1
7 i n t chance (i n t n) {
8 re turn rand ()%n ;
9 }

10
11 Color a_co lor () {
12 Color c o l =Color (chance (2 5 6) , chance (2 5 6) , chance (2 5 6)) ;
13 re turn c o l ;
14 }

42

3. First programs 3.2. Functions

15
16 void a_point (i n t w, i n t h , i n t& x , i n t& y) {
17 x=chance (w) ;
18 y=chance (h) ;
19 }
20
21 i n t main () {
22 const i n t w=300 ,h=200;
23 openWindow (w, h) ;
24 f o r (i n t i =0 ; i <150; i ++) {
25 i n t x1 , y1 ; / / I n i t i a l p o i n t
26 a_point (w, h , x1 , y1) ;
27 i n t x2 , y2 ; / / F i n a l p o i n t
28 a_point (w, h , x2 , y2) ;
29 Color c=a_co lor () ;
30 drawLine (x1 , y1 , x2 , y2 , c) ; / / L ine drawing
31 i n t xc , yc ; / / C i r c l e c e n t e r
32 a_point (w, h , xc , yc) ;
33 i n t rc=chance (w/ 2 0) ; / / Radius
34 Color cc=a_co lor () ;
35 f i l l C i r c l e (xc , yc , rc , cc) ; / / C i r c l e drawing
36 }
37 endGraphics () ;
38 re turn 0 ;
39 }

With the following advice:

one can use directly the result of a function without an intermediary vari-
able.

it even becomes

13 returnColor (chance (2 5 6) , chance (2 5 6) , chance (2 5 6)) ;

35 f i l l C i r c l e (xc , yc , rc , a_co lor ()) ; / / C i r c l e

and variables col (line 12) and cc (line 34) can be dropped.

3.2.4 Scope, Declaration, Definition

From the beginning, we created functions by defining them. It is sometimes useful to
know only the return type and the parameters of a function without having to know
how it is programmed, that is, without having the core of the function. One reason of
this need is:

So as variables, functions have a scope and are known only at lines that
follow it.

Therefore the following program does not compile:

43

3.2. Functions 3. First programs

1 i n t main () {
2 f () ;
3 re turn 0 ;
4 }
5 void f () {
6 }

since at line 2, f () is not yet known. It is enough here to move lines 5 and 6 before
main() so that it compiles. On the contrary, it is more complex to make compile:

void f () {
g () ; / / E r r o r : g () unknown

}
void g () {

f () ;
}

since both functions need each other, and no order would solve that. The following
rule saves us:

• Replacing the core of a function by a single ; is called declaration of
the function.

• Declaration of a function is enough for the compiler, it can “wait”a

until its definition.

aActually, the compiler needs only declaration. The linker will have to find somewhere the
function definition, or more exactly the result of the compiled code built from its definition!

The preceding program can compile with a single extra line:25

void g () ; / / D e c l a r a t i o n o f g
void f () {

g () ; / / OK: d e c l a r e d f u n c t i o n
}
void g () { / / D e f i n i t i o n o f g

f () ;
}

3.2.5 Local and global variables

We have seen Section 3.1.1 the scope of a variable. The rule of curly braces is obviously
also valid to the curly braces of the core of a function.

The variables of a function are unknown outside the function.

We talk about local variables. The following program is malformed:

void f () {
i n t x ;

25It compiles and runs, but when either one of the functions is called, the program would be caught
in an infinite loop. What will concretely happen is left as an experiment for the reader.

44

3. First programs 3.2. Functions

x =3;
}
void g () {

i n t y ;
y=x ; / / E r r o r : x unknown

}

If really two functions use common variables, one can “exit” them from functions.
They become then global variables, here is an example:

1 i n t z ; / / g l o b a l
2 void f () {
3 i n t x ; / / l o c a l
4 . . .
5 i f (x<z)
6 . . .
7 }
8 void g () {
9 i n t y ; / / l o c a l

10 . . .
11 z=y ;
12 . . .
13 }

The use of global variables is tolerated and sometimes justified.26 But it is a lazy solu-
tion beginners abuse of and we have to fight this tendency from the start:

Global variables must be avoided because:

• they allow abusive communication between functions, source of
bugsa.

• the functions that use them are often harder to reuse in other contexts.b

In general, they are a clue of a badly organized solution.

aThat is why non-constant variables are not tolerated from beginners. See the previous
program where g() talked to f () through z.

bIn particular, they interfere with parallelism.

3.2.6 Overload

It is sometimes useful to have a function accepting different types of arguments passed.
We can use overload for this:

Two functions that have different parameter numbers or types can have the
same name.a Warning: two functions with just different return types cannot
have the same name.b

aSince then the way they are called will allow the compiler to know which is meant.
bSince the compiler will not be able to differentiate their call.

26In that case, the usage of the variable in the functions may be written :: z to emphasize that z comes
“from outside”.

45

3.3. Practical 3. First programs

Our functions “chance” from above could be written:

1 / / Number be tween 0 and n−1
2 i n t chance (i n t n) {
3 re turn rand ()%n ;
4 }
5 / / Number be tween a and b
6 i n t chance (i n t a , i n t b) {
7 re turn a +(rand ()%(b−a + 1)) ;
8 }
9 / / Number be tween 0 and 1

10 double chance () {
11 return rand () / double (RAND_MAX) ;
12 }
13 . . .
14 i n t i =chance (3) ; / / in 0 . . . 2
15 i n t j =chance (2 , 4) / / in 2 . . . 4
16 double k=chance () ; / / in 0 . . . 1

The functions can do completely different and unrelated things, they do not share any
code. Obviously, it is a bad idea to use overload in that case.

3.3 Practical

You know already plenty after this (dense) lesson and are ready (after a well deserved
break) to try Practical 2 in Appendix A.2 in order to better understand the functions
and to play a game of mini tennis (Figure 3.2).

Figure 3.2: Mini tennis. . .

46

3. First programs 3.4. Reference Card

3.4 Reference Card

Reference Card (1/2)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)
return;

if (x>=w || y>=h)
return;

DrawPoint(x,y,RED);
}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

Miscellaneous

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/
double(RAND_MAX);

47

3.4. Reference Card 3. First programs

Reference Card (2/2)

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

Imagine++

• See documentation. . .

Keyboard

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

48

4. Arrays

Chapter 4

Arrays

While we continue using functions to assimilate them, we are going to add the arrays that we
would otherwise miss quickly. We will proceed slowly and will see only arrays of one dimension
with fixed size for a start. We will see in another chapter variable length arrays and questions
of memory (“stack” and “heap”).

—

4.1 First arrays

So as we needed at once loops to do similar things several times, it is useful to have the
possibility to so similar things on different variables. Hence arrays. . . The following
program

i n t x1 , y1 , u1 , v1 ; / / B a l l 1
i n t x2 , y2 , u2 , v2 ; / / B a l l 2
i n t x3 , y3 , u3 , v3 ; / / B a l l 3
i n t x4 , y4 , u4 , v4 ; / / B a l l 4
. . .
moveBall (x1 , y1 , u1 , v1) ;
moveBall (x2 , y2 , u2 , v2) ;
moveBall (x3 , y3 , u3 , v3) ;
moveBall (x4 , y4 , u4 , v4) ;

will be replaced with

i n t x [4] , y [4] , u [4] , v [4] ; / / B a l l s
. . .
f o r (i n t i =0 ; i <4 ; i ++)

moveBall (x [i] , y [i] , u [i] , v [i]) ;

in which int x[4] defines an array of 4 variables of type int: x[0], x[1], x[2] and x[3]. In
practice, the compiler reserves in memory a place to store the 4 variables and handle
things to that the request x[i] designates the right variable.

Another example to understand better, that adds some double variables by pairs
while memorizing the results:

double x [1 0 0] , y [1 0 0] , z [1 0 0] ;
. . .

4.1. First arrays 4. Arrays

. . . / / Here , x [i] and y [i] t a k e v a l u e s

. . .
f o r (i n t i =0 ; i <100; i ++)

z [i]= x [i]+y [i] ;
. . .
. . . / / Here , we use z [i]
. . .

It would have been nice to be able to write z=x+y; but it would not compile.1 As we
will see, with arrays, we have to do everything by hand (with loops)!

There are two essential things to memorize

1. First:

Indices of an array t of size n go from 0 to n-1. Any access to t[n]
(reading or writing) can provoke a serious error when running the pro-
gram. THAT IS ONE OF THE MOST COMMON ERRORS IN C++. Either
it would read or write in a place reserved for another variable,a or we
would access illegal memory and the program “crashes”.b.

aIn the example above, if we replaced the loop so that i went from 1 to 100, x[100]
would certainly fetch y[0] instead. In the same manner, z[100]may fetch the variable
i of the loop, which would risk producing strange things later, i taking an unexpected
value!

bAbove, z[i] with a wild i would write outside the memory reserved to data,
which would stop the program more or less delicately!

In the last example, we use x[0] to x[99]. It is customary to have the loop with
i<100 as test, rather than i<=99. But beware not to mix things and write i<=100!

2. Then:

an array must have a fixed size known at compilation time. This size
can be directly a number or a constant variable, but not a variable.

Even when we think the compiler should know the size, it plays dumb and ac-
cepts only constants:2

1 double x [1 0] , y [4] , z [5] ; / / OK
2 const i n t n=5;
3 i n t i [n] , j [2∗n] , k [n + 1] ; / / OK
4 i n t n1 ; / / n1 has no v a l u e
5 i n t t1 [n1] ; / / h e n c e ERROR
6 i n t n2 ;
7 c in >> n2 ; / / n2 t a k e s a va lue , but known
8 / / on ly a t runt ime
9 i n t t2 [n2] ; / / h e n c e ERROR

10 i n t n3 ;

1But we will find an elegant solution to this problem in a later chapter.
2Actually, your compiler may accept the code. Doing so, it does not respect the standard and you

take risks. Do not! The solution will come in a later chapter.

50

4. Arrays 4.2. Initialization

11 n3 =5; / / n3 t a k e s a va lue , known ,
12 / / but . . . no t c o n s t a n t
13 i n t t3 [n3] ; / / h e n c e ERROR (YES !)

Keeping in mind both points, we can easily use arrays. Beware though:

do not use an array where it is a waste of memory, notably when translating
a mathematical formula.

Let me explain. If you want to compute s =
∑100

i=1 f(i) with given f ,3 such as f(i) =
3i+ 4, do not write, as we see sometimes:

1 double f [1 0 0] ;
2 f o r (i n t i =1 ; i <=100; i ++)
3 f [i]=3∗ i +4 ;
4 double s ;
5 f o r (i n t i =1 ; i <=100; i ++)
6 s=s+ f [i] ;

neither, after having fixed bugs:

1 double f [1 0 0] ; / / S t o r e f (i) in f [i −1]
2 f o r (i n t i =1 ; i <=100; i ++)
3 f [i −1]=3∗ i +4 ; / / Beware i n d i c e s
4 double s =0; / / B e t t e r l i k e t h a t
5 f o r (i n t i =1 ; i <=100; i ++)
6 s=s+ f [i −1] ;

but rather directly without array:

1 double s =0;
2 f o r (i n t i =1 ; i <=100; i ++)
3 s=s +(3∗ i + 4) ; / / Or b e t t e r : s +=3∗ i +4

which saves for the machine an array (that is, memory), and for you bugs (hence your
nerves!). Note that we used the recurrence relation:

sk :=
k∑

i=1

f(i) = sk−1 + f(k)

to compute s100. Since to compute sk we need only to remember sk−1, we can use a
single variable s that we update.

4.2 Initialization

As for a variable, an array can be initialized when defined:

i n t t [4] = { 1 , 2 , 3 , 4 } ;
s t r i n g s [2] = { " hip " , " hop " } ;

3For secondary school pupils: meaning s = f(1) + f(2) + · · ·+ f(100).

51

4.3. Specifics of arrays 4. Arrays

Beware, the syntax for initialization does not work for assignment:4

i n t t [2] ;
t = { 1 , 2 } ; / / E r r o r !

4.3 Specifics of arrays

Arrays are special variables. They do not behave as other variables. . . 5

4.3.1 Arrays and Functions

So as variables, we need to pass arrays as arguments to functions. The syntax is simple:

void display (i n t s [4]) {
f o r (i n t i =0 ; i <4 ; i ++)

cout << s [i] << ’ ’ ; / / P r i n t a l l on same l i n e
}
. . .
i n t t [4] = { 1 , 2 , 3 , 4 } ;
d isplay (t) ; / / r e p l a c e s cout << t which d o e s not work

but two things must be remembered:

• An array is always passed as reference even though not using the ’&’.a

• A function cannot return an array.b

aA void f(int& t[4]) or any other syntax is an error.
bWe will understand later why, for efficiency matters, the designers of C++ wanted an

array not be passed by value and not returned.

hence:

1 / / Reminder : t h i s d o e s not work
2 void s e t 1 (i n t x , i n t val) {
3 x=val ;
4 }
5 / / Reminder : t h a t works|
6 void s e t 2 (i n t& x , i n t val) {
7 x=val ;
8 }
9 / / A f u n c t i o n working w i t h o u t ’& ’

10 void f i l l (i n t s [4] , i n t val) {
11 f o r (i n t i =0 ; i <4 ; i ++)

4We will see below that assignment does not even work between two arrays! All that nonsense will
be fixed with objects. . .

5It is frequent for programmers to use directly variables of type std::vector that are objects that
implement all functionalities of arrays, while behaving like standard variables. We prefer not mention-
ing more vector since understanding them requires knowledge of objects and of “template”. We
believe that knowledge of arrays, even if requiring some effort, is mandatory and helps understanding
memory management.

52

4. Arrays 4.3. Specifics of arrays

12 s [i]= val ;
13 }
14 . . .
15 i n t a =1;
16 s e t 1 (a , 0) ; / / a not s e t t o 0
17 cout << a << endl ; / / c h e c k
18 s e t 2 (a , 0) ; / / a i s s e t t o 0
19 cout << a << endl ; / / c h e c k
20 i n t t [4] ;
21 f i l l (t , 0) ; / / Put t [i] t o 0
22 display (t) ; / / c h e c k a l l t [i] a r e 0

and also:

1 / / Add two a r r a y s , no t even c o m p i l i n g
2 / / To r e t u r n an a r r a y
3 i n t sum1 (i n t x [4] , i n t y [4]) [4] { / / we c o u l d t h i n k add ing
4 / / [4] h e r e o r e l s e w h e r e :
5 / / no way !
6 i n t z [4] ;
7 f o r (i n t i =0 ; i <4 ; i ++)
8 z [i]= x [i]+y [i] ;
9 re turn z ;

10 }
11 / / In p r a c t i c e , we p r o c e e d l i k e t h i s
12 / / Sum o f two a r r a y s t h a t works .
13 void sum2 (i n t x [4] , i n t y [4] , i n t z [4])
14 f o r (i n t i =0 ; i <4 ; i ++)
15 z [i]= x [i]+y [i] ; / / OK: ’ z ’ p a s s e d as r e f e r e n c e !
16 }
17
18 i n t a [4] , b [4] ;
19 . . . / / f i l l a and b
20 i n t c [4] ;
21 c=sum1 (a , b) ; / / ERROR
22 sum2 (a , b , c) ; / / OK

At last, and used every time,

A function is not restricted to work on arrays of a unique size. . . but it is
impossible to ask an array its size!

We use the syntax int t [] as parameter to a function, without precising its size. As we
need to go along the array in the function and we cannot recover its size, we ask an
additional argument for the function:

1 / / Not working
2 void display1 (i n t t []) {
3 f o r (i n t i =0 ; i <SIZE (t) ; i ++) / / SIZE (t) d o e s not e x i s t !
4 cout << t [i] << ’ ’ ;
5 }

53

4.3. Specifics of arrays 4. Arrays

6 / / What we do in p r a c t i c e
7 void display2 (i n t t [] , i n t n) {
8 f o r (i n t i =0 ; i <n ; i ++)
9 cout << t [i] << ’ ’ ;

10 }
11 . . .
12 i n t t1 [2] = { 1 , 2 } ;
13 i n t t2 [3] = { 3 , 4 , 5 } ;
14 display2 (t1 , 2) ; / / OK
15 display2 (t2 , 3) ; / / OK

Note that even if a function sizeof does exist and we could substitute SIZE by it, it
would compile but still not work.

4.3.2 Assignment

It’s simple:

Assigning an array does not work! We need to handle elements of an array
one by one. . .

The code

i n t s [4] = { 1 , 2 , 3 , 4 } , t [4] ;
t =s ; / / ERROR a t c o m p i l a t i o n t ime

does not work and we need to write:

i n t s [4] = { 1 , 2 , 3 , 4 } , t [4] ;
f o r (i n t i =0 ; i <4 ; i ++)

t [i]= s [i] ; / / OK

The problem is that:

Assigning an array never works but does not always provoke a compila-
tion error, nor even a warning. It is the case between two array arguments
of functions. We will understand why later and what such an assignment
really means. . .

1 / / Func t i on not working
2 / / but c o m p i l i n g p e r f e c t l y , t h a n k s !
3 void s e t 1 (i n t s [4] , i n t t [4]) {
4 t =s ; / / Does not do what we mean
5 / / but c o m p i l e s w i t h o u t warning !
6 }
7 / / Working f u n c t i o n , and c o m p i l i n g ! :−)
8 void s e t 2 (i n t s [4] , i n t t [4]) {
9 f o r (i n t i =0 ; i <4 ; i ++)

10 t [i]= s [i] ; / / OK
11 }
12 . . .

54

4. Arrays 4.4. Recreation

Figure 4.1: Bouncing balls. . . (still fixed! Go to web page for an animated program!)

13 i n t s [4] = { 1 , 2 , 3 , 4 } , t [4] ;
14 s e t 1 (s , t) ; / / No e f f e c t
15 s e t 2 (s , t) ; / / OK

4.4 Recreation

4.4.1 Multi-balls

We will take again the program with the bouncing ball, given in Section 3.1.4, but
improved with functions and constants, of the practical of Appendix A.2. Thanks to
arrays, it is easy to have several moving balls at once. We draw also randomly the
color, initial position and initial speed of balls. Several functions may be unknown to
you:

• The initialization of random generator with srand((unsigned int)time(0)), which
is explained in Practical 3 (Appendix A.3)

• The functions noRefreshBegin and noRefreshEnd that are used to accelerate the
display of all balls (see documentation of Imagine++ at Appendix B).

Here is the listing of the program (display example (unfortunately static!) Figure 4.1):

1 # include <Imagine/Graphics . h>
2 using namespace Imagine ;
3 # include < c s t d l i b >
4 # include <ctime >
5 using namespace std ;
6 /
7 / / C o n s t a n t s o f program
8 const i n t width =256; / / Window width
9 const i n t height =256; / / Window h e i g h t

10 const i n t ballRad =4; / / Radius o f b a l l

55

4.4. Recreation 4. Arrays

11 const i n t nb_ba l l s =30; / / Number o f b a l l s
12 /
13 / / Random g e n e r a t o r
14 / / C a l l i t on ly once , b e f o r e Random ()
15 void initRand () {
16 srand ((unsigned i n t) time (0)) ;
17 }
18 / / Between a and b
19 i n t random (i n t a , i n t b) {
20 return a +(rand ()%(b−a + 1)) ;
21 }
22 /
23 / / Random p o s i t i o n and s p e e d
24 void i n i t B a l l (i n t &x , i n t &y , i n t &u , i n t &v , Color &c) {
25 x=random (ballRad , width−ballRad) ;
26 y=random (ballRad , height−ballRad) ;
27 u=random (0 , 4) ;
28 v=random (0 , 4) ;
29 c=Color (byte (random (0 , 2 5 5)) ,
30 byte (random (0 , 2 5 5)) ,
31 byte (random (0 , 2 5 5))) ;
32 }
33 /
34 / / D i s p l a y o f b a l l
35 void d i s p l a y B a l l (i n t x , i n t y , Color c o l) {
36 f i l l R e c t (x−ballRad , y−ballRad , 2∗ ballRad +1 ,2∗ ballRad +1 , c o l) ;
37 }
38 /
39 / / Move b a l l
40 void moveBall (i n t &x , i n t &y , i n t &u , i n t &v) {
41 / / L e f t and r i g h t bounc ing
42 i f (x+u>width−ballRad || x+u<ballRad)
43 u=−u ;
44 / / Top and bot tom bounc ing
45 i f (y+v<ballRad || y+v>height−ballRad)
46 v=−v ;
47 / / Update p o s i t i o n
48 x+=u ;
49 y+=v ;
50 }
51 /
52 / / Main f u n c t i o n
53 i n t main () {
54 / / Open t h e window
55 openWindow (width , height) ;
56 / / P o s i t i o n and s p e e d o f b a l l s
57 i n t xb [nb_ba l l s] , yb [nb_ba l l s] , ub [nb_ba l l s] , vb [nb_ba l l s] ;
58 Color cb [nb_ba l l s] ; / / C o l o r s o f b a l l s

56

4. Arrays 4.4. Recreation

59 initRand () ;
60 f o r (i n t i =0 ; i <nb_ba l l s ; i ++) {
61 i n i t B a l l (xb [i] , yb [i] , ub [i] , vb [i] , cb [i]) ;
62 moveBall (xb [i] , yb [i] , ub [i] , vb [i]) ;
63 }
64 / / Main l o o p
65 while (t rue) {
66 m i l l i S l e e p (2 5) ;
67 noRefreshBegin () ;
68 f o r (i n t i =0 ; i <nb_ba l l s ; i ++) {
69 d i s p l a y B a l l (xb [i] , yb [i] ,WHITE) ;
70 moveBall (xb [i] , yb [i] , ub [i] , vb [i]) ;
71 d i s p l a y B a l l (xb [i] , yb [i] , cb [i]) ;
72 }
73 noRefreshEnd () ;
74 }
75 endGraphics () ;
76 re turn 0 ;
77 }

4.4.2 With shocks!

It is then not too complicated to modify the program so that balls bounce on each other.
The following listing was built as follows:

1. When a ball moves, we check also if it meets another ball. Therefore, moveBall
needs to know the location of other balls. We thus modify moveBall by passing
complete arrays of positions and speeds, and just specifying the index of ball to
move (lines 70 and 108). The loop of line 77 checks then via the test line 80 if
another ball is shocked by the current one. In which case, we call ShockBalls that
modifies the speeds of the balls. Note lines 78 and 79 that avoid considering the
shock of a ball with itself (we will see the instruction continue another time).

2. The formulas for shocks can be found easily on the web. The function shockBalls
implements the formulas. (Note the inclusion of file <cmath> to access the square
root function sqrt () , the sine and cosine functions cos() and sin () , and arc-cosine
function acos().

3. We then realize that integer variables that store position and speed have rounding
errors that accumulate and that speeds become null! We switch all concerned
variables to double, thinking of converting them to int for display (line 36).6

All that gives a more animated program. We can obviously not observe the difference
on a static figure. Download the program on the web page and try it!

6Forgetting the conversion is not a mistake, but the compiler may signal warnings to make the pro-
grammer aware that decimals may be lost in the implicit conversions. To appease it and let it know that
the programmer is aware, an explicit conversion is advised.

57

4.4. Recreation 4. Arrays

22 /
23 / / Random p o s i t i o n and s p e e d
24 void i n i t B a l l (double &x , double &y , double &u , double &v , Color &c) {
25 x=random (ballRad , width−ballRad) ;
26 y=random (ballRad , height−ballRad) ;
27 u=random (0 , 4) ;
28 v=random (0 , 4) ;
29 c=Color (byte (random (0 , 2 5 5)) ,
30 byte (random (0 , 2 5 5)) ,
31 byte (random (0 , 2 5 5))) ;
32 }
33 /
34 / / D i s p l a y o f b a l l
35 void d i s p l a y B a l l (double x , double y , Color c o l) {
36 f i l l R e c t (i n t (x)−ballRad , i n t (y)−ballRad ,
37 2∗ballRad +1 ,2∗ ballRad +1 , c o l) ;
38 }
39 /
40 / / E l a s t i c s h o c k o f two s p h e r i c a l b a l l s
41 / / c f l a b o . n t i c . o rg
42 # include <cmath>
43 void shockBal l s (double&x1 , double&y1 , double&u1 , double&v1 ,
44 double&x2 , double&y2 , double&u2 , double&v2)
45 {
46 / / D i s t a n c e
47 double o2o1x=x1−x2 , o2o1y=y1−y2 ;
48 double d= s q r t (o2o1x∗o2o1x+o2o1y∗o2o1y) ;
49 i f (d==0) re turn ; / / Same c e n t e r ?
50 / / Frame (o2 , x , y)
51 double Vx=u1−u2 , Vy=v1−v2 ;
52 double V= s q r t (Vx∗Vx+Vy∗Vy) ;
53 i f (V==0) re turn ; / / Same s p e e d ?
54 / / Next f rame V (o2 , i , j)
55 double i x =Vx/V, iy=Vy/V, j x=−iy , j y = i x ;
56 / / He ight
57 double H=o2o1x∗ j x +o2o1y∗ j y ;
58 / / Angle
59 double th=acos (H/d) , c=cos (th) , s=s i n (th) ;
60 / / Speed a f t e r s h o c k in (o2 , i , j)
61 double v1i=V∗c∗c , v1 j=V∗c∗s , v2i=V∗ s∗s , v2 j=−v1 j ;
62 / / In o r i g i n a l f r ame (O, x , y)
63 u1=v1i ∗ i x +v 1 j ∗ j x +u2 ;
64 v1=v1i ∗ iy+v1 j ∗ j y +v2 ;
65 u2+=v2i ∗ i x +v 2 j ∗ j x ;
66 v2+=v2i ∗ iy+v2 j ∗ j y ;
67 }
68 /
69 / / Motion o f b a l l
70 void moveBall (double x [] , double y [] , double u [] , double v [] , i n t i)
71 { / / Bounce on l e f t and r i g h t b o r d e r s
72 i f (x [i]+u [i] >width−ballRad || x [i]+u [i] < ballRad)

58

4. Arrays 4.4. Recreation

73 u [i]=−u [i] ;
74 / / Bound on t o p and bot tom b o r d e r s
75 i f (y [i]+v [i] < ballRad || y [i]+v [i] > height−ballRad)
76 v [i]=−v [i] ;
77 f o r (i n t j =0 ; j <nb_ba l l s ; j ++) {
78 i f (j == i)
79 continue ;
80 i f (abs (x [i]+u [i]−x [j]) <2∗ ballRad &&
81 abs (y [i]+v [i]−y [j]) <2∗ ballRad) {
82 shockBal l s (x [i] , y [i] , u [i] , v [i] , x [j] , y [j] , u [j] , v [j]) ;
83 }
84 }
85 / / Update p o s i t i o n
86 x [i]+=u [i] ;
87 y [i]+=v [i] ;
88 }
89 /
90 / / Main f u n c t i o n
91 i n t main () {
92 / / Opening window
93 openWindow (width , height) ;
94 / / P o s i t i o n and s p e e d o f b a l l s
95 double xb [nb_ba l l s] , yb [nb_ba l l s] , ub [nb_ba l l s] , vb [nb_ba l l s] ;
96 Color cb [nb_ba l l s] ; / / C o l o r s o f b a l l s
97 initRand () ;
98 f o r (i n t i =0 ; i <nb_ba l l s ; i ++) {
99 i n i t B a l l (xb [i] , yb [i] , ub [i] , vb [i] , cb [i]) ;

100 d i s p l a y B a l l (xb [i] , yb [i] , cb [i]) ;
101 }
102 / / Main l o o p
103 while (t rue) {
104 m i l l i S l e e p (2 5) ;
105 noRefreshBegin () ;
106 f o r (i n t i =0 ; i <nb_ba l l s ; i ++) {
107 d i s p l a y B a l l (xb [i] , yb [i] ,WHITE) ;
108 moveBall (xb , yb , ub , vb , i) ;
109 d i s p l a y B a l l (xb [i] , yb [i] , cb [i]) ;
110 }
111 noRefreshEnd () ;
112 }
113 endGraphics () ;
114 return 0 ;
115 }

4.4.3 Shuffling letters

The following program considers a sentence and shuffles randomly the internal letters
of each word (that is, without touching extremities). It uses the type string, string of
characters, for which s[i] returns the ith character of string s, and s . size () the number
of characters of s (we will explain later the notation “object” of this function). The

59

4.4. Recreation 4. Arrays

considered sentence may become:

Tihs litlte sennctee sohuld slitl be raedable for yuor poor biarn

Have you got it? Doesn’t matter! It is the listing you will understand:

1 # include <iostream >
2 # include < s t r i n g >
3 # include < c s t d l i b >
4 # include <ctime >
5 using namespace std ;
6
7 /
8 / / Random g e n e r a t o r
9 / / C a l l on ly once , b e f o r e Random ()

10 void initRand () {
11 srand ((unsigned i n t) time (0)) ;
12 }
13 / / Between a and b
14 i n t random (i n t a , i n t b) {
15 return a +(rand ()%(b−a + 1)) ;
16 }
17
18 /
19 / / S h u f f l e i n t e r n a l l e t t e r s n t i m e s
20 s t r i n g s h u f f l e (s t r i n g s , i n t n) {
21 i n t l = i n t (s . s i z e ()) ;
22 i f (l <=3)
23 return s ;
24 s t r i n g t =s ;
25 f o r (i n t i =0 ; i <n ; i ++) {
26 i n t a=random (1 , l −2) ;
27 i n t b ;
28 do
29 b=random (1 , l −2) ;
30 while (a==b) ;
31 char c= t [a] ;
32 t [a]= t [b] ; t [b]= c ;
33 }
34 return t ;
35 }
36
37 i n t main () {
38 const i n t n=11;
39 s t r i n g phrase [n] = { " This " , " l i t t l e " , " sentence " , " should " ,
40 " s t i l l " , " be " , " readable " , " f o r " , " your " ,
41 " poor " , " bra in " } ;
42
43 initRand () ;

60

4. Arrays 4.5. Practical

Figure 4.2: Mastermind. . .

44 f o r (i n t i =0 ; i <n ; i ++)
45 cout << s h u f f l e (phrase [i] , 3) << " " ;
46 cout << endl ;
47
48 return 0 ;
49 }

4.5 Practical

We can now proceed to the third Practical of Appendix A.3 so as to understand better
arrays and also to get a game of Mastermind (see Figure 4.2 for an example of an
interesting game!).

4.6 Reference card

As promised, we complete, in color, the “reference card” with what we saw in the chap-
ter and the associated Practical.

61

4.6. Reference card 4. Arrays

Reference Card (1/2)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

62

4. Arrays 4.6. Reference card

Reference Card (2/2)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

Imagine++

• See documentation. . .

Keyboard

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

63

5. Structures

Chapter 5

Structures

Functions and loops allowed us to group identical instructions, and arrays to group variables
of the same type. However, to handle several variables together, it is necessary to build data
structures. . .

—

5.1 Reminders

Before this, it may not be a waste of time to insert a small reminder that will be a
repertory of classic errors of numerous beginners. . . and even some more rare but also
more original of a few! Some would prevent compilation of the program, so are rather
easy to fix; but others respect the syntax but do not do what is intended, they are harder
to find. At last, we will repeat again the same advice.

5.1.1 Classic mistakes

With no particular order:

• Putting a single = in tests: if (i=2)

• Forgetting parentheses: if i==2

• Using then: if (i==2) then

• Putting commas in for: for(int i=0, i<100, i++)

• Forgetting parentheses when calling a function with no argument:

i n t f () { . . . }
. . .
i n t i = f ;

• Assigning an array to another:

i n t s [4] = { 1 , 2 , 3 , 4 } , t [4] ;
t =s ;

5.1. Reminders 5. Structures

5.1.2 Original mistakes

There, the beginner dos not make a mistake, but invents squarely with the hope it
would work. Often, neither does it exist, nor does it follow C++ syntax. Two examples:

• Mixing syntax (just a little!):

void s e t (i n t t [5]) {
. . .

}
. . .
i n t s [5] ; / / F ine up t o t h i s p o i n t
s e t (i n t s [5]) ; / / Th i s i s c r a z y !

instead of simply:

s e t (s) ;

• Wanting to do several things at once, or not understanding that a program is
a sequence of instructions to run one after another and not a formula.1 For
instance, believing that for is a mathematical symbol as

∑n
1 or

⋃n
1 . In this case,

to run an instruction when all ok(i) are true, we have seen some trial like this:

i f (f o r (i n t i =0 ; i <n ; i ++) ok (i)) / / Big a r t . . .
. . .

whereas we have to write:

bool a l l o k =true ;
f o r (i n t i =0 ; i <n ; i ++)

a l l o k =(a l l o k && ok (i)) ;
i f (a l l o k)

. . .

or even better (do you spot the difference?):

bool a l l o k =true ;
f o r (i n t i =0 ; i <n && a l l o k ; i ++)

a l l o k =(a l l o k && ok (i)) ;
i f (a l l o k)

. . .

that may be simplified as:

bool a l l o k =true ;
f o r (i n t i =0 ; i <n && a l l o k ; i ++)

a l l o k =ok (i) ;
i f (a l l o k)

. . .

1Do not make me say what I did not! Theoretical computer scientists consider sometimes programs
as formulas, but it is not relevant here!

66

5. Structures 5.2. Structures

It can be understood that the beginner could be subject to lack of knowledge, bad un-
derstanding of previous lessons, confusion with another language, or limitless imagi-
nation! However, it has to be remembered that a language is also a program, limited
and conceived to do certain precise things. Therefore, it is wise to adopt the following
prudent behavior:

Everything not presented as possible is impossible!

5.1.3 Advice

• Indent. Indent. Indent, please!2

• Click on error messages in your IDE to go directly to the right line!3

• Try not to leave warnings.

• The debugger is your friend, use it!

5.2 Structures

5.2.1 Definition

When arrays allow handling multiple variables of the same type, structures are used
to group several variables to use them together. We create a new type, whose variables
become “sub-variables” called fields of the structure. Here is an example of type Point
with two fields of type double called x and y:

s t r u c t Point {
double x , y ;

} ;

Fields are defined with the same syntax as local variables in a function. Beware still:

Do not forget the semicolon after the definition of the structure!a

aAn unfortunate constraint imposed by compatibility with the C language.

The usage is then easy. The structure is a new type, handled exactly like others, with
the specificity that fields are accessed with a dot:

Point a ;
a . x = 2 . 3 ;
a . y = 3 . 4 ;

We can obviously define fields with different types, and even structures inside struc-
tures:

2Ctrl+A Ctrl+I in Qt Creator
3Window 1 “Issues” in Qt Creator

67

5.2. Structures 5. Structures

s t r u c t C i r c l e {
Point c e n t e r ;
double radius ;
Color c o l o r ;

} ;
C i r c l e C;
C. c e n t e r . x = 1 2 . ;
C . c e n t e r . y = 1 3 . ;
C . radius = 1 0 . 4 ;
C . c o l o r =RED;

The interest of structures is obvious and we must

Group in structures variables as soon as we understand they are logically
linked. If a program becomes tiresome as we input systematically several
identical variables to many functions, it is likely that the parameters could
be grouped in a structure. It will become simpler and clearer.

5.2.2 Usage

Structures are used exactly as other types.4 Definition, assignment, initialization, argu-
ment passing, return of a function: everything is identical to basic, built-in types. Only
innovation: we use curly brackets to precise the values of fields in case of initializa-
tion.5 We can of course have arrays of structures. . . and even have a field of type array!
The following lines are not difficult to understand:

Point a = { 2 . 3 , 3 . 4 } , b=a , c ; / / I n i t i a l i z a t i o n
c=a ; / / Ass ignments
C i r c l e C= { { 1 2 , 1 3 } , 1 0 . 4 ,RED } ; / / I n i t i a l i z a t i o n
. . .
double d i s t (Point a , Point b) { / / Value p a s s i n g

re turn s q r t ((a . x−b . x) ∗ (a . x−b . x) + (a . y−b . y) ∗ (a . y−b . y)) ;
}
void magnify (C i r c l e& C, double s c a l e) { / / R e f e r e n c e p a s s i n g

C. radius∗= s c a l e ; / / Change r a d i u s
}
Point middle (Point a , Point b) { / / r e t u r n

Point M;
M. x =(a . x+b . x) / 2 ;
M. y=(a . y+b . y) / 2 ;
re turn M;

}
. . .
Point P [1 0] ; / / Array o f s t r u c t u r e s
f o r (i n t i =0 ; i <10; i ++) {

P [i] . x= i ;

4Besides, we promised that arrays were particular (reference passing, no possible return, no
assignment)

5As for an array!

68

5. Structures 5.2. Structures

Figure 5.1: Celestial objects and duel. . .

P [i] . y= f (i) ;
}
. . .
/ / An embryo o f a game o f Yam ’ s :
s t r u c t Drawing {

i n t dice [5] ; / / F i e l d o f t y p e a r r a y
} ;
Drawing r o l l _ d i c e () {

Drawing t ;
f o r (i n t i =0 ; i <5 ; i ++)

t . d ice [i]=1+ rand ()%6 ; / / Dice from 1 t o 6
re turn t ;

}
. . .
Drawing t ;
t = r o l l _ d i c e () ;

Beware, like for arrays, the syntax used for initialization may not work for assign-
ment:6

Point P ;
P = { 1 , 2 } ; / / E r r o r !

Besides, let us repeat:

Everything not presented as possible is impossible!

6It will get better with objects. To be noticed: this restriction does not apply any more to simple
structures with not too old compilers.

69

5.3. Recreation: Practical 5. Structures

5.3 Recreation: Practical

We are now ready for Practical of Appendix A.4 to familiarize with structures. We will
even have arrays of structures, yes!7 We will get a projectile navigating among stars
then a space duel! (Figure 5.1)

5.4 Reference card

Once again, we complete, in color, the “reference card” with was has been learned in the
chapter and Practical.

Reference Card (1/3)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;

signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

7For secondary school pupils: this Practice includes mathematics and physics for advanced stu-
dents. . . but it can be done while ignoring all that!

70

5. Structures 5.4. Reference card

Reference Card (2/3)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

Tableaux

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Common errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

71

5.4. Reference card 5. Structures

Reference Card (3/3)

Imagine++

• See documentation. . .

Keyboard

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

72

6. Several Files!

Chapter 6

Several Files!

At the latest Practical, we built two projects almost similar whose main() function was dif-
ferent. Modifying a function in the common part would require fixing it in both projects. We
will now factorize this common part in a single file, so as to ease possible future modifications.
Along the way1 we will see how to define an operator on new types.

—

Let us sum up our progress in the programmer’s know-how:

1. Programming all in main(): it is a beginning and it is already good!

2. Make functions: to be more readable and not to repeat! (Axis of instructions)

3. Make arrays and structures: to handle several variables together. (Axis of data)

We append now:

4. Make several files: to use common parts in different projects. (Again, axis of
instructions)

Figure 6.1: Several source files (in Qt Creator). Notice they are mentioned in line
add_executable of file CMakeLists.txt with a simple blank space as separator.

1Always the idea that we explore the components of the language when we need them.

6.1. Separate Files 6. Several Files!

6.1 Separate Files

We will distribute our source code into several files. Before all:

For maximum portability of code, choose file names with standard char-
acters (neither accented characters nor spaces). Use also lower case letters
only.a

aNothing prevents having upper case letters, but they may reduce portability if the case is
not respected in the file CMakeLists.txt.

Besides, avoid also accents in identifiers (variable and function names), source code is
not French. . .

6.1.1 Principle

Until now, a single source contained our full C++ program. This source file was trans-
formed into object file by the compiler, then the linker completed the object file with
C++ libraries to build an executable file. Actually, a project can contain several source
files. It is enough to append a .cpp file to the list of project sources:

• In Qt Creator, open menu File/New File or Project or type Ctrl+N, then
choose as model C++ Source File, give it a name.

• Append the file name in CMakeLists.txt:

add_executable (Hop main . cpp hop . cpp)

When adding the C++ file hop.cpp to a project with already main.cpp, we get in a
situation identical to Figure 6.1 (be patient for the explanation of hop.h in the screen-
shot).

After that, each build of the project will include:

1. Compilation: every source file is transformed into object file (same name but with
suffix .obj). Source files are thus compiled independently.

2. Link: all object files are grouped (and completed with C++ libraries) in a single
executable file.

Part of the instructions of the main file (the one containing main()) can thus be trans-
ferred to another file. This part will be compiled separately and linked at the end of
build. We then have the following problem: how do we use in main file what is con-
tained in other files? Indeed, we knew (Section 3.2.4) that a function was “known”
only in lines following its definition or declaration. By “known”, we meant that the
compiler understands there exists somewhere a function with such name, such return
type and arguments. Unfortunately:2

a function is not “known” outside its file. To use it in another file, we must
declare it there!

2Fortunately, actually, as when we group files from different locations, it is better that not everything
gets mixed in chaotic manner. . .

74

6. Several Files! 6.1. Separate Files

We can proceed as follows:

• File hop.cpp:

/ / D e f i n i t i o n s
void f (i n t x) {

. . .
}
i n t g () {

. . .
}
/ / Other f u n c t i o n s
. . .

• File main.cpp:

/ / D e c l a r a t i o n s
void f (i n t x) ;
i n t g () ;
. . .
i n t main () {

. . .
/ / Usage
i n t a=g () ;
f (a) ;
. . .

We could also declare in hop.cpp some functions of main.cpp to use them. Beware
still: if files use each other’s functions, it may be the case that we did not separate
sources conveniently.

6.1.2 Advantages

Our initial motivation was to put a part of the code in a separate file to use it in another
project. Actually, cutting code in several files has other advantages:

• Make the code more readable and avoid too large files.

• Make compilation faster. When a program becomes long and complex, compi-
lation time may increase significantly. When we build a project the programming
environment only recompiles source files that were modified since the last build.
It would be indeed useless to recompile a source file not modified and get the
same object file!3 Therefore, changing a few lines in a file will not force a compi-
lation of the full program but only of the concerned file.

Beware still not to separate into too many files! It becomes then more complex to grasp
the logic and to navigate between files.

3It is actually slightly more complicated: a source may depend, via inclusions (Section 6.1.4), on other
files, that may have been modified themselves! We need then to recompile a file whose dependency was
modified. Such dependencies are automatically handled by CMake.

75

6.1. Separate Files 6. Several Files!

Figure 6.2: Same source file in two projects: hop.cpp and hop.h are shared between
both projects, even though they are in same folder Project

6.1.3 Usage in another project

6.1.4 Header files

A separate file allows use to factorize source code. However, we need to type decla-
rations in all files using them. We can do better.4 For that, it is time to explain the
instruction #include that we used from the beginning:

The line #include "name" is automatically replaced with the contents of
file name before proceeding to compilation.

It’s all about replacing by the complete contents of file name as with a simple copy/-
paste. This operation is done just before the compilation step by a program we did not
talk about: the preprocessor. Lines beginning with # are for it. We will see others. Notice
that until now we used a slightly different syntax: #include <name>, which fetches file
name in C++ libraries.5.

Thanks to this possibility of the preprocessor, we just need to put the declarations
related to the separate file in a third file and include it in main files. It is usual to use
the same name for this additional file, but with extension .h: we call it a header file.6.
To create a file, do as the source, but choose “C++ Header File” instead of “C++ Source
File”. Here is what we get:

• File hop.cpp:

/ / D e f i n i t i o n s
void f (i n t x) {

. . .
}

4Again the least effort. . .
5Header files as iostream, etc. are sometimes called system headers. Their name does not end with

the usual .h (see later), but nothing distinguishes them fundamentally from a usual header file. Some
names of system headers begin with an unexpected letter c, like cmath; it is because they are inherited
from language C.

6.h like header, we can see also sometimes .hpp to distinguish them from C headers.

76

6. Several Files! 6.1. Separate Files

i n t g () {
. . .

}
/ / Other f u n c t i o n s
. . .

• File hop.h:

/ / D e c l a r a t i o n s
void f (i n t x) ;
i n t g () ;

• File main.cpp of first project:

inc lude " hop . h"
. . .
i n t main () {

. . .
/ / Usage
i n t a=g () ;
f (a) ;
. . .

• File main2.cpp of second project (we may need to precise the location of the
header file in the hierarchy, which may be in the folder of the first project7):

inc lude " . . / P r o j e c t 1 /hop . h"
. . .
i n t main () {

. . .
/ / Usage
f (1 2) ;
i n t b=g () ;
. . .

Actually, to be sure that functions defined in hop.cpp are coherent with their decla-
ration in hop.h, and though not mandatory, we include also the header file in source,
yielding:

• File hop.cpp:

inc lude " hop . h"
. . .
/ / D e f i n i t i o n s
void f (i n t x) {

. . .
}
i n t g () {

. . .

7One can also precise to the compiler a list of folders where to fetch header files, see Section 6.1.8.

77

6.1. Separate Files 6. Several Files!

}
/ / Other f u n c t i o n s
. . .

In practice, the header file does not contain only declaration of functions but also
definition of new types (structures) used by the separate file. Indeed, such new types
must be known from separate file but also from main file. We must therefore:

1. Include in header file the declaration of functions and definition of
new types.

2. Include the header file in the main file and in the separate file.

For example:

• File vect.h:

/ / Types
s t r u c t Vector {

double x , y ;
} ;
/ / D e c l a r a t i o n s
double norm (Vector V) ;
Vector plus (Vector A, Vector B) ;

• File vect.cpp:

inc lude " vect . h " / / F u n c t i o n s and t y p e s
/ / D e f i n i t i o n s
double norm (Vector V) {

. . .
}
Vector plus (Vector A, Vector B) {

. . .
}
/ / Other f u n c t i o n s
. . .

• File main.cpp of first project:

inc lude " vect . h "
. . .
i n t main () {

. . .
/ / Usage
Vector C=plus (A, B) ;
double n=norm (C) ;
. . .

78

6. Several Files! 6.1. Separate Files

Your development environment allows navigating easily between files of your project.
For instance with Qt Creator, you can switch from header to source or vice-versa by
option “Switch Header/Source” (F4) or by contextual menu with right click in editor.
To follow the include, you can also set position on the name of the file and choose
option “Follow Symbol Under Cursor” (F2) of the same menu.

6.1.5 Don’ts. . .

It is “strongly” advised to

1. not declare in the header file all functions of separate file, but only the ones used
by the main file. Secondary files do not need to appear.8

2. not include a separate file itself! It is generally a “big mistake”.9 Therefore

never #include "vect.cpp"!

6.1.6 Implementation

Finally, the philosophy of the system is that

• The separate file and its header form a coherent set, implementing cer-
tain functionalities.

• The one using them, which may not be the one that programmed them,
just adds these files to the project, include header in sources and take
advantage of what the header declares.

• The header file must be clear and informative enough so that the user
does not need to look in the separate file itself. a

aBesides, the user looking at it may be tempted to use more than the header declares. The
creator of the separate file and of the header can later be led to change in the source the manner
to program the functions without changing the functionalities. The user has not respected the
rule of the game and “cheated” by looking inside the separate file. We will come back to that
with objects. We will be able to prevent the user from cheating. . . Anyway, at our level, creator
and user are the same person.

6.1.7 Mutual inclusions

When practicing, the beginner discovers frequently problems not anticipated from the
course. The most frequent happening with header files is the one of mutual inclusion.
It may happen that header files need to include others. If file A.h includes B.h and
if B.h includes A.h then every inclusion of A.h or B.h results in endless inclusions

8We should even hide them to prevent the principal file from using them. It would be possible to do
this right away, but we will talk again about that with objects. . .

9A same function can be defined several times: in the separate file and in the principal file that
includes it. Whereas it is possible to declare many times at will a function, it is forbidden to define it
several times (do not mix that with overload that makes possible to existence of several functions with
the same name—see Section 3.2.6)

79

6.1. Separate Files 6. Several Files!

that provoke eventually an error.10 To avoid the problem, we use an instruction of the
preprocessor signaling that a file included once must not be included again: we add

#pragma once at the beginning of the header file.

Some compilers (or rather, preprocessors) may not understand #pragma once be-
cause is it not standard.11 In that case, a trick is used, that we expose without explana-
tion:

• Choose a name unique to the header file. For instance VECT_H for file vect.h.

• Write #ifndef VECT_H and #define VECT_H at beginning of file vect.h and
#endif at the end.

This uses the command ifdef of the preprocessor. Let us note another usage some-
times useful when developping so that the compiler ignores a block of code (maybe
because it is not ready yet):

i f 0
Whatever i s here w i l l be ignored by the compiler .

endi f

6.1.8 Inclusion path

Since #include takes a file, a legitimate question is where the preprocessor fetches it.
For system headers, such as #include <iostream>, the location is known from the com-
piler and we do not need to care about them. For others, two rules are used:

• in current folder, the one containing the cpp;

• in a list of folders indicated by the user.

In the second case, there is an instruction include_directories in CMake, to be
used in CMakeLists.txt. For example, when one writes12

include " Imagine/Graphics . h"

it will search for a folder Imagine containing a file Graphics.h. (Always use direct
slash /, which works on all platforms, not backslash \ that works only under Win-
dows.) To know where to find it, we have in CMakeLists.txt:

find_package(Imagine)
ImagineUseModules(Mastermind Graphics)

The command ImagineUseModules is specific to Imagine++ (available after the com-
mand find_package), but calls include_directories by giving as path

<Imagine_DIR>/include

with <Imagine_DIR> the installation folder of Imagine++.

10Preprocessors are fortunately able to detect this.
11The compiler you will use does, so prefer the advice we gave instead of the portable one.
12Note that preprocessor directives do not end with a semicolon.

80

6. Several Files! 6.2. Operators

6.2 Operators

C++ allows defining operators +, -, etc. when operands are new types. Here is how to
do it. The reader is encouraged to discover alone which operators may be defined.

Let’s consider the following example that defines a vector 2D and implements ad-
dition:13

s t r u c t vect {
double x , y ;

} ;
vec t plus (vect m, vect n) {

vec t p={m. x+n . x ,m. y+n . y } ;
re turn p ;

}
i n t main () {

vec t a = { 1 , 2 } , b = { 3 , 4 } ;
vec t c=plus (a , b) ;
re turn 0 ;

}

Here is how to define + between vect and replace function plus():

s t r u c t vect {
double x , y ;

} ;
vec t operator +(vect m, vect n) {

vec t p={m. x+n . x ,m. y+n . y } ;
re turn p ;

}
i n t main () {

vec t a = { 1 , 2 } , b = { 3 , 4 } ;
vec t c=a+b ;
re turn 0 ;

}

We can also define a product by a scalar, a scalar product14, etc.15

/ / Produc t by a s c a l a r
vect operator ∗ (double s , vect m) {

vect p={ s∗m. x , s∗m. y } ;
re turn p ;

}
/ / S c a l a r p r o d u c t
double operator ∗ (vect m, vect n) {

re turn m. x∗n . x+m. y∗n . y ;

13For secondary school pupils: You do not know what is a vector. . . but you are better in program-
ming than the “old ones”. Then, look at the sources that follow and your will know what a 2D vector
is.

14In this case, we may use a*b but not a.b, the dot being not amenable to redefinition and reserved
for access to fields of a structure

15But beware, it is impossible to redefine operators on basic types! No way to give a different sense to
1+1.

81

6.3. Fun: Practical continued and finished 6. Several Files!

}
i n t main () {

vec t a = { 1 , 2 } , b = { 3 , 4 } ;
vec t c =2∗a ;
double s=a∗b ;
re turn 0 ;

}

Notice that both defined functions are different even though with same name (operator∗)
since they take different parameters (remember overload Section 3.2.6).

6.3 Fun: Practical continued and finished

The program of preceding Practical was a perfect example of the need of separate files
(well defined structures, shared by two projects), we propose you in Practice A.4 to
convert (and finish?) the program of gravitation simulation and space duel!

6.4 Reference card

You know the drill. . .

Reference Card (1/3)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;

double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

82

6. Several Files! 6.4. Reference card

Reference Card (2/3)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;

a=b;b=tmp;
}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

Structures

• struct Point {
double x,y;
Color c;

};
...

Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/
double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

83

6.4. Reference card 6. Several Files!

Reference Card (3/3)

Common errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

Imagine++

• See documentation. . .

Keyboard

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

84

7. The memory

Chapter 7

The memory

It is time to get back on the subject of memory and its use. We will then understand better
local variables, the exact way a function call works, recursive functions, etc. After that, we will
at last be able to use arrays with variable size (without really explaining the delicate notion of
pointer).

—

7.1 Call of function

It is here a new opportunity to understand at last what happens in a program. . .

7.1.1 Example

Consider the following program:

1 # include <iostream >
2 using namespace std ;
3
4 void check (i n t p , i n t q , i n t quo , i n t re) {
5 i f (re <0 || re >=q || q∗quo+re !=p)
6 cout << "What the f ∗k ! " << endl ;
7 }
8
9 i n t divide (i n t a , i n t b , i n t& r) {

10 i n t q ;
11 q=a/b ;
12 r=a−q∗b ;
13 check (a , b , q , r) ;
14 re turn q ;
15 }
16 i n t main ()
17 {
18 i n t num, denom ;
19 do {
20 cout << " Input two p o s i t i v e i n t e g e r s : " ;

7.1. Call of function 7. The memory

21 c in >> num >> denom ;
22 } while (num<=0 || denom<=0) ;
23 i n t quot ient , rem ;
24 quot ient=divide (num, denom , rem) ;
25 cout << num << "/" << denom << " = " << quot ient
26 << " (remains " << rem << ") " << endl ;
27 re turn 0 ;
28 }

Computing quotient and remainder of an integer division, and verifying the result, it
is not so impressive and inordinately long (actually, only lines 11 and 12 do the job!). It
is however a good example to illustrate our lesson. A good way to explain fully how
it works is to fill out the following table, already met in Practical A.2. Putting only
lines where variables change, assuming the user inputs 23 and 3 at the keyboard, and
indexing with letters the different steps of a same line of code,1 it gives:

Line num denom quotient rem a b r qd retd pv qv quo re

18 ? ?
21 23 3
23 23 3 ? ?

24a 23 3 ? ?
9 23 3 ? ? 23 3 [rem]

10 23 3 ? ? 23 3 [rem] ?
11 23 3 ? ? 23 3 [rem] 7
12 23 3 ? 2 23 3 [rem] 7

13a 23 3 ? 2 23 3 [rem] 7
4 23 3 ? 2 23 3 [rem] 7 23 3 7 2
5 23 3 ? 2 23 3 [rem] 7 23 3 7 2
7 23 3 ? 2 23 3 [rem] 7

13b 23 3 ? 2 23 3 [rem] 7
14 23 3 ? 2 23 3 [rem] 7 7
15 23 3 ? 2 7

24b 23 3 7 2 7
25 23 3 7 2
28

A posteriori, we can see that we have implicitly assumed that when the program is
running divide(), the function main() and its variables still exist and that they simply
wait for the end of divide(). In other words:

A call of function is a mechanism that allows going to run temporarily this
function then recovering the next instructions and the variables left behind.

Functions call others, we get nested function calls: main() calls divide() that calls
check().2 More precisely, this hierarchy is a stack and we talk about the call stack. To
understand better this stack, we are going to use the debugger. Before that, just make
clear what a computer scientist calls a stack.

1such as 24a and 24b
2Besides, main() was itself called by a function to which it returns an int.

86

7. The memory 7.1. Call of function

Stack/Queue

• A stack is a structure allowing memorizing data in which they are ordered such
that the piece inserted last is the one extracted first. A stack is also called LIFO
(last in first out). We push data on it and we pop from it. For example, after
push(1), push(2) then push(3), the first pop() gives 3, the second pop() gives 2
and the last pop() gives 1.

• For a queue, it is the same except that the first in is the first out (FIFO). For
instance, after push(1), push(2) then push(3), the first pop() gives 1, the second
gives 2 and the last 3.

7.1.2 Call stack and debugger

Let us observe Figure 7.1, built by running the program under the debugger. Check-
ing the part displayed at each step, we can see the call stack. The right part displays
the contents of variables, parameters and return values from which we can check the
coherence with the previous table.

(a) As the call stack indicates, we are line 24 in function main(), that happens to be
the only element on the stack (main is the entry point of the program). Notice
the variables take nonsense values (here 32764 for quotient and 276543888 for
rem) as long as they are not assigned.

(b) Go on with step-by-step advance (key F11) until line 12. We are in function
divide(), q has value 7, and line 24 of main() went down one step in the call
stack.

(c) We are now at line 5 in check(). The call stack has one more level, divide() is
on standby at line 13 and main() still at 24. Check that variable q is the one of
check(), which is 3, and not the one of divide().

(d) Here, the program has not advanced and we are still at line 5. However, the
debugger allows, by clicking on the call stack, to watch the state at inferior levels,
notably to display instructions and variables at said level. Here, clicking on line
divide() in the window of the call stack, we see line 13 and its variables in the
state they had while the program was at 5. Among others, displayed q is the one
of divide() and worth 7.

(e) Still without progress, here is the state of main() and its variables (among others,
rem went to 2 since line 12 of divide()).

(f) We run now the next instructions until line 24 at the return of divide(). For that,
we can step-by-step advance, or simply twice exit step-by-step3 to continue until
exit from check(), then until exit of divide(). We can see quotient, that is still not
defined, and also the return value of divide(), not yet assigned to quotient.

(g) One step further and we are at 25/26. The variable quotient is worth 7 at last.

3Step Out or Maj-F11 or Notice also the possibility of continuing the program until a certain line
is reached without having to put a breakpoint but simply by clicking on the line with the right mouse
button and choosing “Run to Line. . . ”, ()

87

7.1. Call of function 7. The memory

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7.1: Function calls

88

7. The memory 7.2. Local variables

stack variable value

free space

top→ a 23
b 3
qd 7
r [rem]
denom 3
num 23
quotient ?
rem ?
taken by . . .
functions . . .
before main . . .

step (b) (line 12)

stack variable value
free space

top→ pc 23
qc 3
quo 7
re 2
a 23
b 3
qd 7
r [rem]
denom 3
num 23
quotient ?
rem 2
taken by . . .
functions . . .
before main . . .

step (c) (line 5)

stack variable value

free space

top→ denom 3
num 23
quotient 7
rem 2
taken by . . .
function . . .
before main . . .

step (g) (line 25)

Figure 7.2: Stack and local variables

7.2 Local variables

It will become important for what follows to know how parameters and local variables
are stored in memory.

7.2.1 Parameters

For parameters, it’s simple:

Parameters of functions are actually local variables! Their only specificity is
that they are initialized from the start of the function with the values passed
at the call (the call arguments).

7.2.2 The stack

Local variables (and thus function parameters also) are not stored at fixed memory lo-
cations,4 defined at build time. If so, such memory locations would need to be reserved
for the whole run of the program: we could not use the memory for local variables of
other functions. The solution is more economical in memory:5

Local variables are memorized in a stack:

• When a local variable is created, it is pushed on top of the stack.

• When it dies (in general, when we get out of the function), it is re-
moved from the stack.

4Recall Chapter 2.
5And will allow having recursive functions, see next section!

89

7.3. Recursive functions 7. The memory

Therefore, along function calls, local variables stack one of top one another: memory is
used only the time necessary. Figure 7.2 shows three states of the stack when running
our example.

7.3 Recursive functions

A recursive function is one that calls itself. The most classical function to illustrate
recursion is the factorial.6 A compact and easy way to compute it follows:

5 i n t f a c t 1 (i n t n) {
6 i f (n==1)
7 return 1 ;
8 re turn n∗ f a c t 1 (n−1) ;
9 }

We notice, it is obvious but important, it contains a stop condition: if n is 1, the function
returns directly 1 without calling itself.7

7.3.1 Why does it work?

If functions had memorized their local variables at fixed addresses, recursion would
not have worked: The recursive call would have crushed the values of the variables.
For instance, fact1 (3) would have crushed the value 3 memorized in n by a 2 when
calling fact1 (2)! That is precisely thanks to the stack that n of fact1 (2) is not the same
as the one of fact1 (3). We get the following table

Line nfact1(3) retfact1(3) nfact1(2) retfact1(2) nfact1(1) retfact1(1)
5fact1(3) 3

9afact1(3) 3
5fact1(2) 3 2

9afact1(2) 3 2
5fact1(1) 3 2 1
8fact1(1) 3 2 1 1

10fact1(1) 3 2 1
9bfact1(2) 3 2 2 1
10fact1(2) 3 2
9bfact1(3) 3 6 2
10fact1(3) 6

The table becomes difficult to write now that we know that local variables do not de-
pend only on the function but change at each call! We need to precise, for each line
number, which function call is concerned. If we visualize the stack, we understand
better how it works. At line 8 of fact1 (1) for an initial call at fact1 (3), the stack looks
like:

6For secondary school pupils: The factorial of an integer n, written n!, is n! = 1× 2× . . .× n.
7The fact we can put a return at the middle of the function is convenient here! Notice also there is

no need for else.

90

7. The memory 7.3. Recursive functions

stack variable value
free space

top→ nfact1(1) 1
nfact1(2) 2
nfact1(3) 3

which we can easily check with the debugger. Finally:

Recursive functions are not different from other functions. It is the mecha-
nism of function calls that make recursion possible.

7.3.2 Efficiency

A recursive function is simple and elegant to write when the problem is adequate.8 We
have seen that it is not easy to follow or debug. You also need to know that

The stack space is not infinite and even relatively limited.

The following program

22 / / S t a c k o v e r f l o w
23 i n t f a c t 3 (i n t n) {
24 i f (n==1)
25 return 1 ;
26 return n∗ f a c t 3 (n + 1) ; / / e r r o r !
27 }

in which a slipped small error will call theoretically infinitely and in practice stop with
a stack overflow.9 But the true reason recursion is sometimes avoided is that

Calling a function has a cost!

When the core of a function is small enough so that the cost of calling the function be-
comes not negligible w.r.t. the time spent running the function itself, it is better to avoid
the function call.10 In the case of a recursive function, we therefore try if necessary to
write a derecursived version (or iterative). For the factorial, it is:

/ / I t e r a t i v e v e r s i o n
i n t f a c t 2 (i n t n) {

i n t f =1;
f o r (i n t i =2 ; i <=n ; i ++)

f ∗= i ;
re turn f ;

}

which after all is not that terrible.
At last, some recursive function cannot be used for complexity reason. A classic

example is the Fibonacci sequence defined by{
f0 = f1 = 1
fn = fn−1 + fn−2

8Abusing recursion is a classic beginner mistake.
9Under Linux, at about n = 260, 000.

10We will see in another chapter the inline functions that answer the problem.

91

7.4. The heap 7. The memory

that yields: 1, 1, 2, 3, 5, 8,. . . The recursive version is a direct copy of the formula:

32 / / Very s low !
33 i n t f i b 1 (i n t n) {
34 i f (n<2)
35 return 1 ;
36 return f i b 1 (n−2)+ f i b 1 (n−1) ;
37 }

This function has the bad idea to call itself too frequently: n = 10 calls n = 9 and n = 8,
but n = 9 has first to call also n = 8 from its side and n = 7 on top, n = 7 that will
be called by all n = 8, etc. This function will become quickly too slow. For n = 40, it
calls itself already 300.000.000 times, which takes its toll! It is reasonable to program a
non-recursive version:

39 / / Not r e c u r s i v e
40 i n t f i b 2 (i n t n) {
41 i n t fnm2=1 ,fnm1 =1; / / n minus 1 and 2
42 f o r (i n t i =2 ; i <=n ; i ++) {
43 i n t fn=fnm2+fnm1 ;
44 fnm2=fnm1 ;
45 fnm1=fn ;
46 }
47 return fnm1 ;
48 }

7.4 The heap

The stack is not the only zone of memory used by programs. There is also the heap.

7.4.1 Limits

The stack is limited in size. The call stack being not infinite and local variables not
coming in unlimited number, it is reasonable to reserve a stack of limited size. Try the
small program:

32 i n t main () {
33 const i n t n=500000;
34 i n t t [n] ;
35 . . .
36 }

It runs and stops with an error: “stack overflow”. The local variable t is not too large
for the computer:11 it is too large for the stack. Until now, we knew we were limited to
fixed size arrays. In reality, we are also limited to small arrays. It is high time we learn
using the heap!

11500000x4 is 2 MB only!

92

7. The memory 7.4. The heap

7.4.2 Variable size arrays

We provide here a rule that is applied blindly. Its understanding will come later if necessary.
When we want to use an array of a variable size, there are only two things to do,

but they are both essential:12

1. Replace int t[n] by int* t=new int[n] (or its equivalent for an-
other type than int)

2. When the array must die (in general at the end of the function), append
the line delete[] t;

Not obeying rule 2 has as consequence that the arrays stays in memory until the end of
the program, which provokes an uncontrolled increase of used memory (we call that a
memory leak). For the remainder, nothing changes. Programming in this manner makes
the array memorized in the heap and not any more in the stack. We proceed like this:

1. For variable size arrays and/or

2. For arrays of big size.

It should be made clear that when we talk of arrays of variable size, it does not mean
that the array can grow (or shrink!) once created. It only means that the size of the
array can be a (non constant) variable, whose value is not known at compilation time.
Actually, there is no mechanism to resize an array after creation.

Here is the result on a small program:

1 # include <iostream >
2 using namespace std ;
3
4 void f i l l (i n t t [] , i n t n) {
5 f o r (i n t i =0 ; i <n ; i ++)
6 t [i]= i +1;
7 }
8
9 i n t sum(i n t t [] , i n t n) {

10 i n t s =0;
11 f o r (i n t i =0 ; i <n ; i ++)
12 s+= t [i] ;
13 re turn s ;
14 }
15
16 void f i x e d () {
17 const i n t n=5000;
18 i n t t [n] ;
19 f i l l (t , n) ;
20 i n t s=sum(t , n) ;
21 cout << s << " should be " << n∗ (n+1)/2 << endl ;

12And the beginner forgets always the second one, which yields programs that grow in used mem-
ory. . .

93

7.5. The optimizer 7. The memory

22 }
23
24 void v a r i a b l e () {
25 i n t n ;
26 cout << "An i n t e g e r please : " ;
27 c in >> n ;
28 i n t ∗ t =new i n t [n] ; / / A l l o c a t i o n
29 f i l l (t , n) ;
30 i n t s=sum(t , n) ;
31 cout << s << " should be " << n∗ (n+1)/2 << endl ;
32 d e l e t e [] t ; / / D e a l l o c a t i o n : do not f o r g e t !
33 }
34
35 i n t main () {
36 f i x e d () ;
37 v a r i a b l e () ;
38 re turn 0 ;
39 }

7.4.3 Explanation (or trial of)

What follows is not essential for a beginner but can possibly answer some questions. If the
reader understands, all the better, otherwise following preceding rules is good enough!

To have access to all memory of the computer,13 we use the heap. It is a memory
zone that the program owns and that can grow on demand to the operating system
(and if there is available memory left, obviously). To use the heap, we call an allocation
function that reserves memory for a given amount of variables. That is the effect of
new int[n].

The function returns the address of the memory location the OS has reserved. We
never met a variable able to memorize an address. They are called pointers, which will
reappear later. A pointer to memory storing some int is of type int∗. Hence the int∗ t
to store the result of new.

Next, a pointer can be used as an array, even as an argument to function.
Finally, we must not forget to free the memory at the moment when the fixed size ar-

ray would have disappeared: that’s the job of instruction delete [] t, freeing the mem-
ory addressed by t.

7.5 The optimizer

Let us mention an important point, neglected up to this point, but that will be used in
practicals.

There are several ways to translate a C++ source in machine language. The result
of compilation may be different from one compiler to the next. At compilation time,
we can seek to get an executable as fast as possible: we say the compiler optimizes the

13More exactly to the part of memory that the operating system is willing to allocate to each program,
which may be tunable but anyway less than the total memory, although much more than stack memory.

94

7. The memory 7.6. Assertions

code. In general, optimization requires a greater work but also transformations that
make the resulting program unsuitable for debugging. In practice, we need to choose
between possibility of debugging and optimization.

Until now, we used the compiler in mode “Debug”. When a program works (and
not before), we can try it in mode “Release” to have a more efficient program. In some
cases, the gains can be huge. An experienced programmer is even able to help the
optimizer do its job. But a few rules must be respected:

• Do not try to debug in Release mode(!)

• Stay in Debug mode as long as possible to code the program.

7.6 Assertions

Here comes a very useful function to help avoid bugs! The function assert () warns
when a test is false. It says the file and the line number where the error occurred
and lets the debugger stop exactly there. It does not slow down the program as it
disappears in Release mode. It is a function not well known among beginners, and it
is a pity! For instance:

inc lude < c a s s e r t >
. . .
i n t n ;
c in >> n ;
a s s e r t (n > 0) ;
i n t ∗ t =new i n t [n] ; / / A l l o c a t i o n

If the user inputs a negative number, consequences could be serious. In particular, a
negative value of n will be interpreted as a big integer (since the brackets [] expect
an unsigned integer, -1 is understood as the largest int possible in a modulo fashion)
and the new would probably fail. Note that if n==0, an empty array, the allocation is a
sucess (of 0 byte!). But in this case t [0] does not even exist! The only thing doable with
a null array is to deallocate it with delete [] t. It is always useful to protect from such
an exception by checking the value is reasonable.

7.7 Bidimensional arrays

Let us anticipate slightly on the next chapter with dimension 2 arrays. If m and n are
constant, one can have an array tab[m][n], that we can even put inside a structure:

const i n t m=5 , n=3;
s t r u c t Array { double tab [m] [n] ; } ;
void f (Array& t) {

f o r (i n t i =0 ; i <m; i ++)
f o r (i n t j =0 ; j <n ; j ++)

t . tab [i] [j] = cos (M_PI∗ i /m)∗ s in (M_PI∗ j /n) ;
cout << t . tab [m−1][n−1] << endl ;

}

95

7.8. Reference card 7. The memory

Note the double bracket pairs to access an element, and of course the first element is
tab [0][0] and the last one tab[m−1][n−1].

7.8 Reference card

Reference Card (1/3)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;

signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

96

7. The memory 7.8. Reference card

Reference Card (2/2)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/
double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

• #include <ctime>
s=double(clock())
/CLOCKS_PER_SEC;

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

97

7.8. Reference card 7. The memory

Reference Card (3/3)

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

Imagine++

• See documentation. . .

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

98

8. Dynamic Allocation

Chapter 8

Dynamic Allocation

We come back once more on the use of the heap to handle arrays of variable size. After mention-
ing bidimensional arrays of fixed size, we present in details dynamic allocation1 already seen in
Section 7.4.2 and explain at last pointers, at least partially. Through the example of matrices
(and images in practical session) we mix structures and dynamic allocation. It will be our most
complex data structure up to now before the long awaited arrival—then justified—of objects. . .

—

8.1 Bidimensional arrays

8.1.1 Principle

There are in C++ bidimensional arrays. Their use is similar to standard arrays:

• We use brackets (lines 1 and 4 of program below). Beware: [i][j] and not [i , j].

• Initialization is possible with curly brackets (line 5). Beware: nested curly brack-
ets.

• Their dimensions must be constant (lines 6 and 7).

1 i n t A[2] [3] ;
2 f o r (i n t i =0 ; i <2 ; i ++)
3 f o r (i n t j =0 ; j <3 ; j ++)
4 A[i] [j]= i + j ;
5 i n t B [2] [3] = { { 1 , 2 , 3 } , { 4 , 5 , 6 } } ;
6 const i n t M=2 ,N=3;
7 i n t C[M] [N] ;

1 2 3

4 65

B[0]

B[1]

2D array. Note that B[0] is the
1D array {1,2,3} and B[1] the 1D
array {4,5,6} .

The figure above shows the array B. Note that B[0] and B[1] are 1D arrays repre-
senting the lines of B.

1that is, allocation in heap memory with new and delete.

8.1. Bidimensional arrays 8. Dynamic Allocation

8.1.2 Limitations

Compared to functions, specifics are the same as in 1D:

• Impossible to return a 2D array.

• Argument passing only by variable (not by value).

but with an additional restriction:

We need to give the dimensions of a 2D array used as parameter of a func-
tion.

It is then impossible to program functions that work on arrays of different sizes as we
did in 1D case (see Section 4.3.1). It is a strong restriction and explains that this form of
2D arrays is rarely used. We can have the following program:

1 / / Argument p a s s i n g
2 double t r a c e (double A[2] [2]) {
3 double t =0;
4 f o r (i n t i =0 ; i <2 ; i ++)
5 t +=A[i] [i] ;
6 re turn t ;
7 }
8
9 / / Always by v a r i a b l e

10 void s e t (double A[2] [3]) {
11 f o r (i n t i =0 ; i <2 ; i ++)
12 f o r (i n t j =0 ; j <3 ; j ++)
13 A[i] [j]= i + j ;
14 }
15
16 . . .
17 double D[2] [2] = { { 1 , 2 } , { 3 , 4 } } ;
18 double t = t r a c e (D) ;
19 double E [2] [3] ;
20 s e t (E) ;
21 . . .

but it is not possible to program a function trace () or set () that works with 2D arrays
of different sizes:

1 / / OK
2 void s e t (double A[] , i n t n , double x) {
3 f o r (i n t i =0 ; i <n ; i ++)
4 A[i]= x ;
5 }
6 / / NO ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
7 / / d o u b l e A [] [] i s not a c c e p t e d
8 void s e t (double A[] [] , double m, double n , double x) {
9 f o r (i n t i =0 ; i <m; i ++)

10 f o r (i n t j =0 ; j <n ; j ++)

100

8. Dynamic Allocation 8.1. Bidimensional arrays

B[0]=1

B[1]=4

B[2]=2

B[3]=5

B[4]=3

B[5]=6

Figure 8.1: Matrix B of the previous example stored in 1D.

11 A[i] [j]= x ;
12 }

8.1.3 Solution

In practice, as soon as need to handle 2D arrays (or higher-dimension!) of different
sizes, we store them in 1D arrays by sequencing the columns (for example) to take
advantage of 1D arrays. We will store a matrix A of m rows and n columns in an array
T of size mn by storing logical element A(i, j) in T (i + mj). Figure 8.1 shows an array
B of the previous example stored in a 1D array. We can then write:

1 void s e t (double A[] , i n t m, i n t n) {
2 f o r (i n t i =0 ; i <m; i ++)
3 f o r (i n t j =0 ; j <n ; j ++)
4 A[i +m∗ j]= i + j ;
5 }
6 . . .
7 double F [2 ∗ 3] ;
8 s e t (F , 2 , 3) ;
9 double G[3 ∗ 5] ;

10 s e t (G, 3 , 5) ;

or for instance, this product matrix-vector in which matrix as well as vector are stored
in a 1D array:

1 / / y=Ax
2 void product (double A[] , i n t m, i n t n , double x [] , double y [])
3 {
4 f o r (i n t i =0 ; i <m; i ++) {
5 y [i] = 0 ;
6 f o r (i n t j =0 ; j <n ; j ++)
7 y [i]+=A[i +m∗ j]∗ x [j] ;
8 }
9 }

10 . . .
11 double P [2∗3] , x [3] , y [2] ;
12 . . .
13 / / P = . . . x = . . .
14 product (P , 2 , 3 , x , y) ; / / y=Px

101

8.2. Dynamic allocation 8. Dynamic Allocation

8.2 Dynamic allocation

There is no dynamic allocation for 2D arrays. We must therefore store them in 1D
arrays as explained above to be able to use dynamic allocation. The following exam-
ple shows how to proceed. It uses the function product() of the code above without
requiring redefinition:

1 i n t m, n ;
2 . . .
3 double∗ A=new double [m∗n] ;
4 double∗ x=new double [n] ;
5 double∗ y=new double [m] ;
6 . . .
7 / / A = . . . x = . . .
8 product (A,m, n , x , y) ; / / y=Ax
9 . . .

10 d e l e t e [] A;
11 d e l e t e [] x ;
12 d e l e t e [] y ;

8.2.1 Why does it work?

It is now time we explain why, once allocated, we can use dynamic arrays exactly as
fixed size arrays. The following points should be sufficient:

1. int t [n] defines a local variable, hence memory on the stack, capable of storing n
variables int.

2. int∗ t defines a variable of type “pointer” of int, that is, t can memorize the
address of a memory zone containing some int.

3. new int[n] allocates in heap a memory zone able of storing n int and returns the
address of the zone. Hence the int∗ t=new int[n]

4. delete [] t frees (in heap) the memory zone memorized in t.

5. When t is a fixed size array, t [i] indicates its i th element. When t is a pointer
on int, t [i] is the variable int stored i places2 further in memory than the one
at address t. After int t [n] as well as after int∗ t=new int[n], the syntax t [i]
indicates what we mean.

6. When t is a fixed size array, the syntax t alone designates the address (in the
stack) at which the array is stored. Moreover, when a function takes as argument
an array, the syntax int s [] indicates in reality that s is the address of the array.
Which explains after all:

• a function f (int s []) is meant so that its argument is an address s

• it works with dynamically allocated arrays, which are only addresses after
all

2Here, a place is obviously the number of bytes for the storage of an int.

102

8. Dynamic Allocation 8.2. Dynamic allocation

• it is rather the call f (t), with t fixed size array, which needs to adapt by
passing to f the address of the array.

• logically, we should declare f by f (int∗ s) instead of f (int s []) . Both are
actually possible and equivalent.

You can thus now program, while understanding, such code:

1 double sum(double∗ t , i n t n) { / / Syntax " p o i n t e r "
2 double s =0;
3 f o r (i n t i =0 ; i <n ; i ++)
4 s+= t [i] ;
5 re turn s ;
6 }
7 . . .
8 i n t t1 [4] ;
9 . . . / / F i l l t1

10 double s1=sum(t1 , 4) ; / / C a l l wi th s t a t i c a r r a y
11 i n t ∗ t 2=new i n t [n] ;
12 . . . / / F i l l t2
13 double s2=sum(t2 , n) ; / / C a l l wi th dynamic a r r a y
14 . . .
15 d e l e t e [] t2 ;

8.2.2 Classical errors

You are now able to understand the following classic errors (without avoiding making
them though!).

1. Forgetting to allocate:

i n t ∗ t ;
f o r (i n t i =0 ; i <n ; i ++)

t [i] = . . . / / Horror : u n i n i t i a l i z e d t
/ / i s a random a d d r e s s

2. Forgetting to deallocate:

void f (i n t n) {
i n t ∗ t =new i n t [n] ;
. . .

} / / We f o r g e t d e l e t e [] t ;
/ / Each c a l l t o f () l o s e s n i n t in t h e heap !

3. Deallocating the wrong array:

i n t ∗ t =new i n t [n] ;
i n t ∗ s=new i n t [n] ;
. . .
s= t ; / / No ! Then , s i s t h e same a d d r e s s a s t

/ / (we d i d not copy t h e zone p o i n t e d by t in t h e one

103

8.2. Dynamic allocation 8. Dynamic Allocation

/ / p o i n t e d by s !)
. . .
d e l e t e [] t ; / / OK
d e l e t e [] s ; / / Havoc : Not on ly some memory i s not f r e e d

/ / (i n i t i a l l y s t o r e d in s) , but we d e a l l o c a t e
/ / a l s o once more t h e one we j u s t d i d !

8.2.3 Consequences

When to deallocate?

Now you have understood new and delete, you can imagine that we do not need to
wait the end of existence of an array to deallocate it. The sooner the better and we
deallocate as soon as the memory is not used anymore:

1 void f () {
2 i n t t [1 0] ;
3 i n t ∗ s=new i n t [n] ;
4 . . .
5 d e l e t e [] s ; / / i f s i s not used in t h e f o l l o w i n g . . .
6 / / why not d e a l l o c a t e h e r e ?
7 . . .
8 } / / On t h e c o n t r a r y , t has t o wa i t h e r e t o d i e .

Actually, the array of address memorized in s is allocated line 3 and freed line 5. The
variable s itself, that stores this address, is created line 3 and dies line 8!

Pointers and functions

It is frequent that new and delete do not happen in the same function (beware then
to not forget!). They are often inside different functions. By the way, when functions
manipulate pointers, some questions may be raised. It is enough to follow the logic:

• A function that returns a pointer is declared int∗ f ();

1 i n t ∗ a l l o c a t e (i n t n) {
2 re turn new i n t [n] ;
3 }
4
5 i n t ∗ t = a l l o c a t e (1 0) ;
6 . . .

• A pointer passed to a function is by value. Do not confuse with the fact that an
array is passed by reference! Let’s consider the following program:

1 void f (i n t ∗ t , i n t n) {
2
3 t [i] = . . . ; / / Modify t [i] but not t !
4 t = . . . / / Such a l i n e would not change argument s
5 / / o f t h e c a l l
6 }

104

8. Dynamic Allocation 8.3. Structures and dynamic allocation

7 . . .
8 i n t ∗ s=new i n t [m] ;
9 f (s ,m) ;

Actually, it is because we pass the address of an array that we can modify its
elements. By ignorance, we pretended that arrays are passed by reference and
presented this as an exception. We can now rectify:

An array is passed by its address. This address is passed by value. But
this mechanism allows the function to modify the array. Saying that
an array was passed by reference was an abuse of language.

• It we want really to pass the pointer by reference (seldom), the syntax is logical:
int∗& t. A typical need is:

1 / / t and n w i l l be m o d i f i e d (not on ly t [i])
2 void a l l o c a t e (i n t∗& t , i n t& n) {
3 c in >> n ; / / n c h o s e n by u s e r
4 t =new i n t [n] ;
5 }
6 . . .
7 i n t ∗ t ;
8 i n t n ;
9 a l l o c a t e (t , n) ; / / t and n b o t h a s s i g n e d by a l l o c a t e ()

10 . . .
11 d e l e t e [] t ; / / S t i l l do not f o r g e t !

Strange syntax? Lines 7 and 8 above could be written in one line int∗ t ,n. Actually,
we need to put a star before each variable when one defines several pointers at once.
Hence, int ∗t , s,∗u; defines two pointers of int (variables t and u) and one int (variable
s).

8.3 Structures and dynamic allocation

Passing systematically an array and its size to all functions is obviously a hassle. We
need to unite them in a structure. I leave you meditate the following example that
could be part of a program using matrices and their product:3

1 # include <iostream >
2 # include < s t r i n g >
3 using namespace std ;
4
5 / / ==
6 / / f u n c t i o n s on m a t r i c e s
7 / / c o u l d be in ma t r ix . h and ma t r ix . cpp

3For secondary school pupils: matrices and vectors are unknown to you. Don’t worry. Understand
the source code and go to the Practical, playing with images that look like matrices.

105

8.3. Structures and dynamic allocation 8. Dynamic Allocation

8
9 s t r u c t Matrix {

10 i n t m, n ;
11 double∗ t ;
12 } ;
13
14 Matrix c r e a t e (i n t m, i n t n) {
15 Matrix M;
16 M.m=m;
17 M. n=n ;
18 M. t =new double [m∗n] ;
19 return M;
20 }
21
22 void destroy (Matrix M) {
23 d e l e t e [] M. t ;
24 }
25
26 Matrix product (Matrix A, Matrix B) {
27 i f (A. n!=B .m) {
28 cout << " Error ! " << endl ;
29 e x i t (1) ;
30 }
31 Matrix C= c r e a t e (A.m, B . n) ;
32 f o r (i n t i =0 ; i <A.m; i ++)
33 f o r (i n t j =0 ; j <B . n ; j ++) {
34 / / C i j =Ai0∗B0j+Ai1∗B1j + . . .
35 C. t [i +C.m∗ j] = 0 ;
36 f o r (i n t k =0; k<A. n ; k++)
37 C. t [i +C.m∗ j]+=A. t [i +A.m∗k]∗B . t [k+B .m∗ j] ;
38 }
39 return C;
40 }
41
42 void display (s t r i n g s , Matrix M) {
43 cout << s << " =" << endl ;
44 f o r (i n t i =0 ; i <M.m; i ++) {
45 f o r (i n t j =0 ; j <M. n ; j ++)
46 cout << M. t [i +M.m∗ j] << " " ;
47 cout << endl ;
48 }
49 }
50
51 / / ==
52 / / Usage
53
54 i n t main ()
55 {

106

8. Dynamic Allocation 8.3. Structures and dynamic allocation

56 Matrix A= c r e a t e (2 , 3) ;
57 f o r (i n t i =0 ; i <2 ; i ++)
58 f o r (i n t j =0 ; j <3 ; j ++)
59 A. t [i +2∗ j]= i + j ;
60 display ("A" ,A) ;
61 Matrix B= c r e a t e (3 , 5) ;
62 f o r (i n t i =0 ; i <3 ; i ++)
63 f o r (i n t j =0 ; j <5 ; j ++)
64 B . t [i +3∗ j]= i + j ;
65 display ("B" ,B) ;
66 Matrix C=product (A, B) ;
67 display ("C" ,C) ;
68 destroy (C) ;
69 destroy (B) ;
70 destroy (A) ;
71 return 0 ;
72 }

The user now only needs to remember to allocate and free the matrices by calling the
functions but without needing to know what these functions do. In this logic, we will
add functions so that the user does not need either to keep in mind how the elements
of the matrix are stored. And there is then no need to remember that there is a field
named t! (We are getting really close to object oriented programming. . .) We add:

10 double get (Matrix M, i n t i , i n t j) {
11 re turn M. t [i +M.m∗ j] ;
12 }
13
14 void s e t (Matrix M, i n t i , i n t j , double x) {
15 M. t [i +M.m∗ j]= x ;
16 }

that the user can use so:

51 f o r (i n t i =0 ; i <2 ; i ++)
52 f o r (i n t j =0 ; j <3 ; j ++)
53 s e t (A, i , j , i + j) ;

and that the designer of these matrices could also use:

39 void display (s t r i n g s , Matrix M) {
40 cout << s << " =" << endl ;
41 f o r (i n t i =0 ; i <M.m; i ++) {
42 f o r (i n t j =0 ; j <M. n ; j ++)
43 cout << get (M, i , j) << " " ;
44 cout << endl ;
45 }
46 }

Beware, it is easy in this context to:

• Forget allocation.

107

8.4. Loops and continue 8. Dynamic Allocation

A.t

B.t

A.t

B.t

detruit(A);

A.t

B.t

A.t

B.t

A=cree(2,3);

B=cree(2,3);

A=B; detruit(B);

...

...

...

...

...

...

...

...

Figure 8.2: Beware of the dreaded double delete: the code A=B makes pointers ad-
dress the same memory zone whereas there is no more pointer on the top array (hence
a memory leak since it is not possible anymore to deallocate it). The destroy(B) frees
a memory that was already freed, with dire consequences. . .

• Forget deallocation.

• Not deallocating what must if one writes A=B between two matrices. (It is then
twice the zone initially allocated for B that is deallocated when one frees A and B
while the initial memory for A will never be, as illustrated by Figure 8.2).

Object oriented programming will make sure we don’t make these mistakes. It will
also make sure the user does not know what needs not be known, so as to make the
conception of matrices really independent on their usage.

8.4 Loops and continue

We will use in the Practical the convenient instruction continue. Here is its effect: met
in a loop, all the rest of loop iteration is skipped and the next iteration can begin:

f o r (. . .) {
. . .
i f (A)

continue ;
. . .
i f (B)

continue ;
. . .

}

is equivalent to (and is better for clarity):

f o r (. . .) {
. . .
i f (!A) {

. . .
i f (! B) {

. . .
}

}
}

It can be compared with the usage of return in the middle of function to avoid partic-
ular cases (Section 7.3).

108

8. Dynamic Allocation 8.5. Practical

Figure 8.3: Two images and different processing of the second one (negative, blur,
relief, deformation, contrast and edges).

8.5 Practical

The Practical proposed at A.6 illustrates this way of manipulating 2D dynamical arrays
through data structures. To change from matrices (however fascinating they can be!),
we will work on images (Figure 8.3).

8.6 Reference card

Reference Card (1/4)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...

i=i+1;
}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {
//skip case i==j
if (i==j)
continue;

...
}

109

8.6. Reference card 8. Dynamic Allocation

Reference Card (2/4)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)
return;

if (x>=w || y>=h)
return;

DrawPoint(x,y,RED);
}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){

int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

110

8. Dynamic Allocation 8.6. Reference card

Reference Card (3/4)

Variable size:
int* t=new int[n];
...
delete[] t;

As argument:

• void f(int* t,int n)
{ t[i]=... }

• void alloc(int*& t){
t=new int[n];

}

2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

2D in 1D:
int A[2*3];
A[i+2*j]=...;

Variable size:
int *t,*s,n;

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

• #include <ctime>
s=double(clock())
/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

111

8.6. Reference card 8. Dynamic Allocation

Reference Card (4/4)

int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

int* t;
t[1]=...; // NO!

int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

Imagine++

• See documentation. . .

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

112

9. First objects

Chapter 9

First objects

We begin now our last step in the quest for a better organization of the code. We already
structured instructions (functions, files) and data (structures, arrays). We are going now to
think about data and instructions together: it is the first idea of objects, even though they have
many other aspects.1 Finally, we are going to justify the usage of the notion of “interface”.2

—

9.1 Philosophy

Uniting instructions in functions or files is a good idea. Uniting data in arrays or struc-
tures also. Often both are linked. It is what we saw naturally in the examples of previ-
ous chapters, in which a file grouped a structure and several related functions. It is in
this case that we use objects.

The idea is natural: an object is a data type with some specific functionalities.3 So
that:

It is not functions that work on data anymore. Data come with some func-
tionalities.

Such “functionalities” are often called the methods of the object. In practice, the usage
of an object will replace this kind of instructions:

ob j a ;
i n t i = f (a) ; / / f u n c t i o n f () a p p l i e d t o a

by:

ob j a ;
i n t i =a . f () ; / / c a l l method f () o f a

You’ve got it, it is all about “inserting” functions in objects. But first a big warning:

1The most important one is inheritance, which we will not see in this course, putting the preference
on other aspects of C++ more necessary and neglected until now. . .

2We will present an easy way to create interfaces. An experienced C++ programmer will use rather
inheritance and pure virtual functions, which goes well beyond this course.

3It can even happen that an object has functionalities without storing any data. We will not use this
way of presenting things, which the beginner may quickly abuse.

9.2. Simple example 9. First objects

Do not abuse objects, especially as a beginner. Dangers are indeed:

• to see objects where there is none. Instructions and data are not always
linked.

• to organize badly the data or instructions in objects.

An advice thus: when it becomes too complex for you, drop the objects.

Which does not mean that a beginner should avoid objects. Some small ones in simple
cases are perfectly fine. Only experience allows organizing correctly the program, with
the right objects, the right functions, etc. A simple example: when a function works
on two data types, the beginner would often strive to put it as a method of one of the
objects, and transform:

obj1 a ;
ob j2 b ;
i n t i = f (a , b) ; / / f () a p p l i e d t o a and b

to:

ob j1 a ;
ob j2 b ;
i n t i =a . f (b) ; / / method f () o f a a p p l i e d t o b

/ / I s i s t h e r i g h t t h i n g t o do ?

Only some hindsight and experience allow to keep it simple when required. The first
code was more logical: function f () is at home neither in a nor in b.

9.2 Simple example

It should be clear from previous examples, methods of objects are considered as part
of the object type, in the same manner as its fields. Besides, the fields of an object are
often called members of the object, and its methods the member functions. Here is the
C++ syntax:

s t r u c t ob j {
i n t x ; / / f i e l d x
i n t f () ; / / method f ()
i n t g (i n t y) ; / / method g ()

} ;
. . .

i n t main () {
ob j a ;
a . x =3;
i n t i =a . f () ;
i n t j =a . g (2) ;
. . .

There is just one detail but important: the definition of the structure obj above only
declares the methods. They are defined nowhere in the preceding code. To define them,
we do as for usual functions except

114

9. First objects 9.3. Visibility

to allow several objects to have the same method names, we prefix their
definition by the name of the object followed by ::a

aThis mechanism exists also for usual functions. They are the namespaces, that we met and
went around immediately with some using namespace std to avoid writing std::cout

Here comes how it is written:

s t r u c t ob j1 {
i n t x ; / / d e f i n e d x
i n t f () ; / / method f () (d e c l a r a t i o n)
i n t g (i n t y) ; / / method g () (d e c l a r a t i o n)

} ;
s t r u c t ob j2 {

double x ; / / f i e l d x
double f () ; / / method f () (d e c l a r a t i o n)

} ;
. . .
i n t ob j1 : : f () { / / method f () o f o b j 1 (d e f i n i t i o n)

. . .
re turn . . .

}
i n t ob j1 : : g (i n t y) { / / method g () o f o b j 1 (d e f i n i t i o n)

. . .
re turn . . .

}
double obj2 : : f () { / / method f () o f o b j 2 (d e f i n i t i o n)

. . .
re turn . . .

}
. . .
i n t main () {

ob j1 a ;
ob j2 b ;
a . x =3; / / f i e l d x o f a i s i n t
b . x = 3 . 5 ; / / f i l e d x o f b i s d o u b l e
i n t i =a . f () ; / / method f () o f a (thus o b j 1 : : f ())
i n t j =a . g (2) ; / / method g () o f a (thus o b j 1 : : g ())
double y=b . f () ; / / method f () o f b (thus o b j 2 : : f ())
. . .

9.3 Visibility

There is a rule that we did not see on namespaces but that we can easily understand:
when we are “in” a namespace, one can use all variables and functions of the names-
pace without precising the namespace. So that those who have programmed cout and
endl have defined the namespace std then “went inside” to program without having
to prefix everything with std:: in front of cout, cin, endl and others. . . Following the
same logic,

115

9.4. Example with matrices 9. First objects

in its methods, an object accesses directly its fields and methods, without
prefix!a

aYou may see sometimes the keyword this that is useful in C++ and that programmers
coming from Java or Python (called “self”) put everywhere, besides mistaking its type. You
should not need it for the time being.

For example, the function obj1::f() above could be written:

1 i n t ob j1 : : f () { / / method f () o f o b j 1 (d e f i n i t i o n)
2 i n t i =g (3) ; / / method g () o f o b j e c t whose method f () i s
3 / / running
4 i n t j =x+ i ; / / f i e l d x o f o b j e c t whose method f () i s
5 / / running
6 return j ;
7 }
8 . . .
9 i n t main () {

10 obj1 a1 , a2 ;
11 i n t i 1 =a1 . f () ; / / Th i s c a l l w i l l use a1 . g () l i n e 2
12 / / and a1 . x l i n e 4
13 i n t i 2 =a2 . f () ; / / Th i s c a l l w i l l use a2 . g () l i n e 2
14 / / and a2 . x l i n e 4

It is rather natural that an object accesses simply its fields from its methods since

if an object does not use its fields in a method, it means likely that we are
putting in the object a function that has nothing to do with it (see abuse
mentioned above).

9.4 Example with matrices

When teaching programming, an example of source is worth more than the talk. If up
to now we were in the blur, things should get clearer! Here is how our example of
Chapter 8 looks like with objects:

inc lude <iostream >
include < s t r i n g >
using namespace std ;

/ / ==
/ / f u n c t i o n s on m a t r i c e s
/ / c o u l d be in ma t r ix . h and ma t r ix . cpp

/ / ========= d e c l a r a t i o n s (in . h)
s t r u c t Matrix {

i n t m, n ;
double∗ t ;
void c r e a t e (i n t m1, i n t n1) ;
void destroy () ;
double get (i n t i , i n t j) ;

116

9. First objects 9.4. Example with matrices

void s e t (i n t i , i n t j , double x) ;
void display (s t r i n g s) ;

} ;
Matrix operator ∗ (Matrix A, Matrix B) ;

/ / ========= d e f i n i t i o n s (in . cpp)
void Matrix : : c r e a t e (i n t m1, i n t n1) {

/ / Note t h e p a r a m e t e r s a r e not c a l l e d m and n
/ / t o a v o i d c o n f u s i o n with f i e l d s !

m=m1;
n=n1 ;
t =new double [m∗n] ;

}

void Matrix : : destroy () {
d e l e t e [] t ;

}

double Matrix : : get (i n t i , i n t j) {
re turn t [i +m∗ j] ;

}

void Matrix : : s e t (i n t i , i n t j , double x) {
t [i +m∗ j]= x ;

}

void Matrix : : d isplay (s t r i n g s) {
cout << s << " =" << endl ;
f o r (i n t i =0 ; i <m; i ++) {

f o r (i n t j =0 ; j <n ; j ++)
cout << get (i , j) << " " ;

cout << endl ;
}

}

Matrix operator ∗ (Matrix A, Matrix B) {
i f (A. n!=B .m) {

cout << " Error ! " << endl ;
e x i t (1) ;

}
Matrix C;
C. c r e a t e (A.m, B . n) ;
f o r (i n t i =0 ; i <A.m; i ++)

f o r (i n t j =0 ; j <B . n ; j ++) {
/ / C i j =Ai0∗B0j+Ai1∗B1j + . . .

C. s e t (i , j , 0) ;
f o r (i n t k =0; k<A. n ; k++)

C. s e t (i , j ,

117

9.5. Case of operators 9. First objects

C. get (i , j)+A. get (i , k)∗B . get (k , j)) ;
}

re turn C;
}

/ / ==================== main ===========
i n t main ()
{

Matrix A;
A. c r e a t e (2 , 3) ;
f o r (i n t i =0 ; i <2 ; i ++)

f o r (i n t j =0 ; j <3 ; j ++)
A. s e t (i , j , i + j) ;

A. display ("A") ;
Matrix B ;
B . c r e a t e (3 , 5) ;
f o r (i n t i =0 ; i <3 ; i ++)

f o r (i n t j =0 ; j <5 ; j ++)
B . s e t (i , j , i + j) ;

B . d isplay ("B") ;
Matrix C=A∗B ;
C. display ("C") ;
C . destroy () ;
B . destroy () ;
A. destroy () ;
re turn 0 ;

}

9.5 Case of operators

It may seem a pity that operator ∗ is not in object Matrix. To remedy it, the following
convention is used:

Let A be an object. It it has a method operatorop(objB B), then AopB
calls this method for any B of type objB.

To be clear, the program:

s t r u c t objA {
. . .

} ;
s t r u c t objB {

. . .
} ;
i n t operator +(objA A, objB B) {

. . .
}
. . .

118

9. First objects 9.5. Case of operators

i n t main () {
objA A;
objB B ;
i n t i =A+B ; / / c a l l s o p e r a t o r +(A, B)
. . .

could also be written

s t r u c t objA {
. . .
i n t operator +(objB B) ;

} ;
s t r u c t objB {

. . .
} ;
i n t objA : : operator +(objB B) {

. . .
}
. . .
i n t main () {

objA A;
objB B ;
i n t i =A+B ; / / c a l l s A. o p e r a t o r +(B)
. . .

which for matrices gives:

s t r u c t Matrix {
. . .
Matrix operator ∗ (Matrix B) ;

} ;
. . .
/ / A∗B c a l l s A. o p e r a t o r ∗ (B) thus a l l
/ / f i e l d s and f u n c t i o n s used d i r e c t l y
/ / c o n c e r n what was p r e v i o u s l y p r e f i x e d by A.
Matrix Matrix : : operator ∗ (Matrix B) {

/ / we a r e in o b j e c t A o f t h e c a l l A∗B
i f (n !=B .m) { / / n o f A

cout << " Error ! " << endl ;
e x i t (1) ;

}
Matrix C;
C. c r e a t e (m, B . n) ;
f o r (i n t i =0 ; i <m; i ++)

f o r (i n t j =0 ; j <B . n ; j ++) {
/ / C i j =Ai0∗B0j+Ai1∗B1j + . . .

C. s e t (i , j , 0) ;
f o r (i n t k =0; k<n ; k++)

/ / g e t (i , j) i s t h e one o f A
C. s e t (i , j ,

C . get (i , j)+ get (i , k)∗B . get (k , j)) ;

119

9.6. Interface 9. First objects

}
re turn C;

}

Note also that the parameter of the operator needs not be an object. To write the
product B=A∗2, we will use the method

Matrix Matrix : : operator ∗ (double lambda) {
. . .

}
. . .

B=A∗2 ; / / C a l l s A. o p e r a t o r ∗ (2)

On the contrary, to write B=2∗A, it is not possible to use:

Matrix double : : operator ∗ (Matrix A) / / IMPOSSIBLE as t y p e d o u b l e
/ / i s no t an o b j e c t !

since it would amount to define a method for type double, that is not an object.4 We
need to simply use a standard operator, which would be well inspired by calling the
method Matrix::operator∗(double lambda) if it already exists:

Matrix operator ∗ (double lambda , Matrix A) {
re turn A∗ lambda ; / / d e f i n e d p r e v i o u s l y , n o t h i n g more t o do !

}
. . .

B=2∗A; / / c a l l s o p e r a t o r ∗ (2 ,A) t h a t c a l l s in turn
/ / A. o p e r a t o r ∗ (2)

We will see in the next chapter other useful operators for objects. . .

9.6 Interface

If we examine main() of the matrix example, we can observe that it does not use any
field of Matrix but only the methods. Actually, only the part

s t r u c t Matrix {
void c r e a t e (i n t m1, i n t n1) ;
void destroy () ;
double get (i n t i , i n t j) ;
void s e t (i n t i , i n t j , double x) ;
void display (s t r i n g s) ;
Matrix operator ∗ (Matrix B) ;

} ;

is useful to the user. That the dimensions are stored in fields int m and int n and the
elements in field double∗ t do not matter to the user: it concerns only the programmer
of matrices. If the latter finds another way5 to store the bidimensional array of double,
said programmer is free to do it. Actually

4and anyway does not belong to the programmer!
5And there are some! For example to store efficiently sparse matrices, that is, whose most elements

are null. Or also, using some objects implementing arrays efficiently and securely.

120

9. First objects 9.7. Protection

If the user of Matrix respects the declarations of the defined methods, their
designer can program them freely. They can even be reprogrammed in an-
other manner: the user’s programs will still work! It is precisely the concept
of an interface:

• The designer and the user agree on the methods that should exist.

• The designer implements them.a

• The user uses (!) them.

• The designer can improve them without bothering the user.

In particular the header file of the object is the only one that is useful to the
user. It is its role to precise the interface, without going into implementation
details. Hence, linked only by interface, usage and implementation become
independent.b

aAnd has to choose the right implementation: some ways of storing data can make some
methods efficient but at the expense of others, or use more memory, etc. The algorithmic
problems must be handled. That is why also in general that for a same interface, the user may
prefer such implementation instead of another: the designer is subject to concurrency!

bIn any case, both are winners: the builder can improve the implementation with both-
ering the user, who has also the possibility to change to a concurrent implementation with
modifying much its program.

9.7 Protection

9.7.1 Principle

All this is quite interesting, you may say, but implementation details are not hidden:
the definition of the structure in the header file shows the fields used by the imple-
mentation. Hence, the user may be tempted to use them! Nothing prevents the user to
make mistakes:

Matrix A;
A. c r e a t e (3 , 2) ;
A.m=4; / / Ouch ! Some a c c e s s e s w i l l be wrong !

or simply not bothering by replacing

f o r (i n t i =0 ; i <3 ; i ++)
f o r (i n t j =0 ; j <2 ; j ++)

A. s e t (i , j , 0) ;

by

f o r (i n t i =0 ; i <6 ; i ++)
A. t [i] = 0 ; / / No ! And i f imp l emented o t h e r w i s e ?

In this case, the usage is not any more independent on implementation and we lost
a large share of the interest of object programming. . . Here appears the possibility to
prevent the user from accessing some fields of even certain methods. For that:

121

9.7. Protection 9. First objects

1. Replace struct by the new keyword class: all fields and methods be-
come private: only methods of the object itself or other objects of the
same typea can use them.

2. Put the declaration public: in the object definition to define the zoneb

from which are declared fields and methods that are public, that is,
freely accessible to all.

aTo sum up, only the methods of the class!
bWe could again declare private zones with private:, then another public zone, etc.

There could even exist protected zones, used only for inheritance and not our concern in this
course. . .

Here is an example:

c l a s s ob j {
i n t x , y ;
void mine () ;

publ ic :
i n t z ;
void f o r _ a l l () ;
void another (ob j A) ;

} ;
void ob j : : mine () {

x = . . ; / / OK
. . = y ; / / OK
z = . . ; / / OK

}
void ob j : : f o r _ a l l () {

x = . . ; / / OK
mine () ; / / OK

}
void ob j : : another (ob j A) {

x=A. x ; / / OK
A. mine () ; / / OK

}
. . .
i n t main () {

ob j A, B ;
A. x = . . ; / / NO!
A. z = . . ; / / OK
A. mine () ; / / NO!
A. f o r _ a l l () ; / / OK
A. another (B) ; / / OK

In the case of our matrices, that we already implemented, it is enough to define them
as:

c l a s s Matrix {
i n t m, n ;
double∗ t ;

122

9. First objects 9.8. Practical

publ ic :
void c r e a t e (i n t m1, i n t n1) ;
void destroy () ;
double get (i n t i , i n t j) ;
void s e t (i n t i , i n t j , double x) ;
void display (s t r i n g s) ;
Matrix operator ∗ (Matrix B) ;

} ;

to prevent their usage being dependent on their implementation.

9.7.2 Structures vs Classes

Note that finally a structure is a class where everything is public. . . Old C program-
mers believe wrongly that structures in C++ are the same as in C, that is that they are
not objects and that they have no method.6

9.7.3 Accessors

Methods get() and set () that allow reading and writing access to our class, are called
accessors. Now that our fields are private, the user has no way to retrieve the dimen-
sions of a matrix. We thus add two accessors (here only getters) for reading:

i n t Matrice : : nbRow () {
re turn m;

}
i n t Matrice : : nbCol () {

re turn n ;
}
i n t main () {

. . .
f o r (i n t i =0 ; i <A. nbRow () ; i ++)

f o r (i n t j =0 ; j <A. nbCol () ; j ++)
A. s e t (i , j , 0) ;

but not for writing, which makes sense with the fact that changing m would make
mistakes with functions using t [i+m∗j]!

9.8 Practical

You are ready for Practical A.6 that draws some fractal curves (Figure 9.1) while illus-
trating the concept of object.

6Without mentioning that they declare them as in C with useless typedef. Anyway, it is not your
concern!

123

9.8. Practical 9. First objects

Figure 9.1: Fractals

124

9. First objects 9.9. Reference card

9.9 Reference card

Reference Card (1/3)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {

//skip case i==j
if (i==j)

continue;
...

}

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)
return;

if (x>=w || y>=h)
return;

DrawPoint(x,y,RED);
}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

125

9.9. Reference card 9. First objects

Reference Card (2/3)

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Objects

• struct obj {
int x; // field
int f(); // method
int g(int y);

};
int obj::f() {

int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {

obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();

void another(obj A);
};
void obj::mine() {
x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){
x=..; // OK
mine(); // OK

}
void another(obj A) {
x=A.x; // OK
A.mine(); // OK

}
...
int main() {
obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);
};
...
int main() {
obj A,B,C;
C=A+B;
// C=A.operator+(B)

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

126

9. First objects 9.9. Reference card

Reference Card (3/3)

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

• #include <ctime>
s=double(clock())
/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

Imagine++

• See documentation. . .

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

127

10. Constructors

Chapter 10

Constructors

In this important chapter, we will see how C++ allows controlling what happens when a new
object is created. This fundamental mechanism relies on the notion of constructor. This is very
useful, even for the beginner who should be able to know at least its simplest form. We will also
discover something fairly useful, as much for the efficiency of programs as for the discovery of
bugs at compilation time: a new usage of const. At this point, we will be only halfway in the
lifespan of objects. We keep for next chapter the counterpart notion of destructor.

—

10.1 The problem

With the appearance of objects, we transformed:

s t r u c t point {
i n t x , y ;

} ;
. . .

point a ;
a . x =2; a . y =3;
i =a . x ; j =a . y ;

in:

c l a s s point {
i n t x , y ;

publ ic :
void get (i n t&X , i n t&Y) ;
void s e t (i n t X , i n t Y) ;

} ;
. . .

point a ;
a . s e t (2 , 3) ;
a . get (i , j) ;

As a consequence:

point a = { 2 , 3 } ;

10.2. The solution 10. Constructors

does not work anymore because in a sense it allows assigning private members of an
object.1

10.2 The solution

The solution is the notion of constructor:

c l a s s point {
i n t x , y ;

publ ic :
point (i n t X , i n t Y) ;

} ;
point : : point (i n t X , i n t Y) {

x=X ;
y=Y ;

}
. . .

point a (2 , 3) ;

A constructor is a method whose name is the name of the class itself. It
returns nothing, but its return type is not even mentioned as void. The
constructor is called at object creation and its arguments are passed with
the syntax above. It is impossible to call a constructor on an already created
object.

Here, it is the constructor point :: point(int X,int Y) that is defined. Let us repeat,
it is impossible to call a constructor on an object already existing:

point a (1 , 2) ; / / OK! Values i n i t i a l i z e d
/ / We cannot change f i e l d s l i k e t h i s :
a . point (3 , 4) ; / / ERROR!
/ / But l i k e t h a t :
a . s e t (3 , 4) ; / / OK!

Let us notice that since the standard 2011 of C++,2 uniform initialization was intro-
duced, which allows to write the equivalent forms that all call the constructor:

point a (1 , 2) ; / / u s u a l c o n s t r u c t o r c a l l
point b = { 1 , 2 } ; / / a l t e r n a t e sy nt ax
point c { 1 , 2 } ; / / s t i l l a l t e r n a t e sy nt ax

1Actually, there is another reason, more fundamental and too difficult to explain here, that makes
such initialization impossible.

2Called C++11. It was the second standard norm for C++, the first one dating from 1998. Since
C++11, a new standard was approved every 3 years (there was C++14, C++17, C++20), each adding
new syntax and new functions in the standard library. The compiler obeys a standard default, which is
at least C++11 nowadays.

130

10. Constructors 10.3. General case

10.3 General case

10.3.1 Empty constructor

When an object is created without precision, it is the empty constructor, or default con-
structor, that is called, the one without parameters. The program:

c l a s s ob j {
publ ic :

ob j () ;
} ;
ob j : : ob j () {

cout << " h e l l o " << endl ;
}
. . .

ob j a ; / / c a l l s t h e c o n s t r u c t o r w i t h o u t argument

displays "hello".

The empty constructor obj::obj() is called each time an object is created
without argument.

To be more precise, consider the following program:

include <iostream >
using namespace std ;

c l a s s ob j {
publ ic :

ob j () ;
} ;

ob j : : ob j () {
cout << " ob j " ;

}

void f (ob j d) {
}

ob j g () {
ob j e ;
cout << 6 << " " ;
re turn e ;

}

i n t main ()
{

cout << 0 << " " ;
ob j a ;
cout << 1 << " " ;
f o r (i n t i =2 ; i <=4; i ++) {

131

10.3. General case 10. Constructors

obj b ;
cout << i << " " ;

}
f (a) ;
cout << 5 << " " ;
a=g () ;
re turn 0 ;

}

It displays:

0 ob j 1 ob j 2 ob j 3 ob j 4 5 ob j 6

Observe how each call to obj :: obj () can be spotted by the display. However, the pa-
rameter d of f () , copy of argument a, does not call the constructor; more precisely, it
calls the copy constructor (which we did not define), and we will learn about it in next
chapter. The situation for the return value of g(), object e, is also a bit complicated,3 we
leave it also for next chapter.

10.3.2 Several constructors

It is perfectly fine for an object to have several constructors:

c l a s s point {
i n t x , y ;

publ ic :
point (i n t X , i n t Y) ;
point (i n t V) ;

} ;
point : : point (i n t X , i n t Y) {

x=X ;
y=Y ;

}
point : : point (i n t V) {

x=y=V;
}
. . .

point a (2 , 3) ; / / b u i l t wi th p o i n t (X, Y)
point b (4) ; / / b u i l t wi th p o i n t (V)

As an alternative to the last syntax, for a constructor with a single parameter, it is
possible to write:

point b = 4 ; / / E q u i v a l e n t t o p o i n t b (4)

It is still important to remember this:

If no constructor is defined, everything happens as if there were only an
empty constructor, that does nothing special. But: as soon as we define a
constructor, the empty constructor does not exist anymore, except if we de-
fine it explicitly.

3For the time being, just be confident that it works as expected.

132

10. Constructors 10.3. General case

For example, the program:

c l a s s point {
i n t x , y ;
void s e t (. . .)

} ;
. . .

point a ;
a . s e t (2 , 3) ;
point b ; / / OK

becomes, with a constructor, a program not compiling:

c l a s s point {
i n t x , y ;

publ ic :
point (i n t X , i n t Y) ;

} ;
point : : point (i n t X , i n t Y) {

x=X ;
y=Y ;

}
. . .

point a (2 , 3) ; / / b u i l t wi th p o i n t (X, Y)
point b ; / / ERROR! p o i n t () d o e s not e x i s t any more

and we need to append an empty constructor, even if it does nothing:

c l a s s point {
i n t x , y ;

publ ic :
point () ;
point (i n t X , i n t Y) ;

} ;
point : : point () {

/ / B e t t e r t o i n i t i a l i z e x , y , but f r e e t o do n o t h i n g !
}
point : : point (i n t X , i n t Y) {

x=X ;
y=Y ;

}
. . .

point a (2 , 3) ; / / b u i l t wi th p o i n t (X, Y)
point b ; / / OK! b u i l t wi th p o i n t ()

10.3.3 Array of objects

There is no way to specify globally which constructor is called for the elements of an
array. It is always the empty constructor that is called:

point t [3] ; / / b u i l t 3 t i m e s wi th empty c o n s t r u c t o r

133

10.3. General case 10. Constructors

/ / on e a c h e l e m e n t o f a r r a y
point ∗ s=new point [n] ; / / Idem , n t i m e s
point ∗ u=new point (1 , 2) [n] ; / / ERROR and HORROR!

/ / A t r i a l t o b u i l d u [i]
/ / wi th p o i n t (1 , 2)

To achieve the same goal, we will have to write:

point ∗ u=new point [n] ;
f o r (i n t i =0 ; i <n ; i ++)

u [i] . s e t (1 , 2) ;

which it not identical, since we build first the points with the empty constructor, then
assign them.

Still, it is possible to write:

point t [3] = { point (1 , 2) , point (2 , 3) , point (3 , 4) } ;

which is not feasible for variable size array.
As a consequence,

To be able to have an array of objects, the object type must have an empty
constructor, be it an explicit one, or the default one (if no constructor is
defined).

10.3.4 Field of object type

When a class contains a field of object type, the question arises: how is the field con-
structed? This is controlled by the user with the following syntax:

c l a s s C i r c l e {
point c e n t e r ;
i n t radius ;

publ ic :
C i r c l e () ;
C i r c l e (i n t x , i n t y , i n t r) ;

} ;
C i r c l e : : C i r c l e () { radius = 0 ; }
C i r c l e : : C i r c l e (i n t x , i n t y , i n t r) : c e n t e r (x , y) , radius (r) { }

In the second constructor, the field center is constructed before the braces, calling
the constructor point :: point(int , int). Actually, when reaching the opening brace, the
object (hence its fields) is already constructed, the code between braces consisting of
further initialization if necessary. To be consistent, the language allows also the inital-
ization before the braces for the field radius, even though it does not have a construc-
tor, since it is a basic type. For the first constructor, since no instruction indicates how
to construct the field center, the empty constructor is called, point :: point(), which
implies that this constructor must exist for the code to build.

134

10. Constructors 10.4. Temporary objects

10.4 Temporary objects

We can, calling directly a constructor, build an object without storing it in a
variable. Actually, it is a temporary object, without variable name, we call
it anonymous.

The program:

void f (point p) {
. . .

}
point g () {

point e (1 , 2) ; / / t o be r e t u r n e d
re turn e ;

}
. . .

point a (3 , 4) ; / / on ly t o c a l l f ()
f (a) ;
point b ;
b=g () ;
point c (5 , 6) ; / / we c o u l d want t o do
b=c ; / / t h i s t o put b a t (5 , 6)

can be made widely lighter, with no storage in variables the points for which it is not
useful:

1 void f (point p) {
2 . . .
3 }
4 point g () {
5 re turn point (1 , 2) ; / / r e t u r n anonymous o b j e c t p o i n t (1 , 2)
6 }
7 . . .
8 f (point (3 , 4)) ; / / p a s s d i r e c t l y t emporary o b j e c t p o i n t (3 , 4)
9 point b ;

10 b=g () ;
11 b=point (5 , 6) ; / / a s s i g n b with temp . o b j e c t p o i n t (5 , 6)

Be attentive to line 11: it is executed when b already exists but you need to under-
stand that we build an anonymous point (5,6) that is then assigned to b. We do not
fill b directly with (5,6) as we would do with b.set (5,6) .

Beware also on the very frequent error of creating a temporary object to create
really a variable:

point p=point (1 , 2) ; / / NO!

is uselessly complex and should be written:

point p (1 , 2) ; / / YES!

The usefulness of temporary objects is more noticeable on a real example:

point point : : operator +(point b) {

135

10.5. Practical 10. Constructors

point c (x+b . x , y+b . y) ;
re turn c ;

}
. . .

point a (1 , 2) , b (2 , 3) ;
c=a+ f (b) ;

would be replaced by:

point point : : operator +(point b) {
re turn point (x+b . x , y+b . y) ;

}
. . .

c=point (1 , 2) + f (point (2 , 3)) ;

Figure 10.1: Game of Tron.

10.5 Practical

We can now begin the Practical proposed at A.7. It is a game of Tron (single or two
players), see Figure 10.1. This mini-project will be completed with the contents of next
chapter.

10.6 Constant References

10.6.1 Principle

When an object is passed as argument to a function, it is copied.4 This copy is a source
of lack of efficiency. For this reason, in the following program:

const i n t N=1000;
c l a s s vec tor {

double t [N] ;
. . .

} ;
c l a s s matrix {

double t [N] [N] ;

4The precise mechanism of this copy will be studied in the next chapter.

136

10. Constructors 10.6. Constant References

. . .
} ;
/ / s o l v e sys t em o f e q u a t i o n AX=B
void solve (matrix A, vec tor B , vec tor& X) {

. . .
}

. . .
vec tor b , x ;
matrix a ;
. . .
so lve (a , b , x) ;

variables A and B of function solve() are copies of objects a and b of the calling scope.
Note that, passed by reference, the parameter X is not a copy but just a link to the
variable x.

The copy of a in A is not a good thing. The variable a weighs in our case 8 millions
bytes: copying them in A takes time! Even for lighter objects, if a function is called
often, this copy of argument may slow down the program. For a short function, the
time of copy may even be more than the one spent in the function itself!

The idea is then, for heavy objects, to pass them also by reference to avoid the copy,
even if the function does not intend to modify them! We just have to define the function
solve() in this way:

void solve (matrix& A, vec tor& B , vec tor& X) {
. . .

and no copy of matrix happens.
However, this solution is not without danger. There is no guarantee that solve

does not modify its parameters A and B. It is then possible, according to how solve
is implemented, that at exit of solve(a,b,x), a and b be modified themselves, whereas
before it was the copies A and B that were modified. It is obviously a drawback!
The C++ language offers fortunately the possibility of asking the compiler to check that
a variable passed by reference is not modified. It is enough to add a const at the adequate
place:

void solve (const matrix& A, const vec tor& B , vec tor& X) {
. . .

If anywhere in solve (or in functions called by solve!), the variable A or B is modified,
the compiler would refuse it. The rule is thus:

When a function argument obj o is of significant sizea, it is a good idea to
replace it by const obj& o.

aActually, the program is faster for most objects, whatever their size.

10.6.2 Constant methods

Let us consider the program:

void g (i n t& x) {
cout << x << endl ;

137

10.6. Constant References 10. Constructors

}
void f (const i n t& y) {

double z=y ; / / OK d o e s not modi fy y
g (y) ; / / OK?

}
. . .

i n t a =1;
f (a) ;

The function f () does not modify its parameter y and everything is fine. Now consider
a second version of g():

void g (i n t& x) {
x ++;

}

Then y would be modified in f () because of the call to g(). The program should not
compile. . . Actually, the first version of g() would also be refused because

to know whether a called function modifies or not one of its arguments
passed by reference, the compiler relies only on its declaration and not its
complete definition.a

aThe compiler does not try to guess if a function modifies its arguments since the logic is
that the programmer indicates with a const what is intended; the compiler only checks a
constant argument is not modified.

Indeed, our first program would not compile either since the call g(y) with const int& y
imposes that g() be declared void g(const int& x). The right program is thus:

void g (const i n t& x) {
cout << x << endl ;

}
void f (const i n t& y) {

double z=y ; / / OK d o e s not modi fy y
g (y) ; / / OK! No need t o c h e c k i n s i d e g ()

}
. . .

i n t a =1;
f (a) ;

(of course, it is a bit silly to pass an integer as const int&, while a simple int would
do).

Replacing the int above by an object, we need a new notion. Consider now this:

void f (const ob j& o) {
o . g () ; / / OK?

}

We need to indicate to the compiler if the method g() modifies the object o. The fol-
lowing syntax is used:

c l a s s ob j {
. . .

138

10. Constructors 10.6. Constant References

void g () const ;
. . .

} ;
void ob j : : g () const {

. . .
}
void f (const ob j& o) {

o . g () ; / / OK! Cons tant method
}

This is not so complicated:

We indicate that a method is constant, that is, it does not modify its object,
by putting const after its parentheses both in declaration and definition.

We could wonder whether this is really necessary: our starting argument was just
passing quickly arguments to functions by using references. In reality, the const in
methods is a very good thing. Do not consider that as a hassle, but as a way of ex-
press precisely your thoughts: “am I adding a method that modifies the object?”. The
compiler will then check for you the coherency of this const with the rest. It has two
important effects:

• Early discovery of bugs, at compile time (we thought an object was not modified,
it actually is).

• Optimization of the program.5

5When the compiler knows an object remains constant in part of the program, it can avoid rereading
it each time. The const is then precious information for the optimizing engine of the compiler.

139

10.7. Reference card 10. Constructors

10.7 Reference card

Reference Card (1/4)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {

//skip case i==j
if (i==j)

continue;
...

}

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;

// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

140

10. Constructors 10.7. Reference card

Reference Card (2/4)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...

int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

• Constant references (avoid
copy):
void f(const obj& x){
...

}
void g(const obj& x){

f(x); // OK
}

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

141

10.7. Reference card 10. Constructors

Reference Card (3/4)

Objects

• struct obj {
int x; // field
int f(); // method
int g(int y);

};
int obj::f() {

int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {

obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();
void another(obj A);

};
void obj::mine() {

x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){

x=..; // OK
mine(); // OK

}
void another(obj A) {

x=A.x; // OK
A.mine(); // OK

}
...
int main() {

obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);

};
...
int main() {

obj A,B,C;
C=A+B;
// C=A.operator+(B)

• Constant methods:
void obj::f() const{

...
}
void g(const obj& x){

x.f(); // OK
}

• Constructor:
class point {

int x,y;
public:

point(int X,int Y);
};
point::point(int X,

int Y){
x=X;
y=Y;

}
...

point a(2,3);

• Empty constructor:
obj::obj() {

...
}
...

obj a;

• Temporary objects:
vec vec::operator+(

vec b) {
return vec(x+b.x,

y+b.y);
}
...
c=vec(1,2)
+f(vec(2,3));

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

142

10. Constructors 10.7. Reference card

Reference Card (4/4)

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

• #include <ctime>
s=double(clock())

/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

Imagine++

• See documentation. . .

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

• class vec {
int x,y;

public:
...

};
...
vec a={2,3}; // NO

• vec v=vec(1,2);//NO
vec v(1,2); // Yes

143

11. Destructor

Chapter 11

Destructor

This chapter can be considered as difficult. Still, we recommend you make the effort to under-
stand it. It is about the management of resources, notably memory, which relies on the notion
of destructor. We will see how its usage will help in automatic management of the heap.

—

11.1 Destructor

When an object dies, another of its methods is called: the destructor.

The destructor:

• is called when the object dies.

• has as “identifier” the class name prefixed by ˜.

• like constructors, has no return type.

• takes no argument

A consequence of the last item is that there is a single destructor per class. An example
will be more telling. Let us add a destructor to the program of Section 10.3:

inc lude <iostream >
using namespace std ;

c l a s s ob j {
publ ic :

ob j () ;
~ob j () ;

} ;

ob j : : ob j () {
cout << " ob j " ;

}

ob j : : ~ ob j () {

11.1. Destructor 11. Destructor

cout << "~ " ;
}

void f (ob j d) {
}

ob j g () {
ob j e ;
cout << 6 << " " ;
re turn e ;

}

i n t main ()
{

cout << 0 << " " ;
ob j a ;
cout << 1 << " " ;
f o r (i n t i =2 ; i <=4; i ++) {

ob j b ;
cout << i << " " ;

}
f (a) ;
cout << 5 << " " ;
a=g () ;
re turn 0 ;

}

It displays now:

0 ob j 1 ob j 2 ~ obj 3 ~ obj 4 ~ ~ 5 obj 6 ~ ~ ~

Try to follow the program step by step and spot where destructors are called. Notice
that for each iteration of the for loop, 2, 3 and 4, an object b is created (constructor
called) and at the end of iteration b dies so that its destructor is called. After the call
to function f, its parameter d dies, hence the ˜ before displaying 5. The behavior of
function g is more complex to understand, we will come back to it; however, a local
object e is created, hence destroyed at exit. The last ˜ marks the death of variable a
when exiting the main function. Notice that we can spot only 5 constructors compared
to 7 destructors. We could have expected the same number of both. Actually, 2 objects
were constructed by copy, as will be explained in this chapter.

Concerning a field of object type, as in Section 10.3.4, there is nothing special to do:
the destructor Circle ::~ Circle () calls automatically the destructor point::~point() for
its field center. The programmer must not call the destructor explicitly. The general
rule is that

A destructor must never be called explicitly, since the call happens automat-
ically.

146

11. Destructor 11.2. Destructors and arrays

11.2 Destructors and arrays

For an array, the destructor is called for each element of the array:

1 i f (a==b) {
2 ob j t [1 0] ;
3 . . .
4 }

will call 10 times the empty constructor at line 2 and 10 times the destructor at line 4.
In case of a dynamic array, it is at the moment of delete [] that destructors are called
(before deallocation of the array).

i f (a==b) {
ob j ∗ t =new obj [n] ; / / n c a l l s t o o b j ()
. . .
d e l e t e [] t ; / / n c a l l s t o ~ o b j () ;

}

Beware: it is possible to write delete t without brackets []. It is a mis-
take! That simpler syntax is reserved to another usage of new/delete with
pointers. Using it has for consequence the deallocation but not the call of
the destructor on each t[i].

11.3 Copy constructors

Let us finally discover this famous constructor we alluded to several times. It is a
constructor taking as argument another object of same type, as a constant reference.

The copy constructor:

• Is declared as: obj::obj(const obj& o);

• can be used explicitly as:
obj a;
obj b(a); // b from a

• But is also (surprisingly) used in:
obj a;
obj b=a; // b from a, identical to b(a)
Do not mix with:
obj a,b;
b=a; // this is not a constructor!

• And above all to build parameters to functions and return value.

The last item is the difficult part, let us see our completed program:

ob j : : ob j (const ob j& o) {
cout << " copy " ;

}

147

11.4. Assignment 11. Destructor

which prints:

0 ob j 1 ob j 2 ~ obj 3 ~ obj 4 ~ copy ~ 5 obj 6 copy ~ ~ ~

We have at last 7 constructors for the 7 destructors! The call to function f should be now
easy to understand. The call to g is slightly harder: local object e should be destroyed
at exit, as expected. However, how can we return an object that will die just next?
Actually, before destroying e, a copy constructor is called with e as argument to create
an anonymous object. Said anonymous object then has to die just after usage in the
calling instruction, here after a=g().

There is an important point to know about this constructor, which will bite us later
if we are not careful:

When a copy constructor is not defined explicitly, a default copy constructor
is created and its copies the fields of its arguments in the built object.

Remember also that when we define a constructor, the default empty constructor does
not exist anymore. Yet, the default copy constructor still exists!

For a field of object type, as in the example of Section 10.3.4, the default copy con-
structor calls the copy constructor of the field type. In other words, the copy con-
structor Circle :: Circle (const Circle& c) calls point :: point(const point& p) for its field
center (default or defined one).

11.4 Assignment

There is one last thing that is possible to reprogram for an object: assignment. If not
defined explicitly, the default assignation behaves naturally by assigning all fields in-
dividually. To provide an explicit assignment operator, we redefine =. Therefore a=b
is the nice version of a.operator=(b). Let us add it:

void ob j : : operator =(const ob j& o) {
cout << "= " ;

}

to our program, which now prints:

0 ob j 1 ob j 2 ~ obj 3 ~ obj 4 ~ copy ~ 5 obj 6 copy ~ = ~ ~

Notice the assignment operator called by instruction a=g(), with argument the anony-
mous object returned by function g.

Generally, we refine it a little bit. The instruction a=b=c; between basic types works
for two reasons:

• It is interpreted as a=(b=c); (associativity from right to left)

• The instruction b=c assigns c to b and returns the value of c.

To be able to do the same between three objects, we can define the assignment as fol-
lows:

ob j ob j : : operator =(const ob j& o) {
cout << "= " ;
re turn o ;

148

11. Destructor 11.4. Assignment

}
. . .

ob j a , b , c ;
a=b=c ; / / OK s i n c e a =(b=c)

or even like that, which goes beyond our current knowledge, but that should be fol-
lowed as it avoids copying an object at return time:

const ob j& obj : : operator =(const ob j& o) {
cout << "= " ;
re turn o ; / / o r r e t u r n ∗ t h i s i f you p r e f e r

}
. . .

ob j a , b , c ;
a=b=c ; / / OK s i n c e a =(b=c)

If you look at the code of an experienced programmer, you will see something like:

ob j& obj : : operator =(const ob j& o) {
i f (t h i s != &obj) {

. . . }
re turn ∗ t h i s ;

}

which on top may prevent mistakes with silly code like a=a, which could turn catastophic
as we will see in the next section.

For an object with a field of object type, like in Section 10.3.4, the default assigne-
ment operator Circle calls the assignement operator of point for the field center,
whether the default one or the defined one. But if you define the assignment operator
for Circle, you must indicate that you wish to copy the point:

C i r c l e& C i r c l e : : operator =(const C i r c l e& c) { / / My own a s s i g n m e n t
i f (t h i s != &c) {

c e n t e r = c . c e n t e r ; / / C a l l s p o i n t : : o p e r a t o r =(c o n s t p o i n t &)
radius = radius ;

}
re turn ∗ t h i s ;

}

In this case the definition of the assignment operator for Circle does nothing different
from the default one, and the code we wrote is just bloat. The idea is to write the
minimum required code:

Do not be pedantic! It is only useful to have explicit copy constructor and
assignment operator when we want them to do something else that their
default behavior.a

aOn the contrary to empty constructor that is not provided by default when another reg-
ular (that is, not copy) constructor is defined, and that may need to be provided, even to
reproduce the default behavior!

149

11.5. Objects with dynamic allocation 11. Destructor

11.5 Objects with dynamic allocation

All we saw here was a bit abstract, and the interest of defining explicitly destructor,
copy constructor and assignment operator may look remote. Let us discover at last
how that helps. Consider the following class, which we will improve step by step:

inc lude <iostream >
using namespace std ;

c l a s s vect {
i n t n ;
double ∗ t ;

publ ic :
void a l l o c a t e (i n t N) ;
void f r e e () ;

} ;

void vect : : a l l o c a t e (i n t N) {
n=N;
t =new double [n] ;

}

void vect : : f r e e () {
d e l e t e [] t ;

}

i n t main ()
{

vec t v ;
v . a l l o c a t e (1 0) ; / / n e c e s s a r y b e f o r e usage
. . .
v . f r e e () ; / / do not f o r g e t
re turn 0 ;

}

11.5.1 Construction and destruction

It is obvious that constructor and destructor are here to help us:

inc lude <iostream >
using namespace std ;

c l a s s vect {
i n t n ;
double ∗ t ;

publ ic :
vec t (i n t N) ;
~vect () ;

} ;

150

11. Destructor 11.5. Objects with dynamic allocation

vect : : vec t (i n t N) { / / r e p l a c e a l l o c a t e
n=N;
t =new double [n] ;

}

vec t : : ~ vect () { / / r e p l a c e f r e e
d e l e t e [] t ;

}

i n t main ()
{

vec t v (1 0) ;
. . .
re turn 0 ;

}

Thanks to constructor and destructor, we can at last let allocations and deal-
locations happen by themselves!

11.5.2 Problems!

The dark side is that this way of doing things will lead us to go a bit far for beginners.
We will face two types of problems.

A simple problem

Since there is a single destructor for several constructors, we need to be careful with
what happens in the destructor. Let us add for example an empty constructor:

vec t : : vec t () { / / A b i t s i l l y but l i c i t t o have a u s a b l e o b j e c t
}

then the destruction of an object created ex nihilo will deallocate an absurd field t, since
never initialized. We can fix it easily:

vec t : : vec t () {
n=0;

}
vec t : : ~ vect () {

i f (n ! = 0)
d e l e t e [] t ;

}

Complex problems

The following usage of our class does not work:

151

11.5. Objects with dynamic allocation 11. Destructor

i n t main ()
{

vec t v (1 0) ,w(1 0) ;
w=v ;
re turn 0 ;

}

Why? Because the assignment (by default, since not defined) copies the fields of v
into the ones of w. Thus, v and w have the same value for t! Remember such a value
is an address in memory. Not only will the two objects share the same array (hence
modifying one coefficient will also modify the other, without the user realizing), but
on top a same zone of the heap will be deallocated twice, while another will never be!1

For protection, we must then redefine assignment, which is not trivial, but could be
reproduced once understood. The simpler option is to allocate new memory and copy
the elements of the array.

vec t& vect : : operator =(const vect& v) {
i f (n ! = 0)

d e l e t e [] t ; / / D e a l l o c a t i o n i f n e c e s s a r y
n=v . n ;
i f (n ! = 0) {

t =new double [n] ; / / R e a l l o c a t i o n and copy
f o r (i n t i =0 ; i <n ; i ++)

t [i]=v . t [i] ;
}
re turn ∗ t h i s ;

}

This version will have dire consequences if the user does v=v (can you see why?).2

11.5.3 Solution!

Identical problems happen for copy constructor. This being said, factorizing the code
in a few private functions, the solution is fairly easy and fairly light. We present it as it
comes, you should be able to understand the logic:3

1 # include <iostream >
2 using namespace std ;
3
4 c l a s s vect {
5 i n t n ; / / Dimension
6 double ∗ t ;
7 / / p r i v a t e f u n c t i o n s
8 void a l l o c (i n t N) ;
9 void k i l l () ;

1That is, until the end of program. This is an instance of our dreaded memory leaks, errors that are not
fatal but still annoying. However, deallocating twice the same array is likely to crash the program!

2As mentioned before, the test (&v==this) is a lifesaver. . .
3This is only the first step to different ways to manage objects. Must we copy the arrays? Share them

so that the last user deallocates? Apply “copy on write” (COW)? Let’s leave that to an advanced course.

152

11. Destructor 11.5. Objects with dynamic allocation

10 void copy (const vect& v) ;
11 publ ic :
12 / / " mandatory " c o n s t r u c t o r s
13 vect () ;
14 vect (const vect& v) ;
15 vect (i n t N) ; / / a d d i t i o n a l c o n s t r u c t o r
16 ~vect () ; / / d e s t r u c t o r
17 vect& operator =(const vect& v) ; / / a s s i g n m e n t
18 } ;
19
20 void vect : : a l l o c (i n t N) {
21 n=N;
22 i f (n ! = 0)
23 t =new double [n] ;
24 }
25
26 void vect : : k i l l () {
27 i f (n ! = 0)
28 d e l e t e [] t ;
29 }
30
31 void vect : : copy (const vect& v) {
32 a l l o c (v . n) ;
33 f o r (i n t i =0 ; i <n ; i ++) / / OK even i f n==0
34 t [i]=v . t [i] ;
35 }
36
37 vect : : vec t () { a l l o c (0) ; }
38 vect : : vec t (const vect& v) { copy (v) ; }
39 vect : : ~ vect () { k i l l () ; }
40
41 vect& vect : : operator =(const vect& v) {
42 i f (t h i s !=&v) {
43 k i l l () ;
44 copy (v) ;
45 }
46 return ∗ t h i s ;
47 }
48
49 vect : : vec t (i n t N) {
50 a l l o c (N) ;
51 }
52
53 / / To t e s t copy c o n s t r u c t o r
54 vect f (vect a) { re turn a ; }
55 / / To t e s t e v e r y t h i n g works
56 i n t main () {
57 vect a , b (1 0) , c (1 2) , d ;

153

11.6. Reference card 11. Destructor

58 a=b ;
59 a=a ;
60 a=c ;
61 a=d ;
62 a= f (a) ;
63 b= f (b) ;
64 re turn 0 ;
65 }

Notice that the assignment operator always behaves in the same pattern: 1. do the same
as destructor (without calling it, you must never call a destructor explicitly); 2. do the
same as copy constructor (without calling it, there is no new object to create!).

11.6 Reference card

Reference Card (1/4)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {

//skip case i==j
if (i==j)

continue;
...

}

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;

// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

154

11. Destructor 11.6. Reference card

Reference Card (2/4)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...

int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

• Constant references (avoid
copy):
void f(const obj& x){
...

}
void g(const obj& x){

f(x); // OK
}

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

155

11.6. Reference card 11. Destructor

Reference Card (3/4)

Objects

• struct obj {
int x; // field
int f(); // method
int g(int y);

};
int obj::f() {

int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {

obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();
void another(obj A);

};
void obj::mine() {

x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){

x=..; // OK
mine(); // OK

}
void another(obj A) {

x=A.x; // OK
A.mine(); // OK

}
...
int main() {

obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);
};
...
int main() {

obj A,B,C;
C=A+B;
// C=A.operator+(B)

• Constant methods:
void obj::f() const{

...
}
void g(const obj& x){

x.f(); // OK
}

• Constructor:
class point {

int x,y;
public:

point(int X,int Y);
};
point::point(int X,

int Y){
x=X;
y=Y;

}
...

point a(2,3);

• Empty constructor:
obj::obj() {

...
}
...

obj a;

• Temporary objects:
vec vec::operator+(

vec b) {
return vec(x+b.x,

y+b.y);
}
...
c=vec(1,2)
+f(vec(2,3));

• Destructor:
obj::~obj() {
...

}

• Copy constructor:
obj::obj(const obj& o)
{ ... }

Used by:
- obj b(a);
- obj b=a;
//Not obj b;b=a;
- function argument
- return value

• Assignment:
obj& obj::operator=(

const obj&o){
...
return *this;

}

• Objects with automatic dy-
namic allocation: Section 11.5

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

156

11. Destructor 11.6. Reference card

Reference Card (4/4)

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();

• #include <ctime>
s=double(clock())

/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

Imagine++

• See documentation. . .

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

• class vec {
int x,y;

public:
...

};
...
vec a={2,3}; // NO

• vec v=vec(1,2);//NO
vec v(1,2); // Yes

• obj* t=new obj[n];
delete t;// missing []

157

12. Strings, files

Chapter 12

Strings, files

The most important aspects for an introductory programming course have been covered in
the previous chapters. In this one and the next one, we present some useful (and sometimes
necessary) stuff. We begin here with strings and files, and miscellaneous functionalities.

—

You know enough to create many programs. What you need more is practice. How-
ever, if you want to create your own project, you will realize you need a few additional
things. This chapter may help you. . .

12.1 Strings

The strings are variables storing characters, that is, text. We already met them:

include < s t r i n g >
using namespace std ;
. . .
s t r i n g s=" hop " ;
char c=s [0] ;
i n t l =s . s i z e () ;

From the syntax, you have realized that a string is actually a class. The type of "hop"
is actually not string but const char∗. Such an array is not easy to manipulate, and it
is better to transform it into a string. This is what is done above, creating s with the
constructor taking a const char∗ as argument. Then, many other functionalities are
available. Let us introduce a few of them:

1. Strings can be compared. The lexicographic order is used:

i f (s1==s2) . . .
i f (s1 != s2) . . .
i f (s1 <s2) . . .
i f (s1 >s2) . . .
i f (s1 >=s2) . . .
i f (s1 <=s2) . . .

2. We can search a character in a string:

12.1. Strings 12. Strings, files

s i z e _ t i =s . f ind (’h ’) ; / / p o s i t i o n o f ’ h ’ in s ?
s i z e _ t j =s . f ind (’h ’ , 3) ; / / p o s i t i o n o f ’ h ’ in s

/ / from p o s i t i o n 3 ,
/ / i g n o r i n g s [0] t o s [2]

• Beware, it the type size_t1 that is used, not int. It is an unsigned integer,
whose number of bytes is chosen by C++. . .

• If the character is not found, find returns string::npos (a constant, ac-
tually the largest number storable in size_t).

3. We can also look for a sub-string:

s i z e _ t i =s . f ind (" hop ") ; / / f i n d " hop " in s ?
s i z e _ t j =s . f ind (" hop " , 3) ; / / f i n d " hop " in s from p o s i t i o n 3

4. Append a string to another:

s t r i n g a="How are you " ;
s t r i n g b="my f r i e n d s ? " ;
s t r i n g t x t =a+" "+b ;

5. Extract a substring:

s t r i n g s1=" one two three " ;
s t r i n g s2= s t r i n g (s1 , 4 , 3) ; / / s u b s t r i n g o f l e n g t h 3

/ / s t a r t i n g a t s1 [4] (h e r e " two ")

6. Beware: getting a string from the user input (keyboard) cuts the string at the first
blank found. If we enter “hello friends”, the program

s t r i n g s ;
c in >> s ; / / U n t i l " Enter " or s p a c e

will get “hello” in s (and then “friends” if another instruction cin>>t is present).
To get the full line, spaces included:

g e t l i n e (cin , s) ; / / F u l l t e x t l i n e u n t i l ‘ ‘New l i n e ’ ’

We can possibly choose another break character:

g e t l i n e (cin , s , ’ : ’) ; / / E v e r y t h i n g up t o ’ : ’ (no t i n c l u d e d)

7. Convert back a string to C format (array of characters): C strings are arrays of
characters ending in 0.2 Some functions take as parameter char∗ or const char∗.3
They would need to be fed with s . c_str () giving access to the internal C array
stored by s (see Section 12.2.2).

s t r i n g s=" hop hop " ;
const char ∗ t =s . c _ s t r () ;

1To be more verbose, even pedantic, you could use string::size_type.
2Not the character ’0’, whose code is not 0.
3We have not yet seen the role of const in arrays.

160

12. Strings, files 12.2. Files

You will find other functions in the online help of your IDE (hopefully), or discover
them yourself by looking at what the IDE proposes when you begin to call a method
of a string.

12.2 Files

12.2.1 Principle

To read and write in a file, we can proceed exactly as with cout and cin. We simply
have to create variables of type ofstream to write in a file, or of type ifstream to read. It
is surprisingly simple.

1. Here is how to do

include <fstream >
using namespace std ;
. . .

ofstream f (" hop . t x t ") ;
f << 1 << ’ ’ << 2 . 3 << ’ ’ << " h e l l o " << endl ;
f . c l o s e () ;

i f s t r e a m g (" hop . t x t ") ;
i n t i ;
double x ;
s t r i n g s ;
g >> i >> x >> s ;
g . c l o s e () ;

2. It is advised to check that the file opening went well. A frequent error is to give
an erroneous file name: the file is not open then.

i f s t r e a m g (" . . / data/hop . t x t ") ;
i f (! g . is_open ()) {

cout << " help ! " << endl ;
re turn 1 ;

}

(use always slash /, portable, and not backslash \, even under Windows). We can
also need to know if we reached the end of file while reading:

do {
. . .

} while (! (g . eof ()) ;

3. A useful function (actually a preprocessor macro) from Imagine++ (in module
Common) is srcPath, which replaces a relative path to absolute path by pre-
fixing it with the folder containing the source file. Doing so ensures that the file
will be found whatever the current folder of the running program. If my source
folder is /home/pascal/Test/,

161

12.2. Files 12. Strings, files

i f s t r e a m g (srcPath (" hop . t x t ")) ;

will look for the file /home/pascal/Test/hop.txt, even if my running pro-
gram is in the different build folder. The equivalent for the type string is
stringSrcPath.

4. A file can be opened after construction:

ofstream f ;
f . open (" hop . t x t ") ;
. . .

5. Less frequent, but very useful to know: We can write in a file directly the byte
stream in memory corresponding to a variable or array. The file is then lighter
in size, reading and writing are faster (no need to translate a number or string of
characters or the inverse).

double x [1 0] ;
double y ;
ofstream f (" hop . bin " , i o s : : binary) ;
f . wri te ((const char ∗) x , 1 0∗ s i z e o f (double)) ;
f . wri te ((const char∗)&y , s i z e o f (double)) ;
f . c l o s e () ;
. . .
i f s t r e a m g (" hop . bin " , i o s : : binary) ;
g . read ((char ∗) x , 1 0∗ s i z e o f (double)) ;
g . read ((const char∗)&y , s i z e o f (double)) ;
g . c l o s e () ;

In such case, do not forget to use opening mode ios :: binary. The downside is that
the file is not human-readable; it is better to reserve it for large files.4

12.2.2 String and file

1. To open a file, you need to give the name as a C string, hence the conversion:

void read (s t r i n g name) {
i f s t r e a m f (name . c _ s t r ()) ; / / C o n v e r s i o n i s mandatory
. . .

}

2. To read a string including spaces, use the same as for cin:

g e t l i n e (g , s) ;
g e t l i n e (g , s , ’ : ’) ;

3. At last, a bit technical but very convenient: the stringstream, that are strings sim-
ulating virtual files (with no name). They are used notably to convert a string
into number or the inverse:

4For example, image file formats do that, on top of compression.

162

12. Strings, files 12.2. Files

include <sstream >
using namespace std ;

s t r i n g s=" 12 " ;
s t r ings t ream f ;
i n t i ;
/ / S t r i n g t o i n t e g e r
f << s ; / / Wri te s t r i n g
f >> i ; / / Read as i n t e g e r ! (i i s worth 12)
i ++;
/ / I n t e g e r t o s t r i n g
f . c l e a r () ; / / Do not f o r g e t i f f was a l r e a d y used
f << i ; / / Wri te i n t e g e r
f >> s ; / / Read as s t r i n g (s i s "13")

Note in the last case a convenient function to convert a numerical value (int, double,
etc) in string (since C++ 2011): s = std :: to_string(i).

12.2.3 Objects and files

An attractive feature of operators << and >>5 is to possibility to redefine them for
objects! It is technical, but you don’t need to really understand it to reproduce! Here is
how:

s t r u c t point {
i n t x , y ;

} ;

ostream& operator <<(ostream& f , const point& p) {
f << p . x << ’ ’ << p . y ; / / o r any f o r m a t you wish !

/ / We d e c i d e d h e r e t o w r i t e
/ / c o o r d i n a t e s s e p a r a t e d by a s p a c e

re turn f ;
}

i s t ream& operator >>(is tream& f , point& p) {
f >> p . x >> p . y ; / / J u s t be s u r e t o be c o m p a t i b l e wi th <<
re turn f ;

}
. . .
point p ;
c in >> p ;
cout << p ;
ofstream f (" . . / hop . t x t ") ;
f << p ;
. . .

5They may seem a bit painful for the programmer used to printf and scanf of C. We see here at
last their power!

163

12.3. Default values for parameters 12. Strings, files

i f s t r e a m g (" . . / hop . t x t ") ;
g >> p ;

12.3 Default values for parameters

12.3.1 Principle

Often useful! We can give default values for the last parameters of a function, which
they take if the values are not given as arguments:

void f (i n t a , i n t b=0 , i n t c =0) {
/ / . . .

}

void g () {
f (1 2) ; / / Same as f (1 2 , 0 , 0) ;
f (1 0 , 2) ; / / Same as f (1 0 , 2 , 0) ;
f (1 , 2 , 3) ; / / Same as f (1 , 2 , 3) ;

}

If there is a declaration separate from the definition, we precise the default value only
in declaration;

void f (i n t a , i n t b = 0) ; / / d e c l a r a t i o n

void g () {
f (1 2) ; / / Same as f (1 2 , 0) ;
f (1 0 , 2) ; / / Same as f (1 0 , 2) ;

}

void f (i n t a , i n t b) { / / Do not r e p e a t d e f a u l t v a l u e o f b
/ / . . .

}

12.3.2 Usefulness

In general, we start from a function:

i n t f (i n t a , i n t b) {
. . .

}

Then, we wish to add a special behavior in a certain case:

i n t f (i n t a , i n t b , bool s p e c i a l) {
. . .

}

Rather than transforming all former calls to f (.,.) in f (.,., false), we just need:

164

12. Strings, files 12.4. Accessors

i n t f (i n t a , i n t b , bool s p e c i a l = f a l s e) {
. . .

}

to leave former calls unchanged, and call only f (.,., true) in future particular cases.

12.3.3 Frequent errors

Some frequent errors related to default values:

1. Wanting to give default value to argument in the middle:

void f (i n t a , i n t b=3 , i n t c) { / / NO! Only l a s t p a r a m e t e r s
/ / no t a t mid d l e !

}

2. Having an overloaded function:

void f (i n t a) {
. . .

}
void f (i n t a , i n t b=0) { / / Over l oad prob l em !

. . . / / How t o u n d e r s t a n d f (1) ?
}

12.4 Accessors

Here come, in five steps, the points to know to write convenient and efficient accessors.

12.4.1 Reference as return type

Here is a beginner’s error that makes those in the know cry:

i n t i ; / / G l o b a l v a r i a b l e
i n t f () {

re turn i ;
}
. . .

f () = 3 ; / / Nonsense (not b e t t e r than 2=3)

We cannot store a value in the return of a function, in the same manner we do not write
2=3! Well, actually, yes! It is possible. But only if the function returns a reference, that
is a “link” to a variable:

i n t i ; / / G l o b a l v a r i a b l e
i n t& f () {

re turn i ;
}
. . .

f () = 3 ; / / OK! Put 3 in i !

165

12.4. Accessors 12. Strings, files

Warning: teaching that to a beginner is dangerous, but I take the risk. In general, said
beginner will write the horrendous:

i n t& f () {
i n t i ; / / L o c a l v a r i a b l e
re turn i ; / / r e f e r e n c e t o v a r i a b l e t h a t w i l l d i e !

/ / SERIOUS MISTAKE!
}
. . .

f () = 3 ; / / NO! ! ! i d o e s not e x i s t anymore . What w i l l happen ?

12.4.2 Usage

Even if an object is not a global variable, a field of the object does not die when exiting
one of its methods! We can, starting from the program:

c l a s s point {
double x [N] ;

publ ic :
void s e t (i n t i , double v) ;

} ;
void point : : s e t (i n t i , double v) {

x [i]=v ;
}
. . .

point p ;
p . s e t (1 , 2 . 3) ;

transform it into:

c l a s s point {
double x [N] ;

publ ic :
double& element (i n t i) ;

} ;
double& point : : element (i n t i) {

re turn x [i] ;
}
. . .

point p ;
p . element (1) = 2 . 3 ;

12.4.3 operator()

Next step: it becomes even more useful when one knows operator() that allows re-
defining parentheses:

c l a s s point {
double x [N] ;

publ ic :

166

12. Strings, files 12.4. Accessors

double& operator () (i n t i) ;
} ;
double& point : : operator () (i n t i) {

re turn x [i] ;
}
. . .

point p ;
p (1) = 2 . 3 ; / / Smart , no?

Note that we can pass several arguments to the operator, which is quite useful for
matrices for instance:

c l a s s mat {
double x [M∗N] ;

publ ic :
double& operator () (i n t i , i n t j) ;

} ;
double& mat : : operator () (i n t i , i n t j) {

re turn x [i +M∗ j] ;
}
. . .

mat A;
A(1 , 2) = 2 . 3 ; / / Nice ! L i k e in Matlab .

Actually, operator() is the only operator that can take diverse number of arguments:
others are unary (like operator[]) or binary (like operator+). In particular, we cannot
use operator[] to index a matrix.

12.4.4 Overload and constant method

We face now a problem. The preceding program does not allow writing:

void f (mat& A) {
A(1 , 1) = 2 ; / / OK

}
void f (const mat& A) {

double x=A(1 , 1) ; / / NO! The c o m p i l e r d o e s not g u e s s
/ / t h a t t h i s l i n e d o e s not modi fy A!

}

since operator() is not guaranteed constant. There is fortunately a solution: program-
ming two accessors, taking profit from the fact that between a regular method and a
constant method, overload is possible, even if they have the same parameters! It looks
like:

c l a s s mat {
double x [M∗N] ;

publ ic :
/ / Same name , same p a r a m e t e r s , but one i s c o n s t !
/ / Over l oad i s p o s s i b l e
double& operator () (i n t i , i n t j) ;
double operator () (i n t i , i n t j) const ;

167

12.4. Accessors 12. Strings, files

} ;
double mat : : operator () (i n t i , i n t j) const {

re turn x [i +M∗ j] ;
}
double& mat : : operator () (i n t i , i n t j) {

re turn x [i +M∗ j] ;
}
void f (mat& A) {

A(1 , 1) = 2 ; / / OK, c a l l s o p e r a t o r ()
}
void f (const mat& A) {

double x=A(1 , 1) ; / / OK, c a l l s t h e s e c o n d one
}

12.4.5 Inline functions

Principle

Last step: Calling a function and getting its return value is a complex mechanism, hence
costly. Calling A(i, j) instead of A.x[i+M∗j] can be wasteful: more time is taken calling
function A.operator()(i , j) and getting its return value than running the function itself!
This could lead us to go back to structures in preference to classes!6

There is a means to remove this call mechanism by giving a hint to the compiler to
copy the function core at the calling site. For that, we declare the function as inline.
For example:

i n l i n e double sqr (double x) {
re turn x∗x ;

}
. . .
double y=sqr (z−3) ;

does the same as writing y=(z−3)∗(z−3), without the cost of a function call!

Safeguards

Be sure to understand what follows:

• An inline function is recompiled at each calling site, which slows down compi-
lation and increases the program size!

• inline is thus reserved for short functions for which a call is costly compared
to function core!

• If the function were declared in header .h and defined in source .cpp, we now
need to put it only in .h since the function user needs the definition, to replace
the function call by its core!

6C programmers could also be tempted to use macros (that is, shortcuts with #define, which we did
not learn on purpose, since they are frowned upon by C++ programmers). They are less powerful than
inline since they do not check types, cannot access private members, etc. The C++ programmer will
avoid them except when necessary!

168

12. Strings, files 12.5. Assertions

• To be able to execute functions step by step with the debugger, functions that are
inline are compiled as normal functions in mode Debug. Only the release mode
will benefit from the speed-up.

Case of methods

In the case of a method, do not forget to put the inline function definition in header .h.
It is the time to reveal what we hid until now:

It is possible to DEFINE A METHOD ENTIRELY IN THE CLASS DEFINITION,
instead of only declaring it then put its definition outside the class. How-
ever, it is not mandatory,a slows down the compilation and goes against the
idea that we would rather mask the contents of methods to the class user. It
is thus RESERVED TO SMALL FUNCTIONS, those we would put inline.

aContrast that with Java! A source of bad habit for the Java programmer who switches to
C++. . .

In practice, we could get:

c l a s s mat {
double x [M∗N] ;

publ ic :
i n l i n e double& operator () (i n t i , i n t j) {

re turn x [i +M∗ j] ;
}
i n l i n e double operator () (i n t i , i n t j) const {

re turn x [i +M∗ j] ;
}

} ;

Actually, the inline decorator is redundant here, as methods defined in the core of the
class definition are inline!

12.5 Assertions

Let us recall the existence of function7 assert () seen at 7.6. Do not hesitate to use it since
it makes the code easier to understand (answers the question “what are the preconcep-
tions at this stage of the program?”) and makes error diagnostic easier. Knowing that
it costs nothing in Release mode (since not even compiled), do not restrict their usage.
Here is how to make your accessors secure:

inc lude < c a s s e r t >

c l a s s mat {
double x [M∗N] ;

publ ic :
double& operator () (i n t i , i n t j) {

a s s e r t (0<= i && i <M && 0<= j && j <N) ;

7Actually, it is a macro, not a function. Hence it is not in namespace std.

169

12.6. Enumerated types 12. Strings, files

re turn x [i +M∗ j] ;
}
double operator () (i n t i , i n t j) const {

a s s e r t (0<= i && i <M && 0<= j && j <N) ;
re turn x [i +M∗ j] ;

}
} ;

12.6 Enumerated types

It is a good idea to use constants to make a program more readable:

const i n t north =0 , e a s t =1 , south =2 , west =3;
void advance (i n t d i r e c t i o n) ;

but it is a bit clumsy to do so! That is, if you know about the existence of enumerated
types:

enum Dir { north , east , south , west } ;
void avance (Dir d i r e c t i o n) ;

It looks like a new data type is created, whereas in truth only integers are understood.8

A last thing: we can force some values if needed, like this:

enum Code { C10=200 ,
C11=231 ,
C12=240 ,
C13 , / / worth 241
C14 } ; / / worth 242

—

That is all for today, folks! We will continue our list of miscellaneous utilities in next
chapter. It is time to meet again our famous reference card. . .

12.7 Reference card

Reference Card (1/5)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {
//skip case i==j
if (i==j)
continue;

...
}

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech
8Except in C++ 2011, there is a syntax to create really a new type and have a different underlying

type.

170

12. Strings, files 12.7. Reference card

Reference Card (2/5)

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;

float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

• Enumerated type:
enum Dir{N,E,S,W};
void advance(Dir d);

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

171

12.7. Reference card 12. Strings, files

Reference Card (3/5)

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}

...
vect C=A+B;

• Call stack

• Iterative/Recursive

• Constant references (avoid
copy):
void f(const obj& x){

...
}
void g(const obj& x){

f(x); // OK
}

• Default values:
void f(int a,int b=0);
void g() {

f(12); // f(12,0);
f(10,2);// f(10,2);

}
void f(int a,int b) {

// ...
}

• Inline (fast call):
inline double

sqr(double x) {
return x*x;

}
...
double y=sqr(z-3);

• Return as reference:
int i; // global var
int& f() {

return i;
}
...

f()=3; // i=3!

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

172

12. Strings, files 12.7. Reference card

Reference Card (4/5)

Objects

• struct obj {
int x; // field
int f(); // method
int g(int y);

};
int obj::f() {

int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {

obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();
void another(obj A);

};
void obj::mine() {

x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){

x=..; // OK
mine(); // OK

}
void another(obj A) {

x=A.x; // OK
A.mine(); // OK

}
...
int main() {

obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);
};
...
int main() {

obj A,B,C;
C=A+B;
// C=A.operator+(B)

• Constant methods:
void obj::f() const{

...
}

void g(const obj& x){
x.f(); // OK

}

• Constructor:
class point {

int x,y;
public:

point(int X,int Y);
};
point::point(int X,

int Y){
x=X;
y=Y;

}
...

point a(2,3);

• Empty constructor:
obj::obj() {

...
}
...

obj a;

• Temporary objects:
vec vec::operator+(

vec b) {
return vec(x+b.x,

y+b.y);
}
...
c=vec(1,2)
+f(vec(2,3));

• Destructor:
obj::~obj() {
...

}

• Copy constructor:
obj::obj(const obj& o)
{ ... }

Used by:
- obj b(a);
- obj b=a;
//Not obj b;b=a;
- function argument
- return value

• Assignment:
obj& obj::operator=(

const obj&o){
...
return *this;

}

• Objects with automatic dy-
namic allocation: Section 11.5

• Accessors:
class mat {

double *x;
public:
double& operator()

(int i,int j){
assert(i>=0 ...);
return x[i+M*j];

}
double operator()
(int i,int j)const{

assert(i>=0 ...);
return x[i+M*j];

}
...

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/
double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();
if (s1==s1) ...
if (s1!=s2) ...
if (s1<s2) ...
size_t i=s.find(’h’),

j=s.find(’h’,3);
k=s.find("hop");
l=s.find("hop",3);

a="how";
b="are you?";
txt=a+" "+b;
s1="one two three";
s2=string(s1,4,3);
getline(cin,s);
getline(cin,s,’:’);
const char *t=s.c_str();

173

12.7. Reference card 12. Strings, files

Reference Card (5/5)

#include <ctime>
s=double(clock())

/CLOCKS_PER_SEC;

#include <cmath>
double pi=M_PI;

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

• #include <fstream>
using namespace std;
ofstream f("hop.txt");
f << 1 << ’ ’ << 2.3;
f.close();
ifstream g("hop.txt");
if (!g.is_open()) {

return 1;
}
int i;
double x;
g >> i >> x;
g.close();

• do {
...

} while (!(g.eof());

• ofstream f;
f.open("hop.txt");

• double x[10],y;
ofstream f("hop.bin",

ios::binary);
f.write((const char*)x,

10*sizeof(double));
f.write((const char*)&y,

sizeof(double));
f.close();
ifstream g("hop.bin",

ios::binary);
g.read((char*)x,

10*sizeof(double));
g.read((const char*)&y,

sizeof(double));
g.close();

• string s;
ifstream f(s.c_str());

• #include <sstream>
using namespace std;
stringstream f;
// String to int
f << s; f >> i;

// int to string
f.clear();
f << i; f >> s;⇔
s = std::to_string(i);

• ostream& operator<<(
ostream& f,
const point&p){

f<<p.x<<’ ’<< p.y;
return f;

}
istream& operator>>(
istream& f,point& p){

f>>p.x>>p.y;
return f;

}

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

• class vec {
int x,y;

public:
...

};
...
vec a={2,3}; // NO

• vec v=vec(1,2);//NO
vec v(1,2); // Yes

• obj* t=new obj[n];
delete t;// missing []

• //NO!
void f(int a=2,int b);

• void f(int a,int b=0);
void f(int a);// NO!

• Not anything inline!

• int f() {
...

}
f()=3; // HORROR!

• int& f() {
int i;
return i;

}
f()=3; // NO!

Imagine++

• See documentation. . .

174

13. Parameterized functions and classes (templates)

Chapter 13

Parameterized functions and classes
(templates)

We terminate our repository of miscellaneous utilities. Among them, data structures in the STL
(Standard Template Library) will need first the notion of template. We will just introduce
this powerful aspect of C++.

—

13.1 template

13.1.1 Principle

Let us consider the classic function to swap two variables:

void swap (i n t& a , i n t& b) {
i n t tmp ;
tmp=a ;
a=b ;
b=tmp ;

}
. . .
i n t i , j ;
. . .

swap (i , j) ;

If now we have to swap two variables of type double, we need to add an overload
of function swap(), identical except concerning variable types. Fortunately, the C++
allows defining functions with generic type, a bit like a variable, that the compiler will
instantiate at call site with a specific type. This generic programming is practiced with
the definition of a "template":

/ / Swap two v a r i a b l e s o f any t y p e T
template <typename T>
void swap (T& a , T& b) {

T tmp ;
tmp=a ;

13.1. template 13. Parameterized functions and classes (templates)

a=b ;
b=tmp ;

}
. . .
i n t a =2 ,b =3;
double x = 2 . 1 , y = 2 . 3 ;
swap (a , b) ; / / i n s t a n t i a t e T as i n t
swap (x , y) ; / / i n s t a n t i a t e T as d o u b l e
. . .

Another example:

/ / Maximum o f two v a r i a b l e s , p r o v i d e d o p e r a t o r > e x i s t s
/ / f o r t y p e T
template <typename T>
T maxi (T a , T b) {

re turn (a>b) ? a : b ;
}

The declaration typename T specifies the generic type. We can have several:

/ / Find e1 in a r r a y t a b 1 and put
/ / in e2 t h e e l e m e n t o f t a b 2 o f same i n d e x
/ / Return f a l s e i f no t found
template <typename T1 , typename T2>
bool f ind (T1 e1 , T2& e2 , const T1∗ tab1 , const T2∗ tab2 , i n t n) {

f o r (i n t i =0 ; i <n ; i ++)
i f (tab1 [i]== e1) {

e2=tab2 [i] ;
re turn true ;

}
re turn f a l s e ;

}
. . .
s t r i n g names [3] = { " j ean " , " p i e r r e " , " paul " } ;
i n t ages [3] = { 2 1 , 2 5 , 1 5 } ;
. . .
s t r i n g nm=" p i e r r e " ;
i n t ag ;
i f (f ind (nm, ag , names , ages , 3))

cout << nm << " i s " << ag << " years old " << endl ;
. . .

13.1.2 template and files

It is wise to remember that

The compiler does not build a “magic” function that works on several types!
Actually, it creates as many functions there are usages with different types
(instantiations).

176

13. Parameterized functions and classes (templates) 13.1. template

For these reasons:

1. Writing template functions slows down the compilation.

2. We cannot put the declaration in a header and the definition in a .cpp file, since
all users must know the definition. Hence, the rule is to put everything in the
header file.1

13.1.3 Classes

It is also frequent that a class definition becomes all the more useful if it is generic.
It is possible, but beware! In case of functions, the compiler understands from the
arguments the used types. In the case of classes, the user needs to precise always the
type with the syntax obj<type>:

/ / P a i r o f two v a r i a b l e s o f t y p e T
template <typename T>
c l a s s pa i r {

T x [2] ;
publ ic :

/ / c o n s t r u c t o r s
pai r () ;
pa i r (T A, T B) ;
/ / a c c e s s o r s
T operator () (i n t i) const ;
T& operator () (i n t i) ;

} ;

template <typename T>
pair <T > : : pa i r () {
}

template <typename T>
pair <T > : : pa i r (T A, T B) {

x [0]=A; x [1]=B ;
}

template <typename T>
T pair <T > : : operator () (i n t i) const {

a s s e r t (i ==0 || i ==1) ;
re turn x [i] ;

}

template <typename T>
T& pair <T > : : operator () (i n t i) {

a s s e r t (i ==0 || i ==1) ;
re turn x [i] ;

1This is annoying and goes against our principle of putting declarations in .h and to hide the defini-
tions in .cpp. We had the same remark for inline functions.

177

13.1. template 13. Parameterized functions and classes (templates)

}
. . .
pair <int > p (1 , 2) , r ;
i n t i =p (1) ;
pair <double > q ;
q (1) = 2 . 2 ;
. . .

When several types are generic, they are separated by a comma:

/ / P a i r o f two v a r i a b l e s o f d i f f e r e n t t y p e s
template <typename S , typename T>
c l a s s pa i r {
publ ic :

/ / A l l in p u b l i c t o s i m p l i f y
S x ;
T y ;
/ / c o n s t r u c t o r s
pai r () { }
pa i r (S X , T Y) { x=X ; y=Y ; }

} ;
. . .
pair <int , double > P (1 , 2 . 3) ;
pair <s t r i n g , in t > Q;
Q. x=" p i e r r e " ;
Q. y =25;
. . .

At last, we can also put generic the choice of an integer (which must be known at
compile time):

/ / n−u p l e t o f v a r i a b l e s o f t y p e T
/ / Beware : e a c h nup l e t <T ,N> w i l l be a d i f f e r e n t c l a s s
template <typename T , i n t N>
c l a s s nuplet {

T x [N] ;
publ ic :

/ / a c c e s s o r s
T operator () (i n t i) const {

a s s e r t (i >=0 && i <N) ;
re turn x [i] ;

}
T& operator () (i n t i) {

a s s e r t (i >=0 && i <N) ;
re turn x [i] ;

}
} ;

. . .
nuplet <int ,4 > A;
A(1) = 3 ;
nuplet < s t r i n g ,2 > B ;

178

13. Parameterized functions and classes (templates) 13.1. template

B(1) = " p i e r r e " ;
. . .

The functions must obviously adapt:

template <typename T , i n t N>
T sum(nuplet <T ,N> u) {

T s=u (0) ;
f o r (i n t i =1 ; i <N; i ++)

s+=u (i) ;
re turn s ;

}
. . .
nuplet <double ,3 > C;
. . .
cout << sum(C) << endl ;
. . .

Enthusiastic about such power, the programmer could be tempted to put template
everywhere. Keep calm, think!

Templates can be delicate to program, slow to compile, etc. Do not abuse
them! Better to begin with classes and functions without template. We put
them generic only when it appears we need to reuse the existing code with
different types. And remember that the compiler creates a new class or a
new function at each new instantiation.a

aThe nuplets above have nothing to do with variable size arrays. Everything happens as if
we programmed several arrays of constant size, for different values of the size.

13.1.4 STL

Whereas programming template is delicate, using them is quite easy. The standard
library of C++ offers some functions and classes using template. This set is commonly
called STL (Standard Template Library). You can find its complete documentation on
the web. We just show here some examples that could be used as starting point and
make reading the documentation easier.

Some simple functions like min and max are provided in a generic manner:

i n t i =std : : max (1 , 3) ;
double x=std : : min (1 . 2 , 3 . 4) ;

Be cautious: a classic error is calling max(1,2.3): the compiler understands it as the max
of an int and a double, which results in a compilation error! We need to be more exact:
max(1.,2.3).

Complex numbers are also generic, keeping the real and imaginary parts template:

inc lude <complex>
using namespace std ;

. . .
complex<double > z1 (1 . 1 , 3 . 4) , z2 (1 , 0) , z3 ;
z3=z1+z2 ;
cout << z3 << endl ;

179

13.1. template 13. Parameterized functions and classes (templates)

double a=z3 . r e a l () , b=z3 . imag () ;
double m=abs (z3) ; / / module
double th=arg (z3) ; / / argument

Couples are also proposed by STL:

pair <int , s t r i n g > P (2 , " hop ") ;
P . f i r s t =3;
P . second=" hop " ;

At last, some data structures are included and can be used following a common scheme.
See the example of lists:

inc lude < l i s t >
using namespace std ;

. . .
l i s t < int > l ; / / l = []
l . push_front (2) ; / / l = [2]
l . push_front (3) ; / / l = [3 , 2]
l . push_back (4) ; / / l = [3 , 2 , 4]
l . push_front (5) ; / / l = [5 , 3 , 2 , 4]
l . push_front (2) ; / / l = [2 , 5 , 3 , 2 , 4]

To indicate a position in a list, we use an iterator. To indicate a position but for reading
only, we use a constant iterator. The unary operator ’∗’ is used to access the element
indexed by the iterator. Small difficulty, the type of these iterators is a bit awkward to
type:2

l i s t < int > : : c o n s t _ i t e r a t o r i t ;
i t = l . begin () ; / / i n d e x t o b e g i n n i n g o f l i s t
cout << ∗ i t << endl ; / / p r i n t s 2
i t = l . f ind (3) ; / / Find l o c a t i o n o f f i r s t 3
i f (i t != l . end ())

cout << " 3 i s in l i s t " << endl ;
l i s t < int > : : i t e r a t o r i t 2 ;
i t 2 = l . f ind (3) ; / / Find l o c a t i o n o f f i r s t 3
∗ i t =6 ; / / now l = [2 , 5 , 6 , 2 , 4]

Iterators are also used to iterate (!) on lists:

/ / Enumerate and p r i n t l i s t
template <typename T>
void p r i n t (const l i s t <T>& l) {

cout << " [" ;
f o r (l i s t <T > : : c o n s t _ i t e r a t o r i t = l . begin () ; i t != l . end () ; i t ++)

cout << ∗ i t << ’ ’ ;
cout << ’] ’ << endl ;

}

/ / R e p l a c e a by b in l i s t
template <typename T>

2We have not seen how to define new types inside classes! That is what is done here. . .

180

13. Parameterized functions and classes (templates) 13.2. Bitwise operators

void r e p l a c e (l i s t <T>& l , T a , T b) {
f o r (l i s t <T > : : i t e r a t o r i t = l . begin () ; i t != l . end () ; i t ++)

i f (∗ i t ==a)
∗ i t =b ;

}
. . .
p r i n t (l) ;
r e p l a c e (l , 2 , 1) ; / / now l = [1 , 5 , 3 , 1 , 4]
. . .

Finally, we can call some algorithms such as sort on a list:

l . s o r t () ;
p r i n t (l) ;

In the same manner as lists, you will find in the STL:

• LIFO or stack.

• FIFO or queue.

• Collections without repetition set.

• Arrays of dynamic size vector.

• heap data structure.

• Tables or map (correspondence table key/value).

• A few others. . .

The remainder of the chapter groups several useful but not fundamental notions.
They will at first help you more understanding already written code than using them
in your own programs, at least until you get more practice.

13.2 Bitwise operators

Among classic errors, there is obviously the one consisting of replacing

i f (i ==0)
. . .

by

i f (i =0) / / NO!
. . .

which puts value 0 in i then considers 0 as a boolean, in this case false .3 Another
frequent error is writing

i f (i ==0 & j ==2) / / NO!
. . .

3When converting a numeric value to boolean, any non-zero value is considered true, whereas 0 is
false .

181

13.2. Bitwise operators 13. Parameterized functions and classes (templates)

instead of

i f (i ==0 && j ==2)
. . .

This does not result in a compilation error only because single & exists. It performs the
bitwise operator "and" on integers. It is defined in this manner: writing a&b amounts
to consider the binary expression of a and b then to perform an “and” bit by bit (with
the rule 1&1 gives 1; 1&0, 0&1 and 0&0 give 0). For instance: 13&10 is 8 since in binary
1101&1010 is 1000.

There is also other bitwise manipulation operators:

symbol usage name result example
& a&b and 1&1=1, else 0 13&10=8
| a|b or 0|0=0, else 1 13|10=15
^ a^b exclusive or 1^0=0^1=1, else 0 13^10=7

>> a>>n right shift shift bits of a n times to the 13>>2=3
right at fills at left with 0
(the n right first are lost)

<< a<<n left shift shift bits of a n times to the 5<<2=20
left and fills at right with 0

~ ~a complement ~1=0, ~0=1 ~13=−14

Remarks

• These instructions are very fast since simple for the preprocessor.

• The fact that a^b has meaning is also a source of bugs (it is not the power func-
tion!)

• The result of ~ depends on the type: if for example i is an unsigned integer on 8
bits worth 13, then ~i is 242, since ~00001101 is 11110010.

In practice, all that is not meant to decorate or look smart, but to manipulate numbers
bit by bit. It happens that we use an int to memorize some properties and saving
memory, by using the fact that property n is true if the nth bit of the integer is 1. A
single 32-bit integer can then store up to 32 properties where it would have taken 32
variables of type bool. Here is how to use the operators above to manipulate said bits:

i|=(1<<n) set to 1 the bit n of i
i&=~(1<<n) set to 0 the bit n of i
i^=(1<<n) invert bit n of i
if (i&(1<<n)) true if bit n of i is 1

There are other frequent uses of bitwise operators, not for space saving but for speed:

(1<<n) is 2n (instead of int (pow(2.,n)))
(i>>1) computes i/2 quickly
(i>>n) computes i/2n quickly
(i&255) computes i%256 quickly (idem for all powers of 2)

182

13. Parameterized functions and classes (templates) 13.3. Conditional values

13.3 Conditional values

It happens often that we have to choose between two values depending on the result
of a test. A compact construct is then:

(t e s t) ? val1 : val2

that is worth val1 if test is true and val2 otherwise. Hence,

i f (x>y)
maxi=x ;

e l s e
maxi=y ;

can be replaced by:

maxi =(x>y) ? x : y ;

This convenient construct should not be abused, it would make the program unread-
able!

13.4 Loops and break

We have already met at section 8.4 the instruction continue that jumps to the end of
loop and goes to next round. Also useful, the command break exits the loop, ignoring all
the rest of the iteration. Hence the code

bool stop= f a l s e ;
f o r (i n t i =0 ; i <N && ! stop ; i ++) {

A;
i f (B)

stop=true ;
e l s e {

C ;
i f (D)

stop=true ;
e l s e {

E ;
}

}
}

is written more naturally:

f o r (i n t i =0 ; i <N; i ++) {
A;
i f (B)

break ;
C ;
i f (D)

break ;
E ;

}

183

13.5. Static variables 13. Parameterized functions and classes (templates)

Recurrent questions from beginners:

1. break does not exit an if!

i f (. . .) {
. . . ;
i f (. . .)

break ; / / NO! Does not e x i t i f ! (but p o s s i b l y
/ / a f o r t h a t would be around . . .)

. . .
}

2. break exits only the current loop, not outer loops:

1 f o r (i n t i =0 ; i <N; i ++) {
2 . . .
3 f o r (i n t j =0 ; j <M; j ++) {
4 . . .
5 i f (. . .)
6 break ; / / ends l o o p in j and g o e s t o
7 / / l i n e 10 (not l i n e 12)
8 . . .
9 }

10 . . .
11 }
12 . . .

3. break and continue work also with while and do . . .while.

13.5 Static variables

We are sometimes led to use a global variable to memorize permanently a value that
interests a single function:

/ / Func t i on random c a l l i n g srand () d i r e c t l y a t f i r s t c a l l
bool f i r s t =true ;
double random () {

i f (f i r s t) {
f i r s t = f a l s e ;
srand ((unsigned i n t) time (0)) ;

}
re turn double (rand ()) /RAND_MAX;

}

The risk is that all the rest of the program sees this variable and mixes it with another
global variable. It is possible to hide this variable in the function with the keyword static
before the variable:

/ / Func t i on random c a l l i n g srand () d i r e c t l y a t f i r s t c a l l
/ / wi th g l o b a l v a r i a b l e h id den i n s i d e

184

13. Parameterized functions and classes (templates) 13.6. const and arrays

double random () {
s t a t i c bool f i r s t =t rue ; / / Do not f o r g e t s t a t i c !
i f (f i r s t) {

f i r s t = f a l s e ;
srand ((unsigned i n t) time (0)) ;

}
re turn double (rand ()) /RAND_MAX;

}

Remember that it is really a global variable and not a local one. A local variable would
die at function exit, which would not be the desired effect in the example!

It is also possible to hide a global variable in a class, still with static . We won’t
show how, but it is not difficult.

13.6 const and arrays

We saw unwillingly const char ∗ as argument of some functions (file opening for ex-
ample). We thus have to explain it: it does not mean a pointer to char that would be
constant, but a pointer to char that are constant! We have to remember that:

Placed before an array, const means that the elements of the array cannot
be modified.

This possibility to say that an array cannot be modified is all the more important that
an array is always passed by reference: without const, we could not ensure the preser-
vation of the values:

void f (i n t t [4]) {
. . .

}

void g (const i n t t [4]) {
. . .

}

void h (const i n t ∗ t , i n t n) {
. . .

}

. . .
i n t a [4] ;
f (a) ; / / may modi fy a []
g (a) ; / / d o e s not modi fy a []
h (a , 4) ; / / d o e s not modi fy a []
. . .

185

13.7. Reference card 13. Parameterized functions and classes (templates)

13.7 Reference card

Reference Card (1/6)

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

• for (int i=...)
for (int j=...) {

//skip case i==j
if (i==j)

continue;
...

}

• for (int i=...) {
...
if (t[i]==s){

// exit loop
break;

}
...

}

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

• mx=(x>y)?x:y;

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;

}
void display(int x,

int y) {
if (x<0 || y<0)
return;

if (x>=w || y>=h)
return;

DrawPoint(x,y,RED);
}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){
int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

• Constant references (avoid
copy):
void f(const obj& x){
...

}
void g(const obj& x){
f(x); // OK

}

186

13. Parameterized functions and classes (templates) 13.7. Reference card

Reference Card (2/6)

Default values:
void f(int a,int b=0);
void g() {

f(12); // f(12,0);
f(10,2);// f(10,2);

}
void f(int a,int b) {

// ...
}

Inline (fast call):
inline double

sqr(double x) {
return x*x;

}
...
double y=sqr(z-3);

Return as reference:
int i; // global var
int& f() {

return i;
}
...

f()=3; // i=3!

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

• Enumerated type:
enum Dir{N,E,S,W};
void advance(Dir d);

• Staic variables:
int f() {
static bool once=true;
if (once) {
once=false;
...

}
...
}

Objects

• struct obj {
int x; // field

int f(); // method
int g(int y);

};
int obj::f() {
int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {
obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();
void another(obj A);

};
void obj::mine() {
x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){
x=..; // OK
mine(); // OK

}
void another(obj A) {
x=A.x; // OK
A.mine(); // OK

}
...
int main() {
obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);
};
...
int main() {
obj A,B,C;
C=A+B;
// C=A.operator+(B)

187

13.7. Reference card 13. Parameterized functions and classes (templates)

Reference Card (3/6)

Constant methods:
void obj::f() const{

...
}
void g(const obj& x){

x.f(); // OK
}

Constructor:
class point {

int x,y;
public:

point(int X,int Y);
};
point::point(int X,

int Y){
x=X;
y=Y;

}
...

point a(2,3);

Empty constructor:
obj::obj() {

...
}
...

obj a;

Temporary objects:
vec vec::operator+(

vec b) {
return vec(x+b.x,

y+b.y);
}
...

c=vec(1,2)
+f(vec(2,3));

Destructor:
obj::~obj() {

...
}

Copy constructor:
obj::obj(const obj& o)
{ ... }

Used by:
- obj b(a);
- obj b=a;
//Not obj b;b=a;
- function argument
- return value

Assignment:
obj& obj::operator=(

const obj&o){
...
return *this;

}

Objects with automatic dynamic
allocation: Section 11.5

Accessors:
class mat {

double *x;
public:
double& operator()

(int i,int j){
assert(i>=0 ...);
return x[i+M*j];

}
double operator()
(int i,int j)const{
assert(i>=0 ...);
return x[i+M*j];

}
...

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

STL

• min,max,...

• complex<double> z;

• pair<int,string> p;
p.first=2;
p.second="hop";

• #include<list>
using namespace std;
...
list<int> l;
l.push_front(1);
...

• if(l.find(3)!=l.end())
...

• list<int>::
const_iterator it;

for (it=l.begin();
it!=l.end();it++)

s+= *it;

• list<int>::iterator it
for (it=l.begin();

it!=l.end();it++)
if (*it==2)

*it=4;

• stack, queue, heap,
map, set, vector...

188

13. Parameterized functions and classes (templates) 13.7. Reference card

Reference Card (4/6)

Template

• Functions:
// To put in
// file that uses
// or in .h
template <typename T>
T maxi(T a,T b) {

...
}
...
// Type is found
// alone!
maxi(1,2); //int
maxi(.2,.3); //double
maxi("a","c");//string

• Objects:
template <typename T>
class pair {
T x[2];
public:
pair() {}
pair(T a,T b) {
x[0]=a;x[1]=b;

}
T add() const;
};
...
template <typename T>
T pair<T>::add()const{
return x[0]+x[1];
}
...
// Type must be
// precised!
pair<int> a(1,2);
int s=a.add();
pair<double> b;
...

• Multiple:
template <typename T,

typename S>
class hop {

...
};
...

hop<int,string> A;
...

• Integers:
template <int N>
class hop {

..
};
...

hop<3> A;
...

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

• #include <fstream>
using namespace std;
ofstream f("hop.txt");
f << 1 << ’ ’ << 2.3;
f.close();
ifstream g("hop.txt");
if (!g.is_open()) {

return 1;
}
int i;
double x;
g >> i >> x;
g.close();

• do {
...

} while (!(g.eof());

• ofstream f;
f.open("hop.txt");

• double x[10],y;
ofstream f("hop.bin",

ios::binary);
f.write((const char*)x,

10*sizeof(double));
f.write((const char*)&y,

sizeof(double));
f.close();
ifstream g("hop.bin",

ios::binary);
g.read((char*)x,

10*sizeof(double));
g.read((const char*)&y,

sizeof(double));
g.close();

• string s;
ifstream f(s.c_str());

• #include <sstream>
using namespace std;

stringstream f;
// String to int
f << s; f >> i;
// int to string
f.clear();
f << i; f >> s;⇔
s = std::to_string(i);

• ostream& operator<<(
ostream& f,
const point&p){

f<<p.x<<’ ’<< p.y;
return f;

}
istream& operator>>(
istream& f,point& p){

f>>p.x>>p.y;
return f;

}

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

189

13.7. Reference card 13. Parameterized functions and classes (templates)

Reference Card (5/6)

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();
if (s1==s1) ...
if (s1!=s2) ...
if (s1<s2) ...
size_t i=s.find(’h’),

j=s.find(’h’,3);
k=s.find("hop");
l=s.find("hop",3);

a="how";
b="are you?";
txt=a+" "+b;
s1="one two three";
s2=string(s1,4,3);
getline(cin,s);
getline(cin,s,’:’);
const char *t=s.c_str();

• #include <ctime>
s=double(clock())

/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

• Bitwise operators
and: a&b
or: a|b
xor: a^b
right shift: a>>n
left shift: a<<n
complement: ~a

examples:

set(i,1): i|=(1<<n)
reset(i,1): i&=~(1<<n)
test(i,1): if (i&(1<<n))
flip(i,1): i^=(1<<n)

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

• class vec {
int x,y;

public:
...

};
...
vec a={2,3}; // NO

• vec v=vec(1,2);//NO
vec v(1,2); // Yes

• obj* t=new obj[n];
delete t;// missing []

• //NO!
void f(int a=2,int b);

• void f(int a,int b=0);
void f(int a);// NO!

• Not anything inline!

• int f() {
...

}
f()=3; // HORROR!

• int& f() {
int i;
return i;

}
f()=3; // NO!

• if (i>0 & i<n) // NO
if (i<0 | i>n) // NO

• if (...) {
...
if (...)

break; // No,
// loops only

}

• for (i ...)
for (j ...) {
...
if (...)
break;//NO, exit
// loop j only

• int i;
double x;
j=max(i,0);//KO
y=max(x,0);//NO
// 0.0 and not 0: max
// is an STL template

Imagine++

• See documentation. . .
190

13. Parameterized functions and classes (templates) 13.7. Reference card

Reference Card (6/6)

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

• As argument (end):
void f(const int* t,

int n) {
...
s+=t[i]; // OK

...
t[i]=...; // NO!

}

191

A. Practicals

Appendix A

Practicals

Note: corrections are available on the course web page after each practical session.

A.1 Programming environment

A.1.1 Hello, World!

1. Connection:
Log in on your machine.

2. Project:
Download archive Tp1_Initial.zip from the course web page, decompress
it. The file CMakeLists.txt describes the project. The line of interest to us is
the following:

add_executable (Tp1 Tp1 . cpp)

It indicates that our program will be called Tp1 (Tp1.exe under Windows) and
that the source code to build it is the file Tp1.cpp.

Qt Creator is the programming environment that we will use, it has the advan-
tage to work on all main platforms (Linux, Windows or Mac) and to control di-
rectly CMake.1 To start, launch Qt Creator and choose “Open Project” to fetch

the file CMakeLists.txt. Look at the window bottom tab ,2

that should print a lot of messages: it is the result of the file read and its interpre-
tation by CMake.

3. Programming: insert a comment line with your name at the top of file Tp1.cpp.
Comments are introduced with // and go until the line end. They are ignored by
the compiler, but useful for the programmer. Insert then the command

cout << " Hello " << endl ;

on a line before return 0; in file Tp1.cpp.

1Most other environments, such as Visual Studio (Windows) and Xcode (Mac), do not know CMake,
and we must use beforehand CMake to convert into a native project for the environment.

2If you do not see it, you can display it with the small arrow at the right of the tabs

A.1. Programming environment A. Practicals

4. Generation: Push the hammer button at bottom left to generate the program.
Look in tab 4 “Compile Output”, it says it created the file Tp1.cpp.o. Check
with the file explorer (outside Qt Creator) that the file is indeed present in the
“build” folder. Observe that the program Tp1 is also there.

5. Execution:

(a) Launch the program with the green arrow in Qt Creator, observe the result
in tab 3 “Application Output”.

(b) Check that we created an independent program that we can launch from the
command line:

• Find the build folder created by QtCreator (see Section A.1.6).
• Open a terminal (under Windows: powershell)
• Go to the build folder: "cd C:\...\build-Tp1..."

(learn to take profit of automatic completion with tabulation key TAB,
just above Caps lock). Under Linux and Mac, the path is different, and
replace all \ with / to delimit folders. You can also copy-paste the path
from QtCreator.
• Check the presence of Tp1.exe or Tp1 with the command "ls".
• Type "./Tp1". Under Windows, you have to adjust the search path for

shared libraries (Section A.1.6).

6. Compress:
With a right mouse click on folder Tp1, build a compressed archive Tp1.zip
(or Tp1.7z if proposed). Such an archive, comprising all files necessary to com-
pilation, will be the format used to upload your exercises and practical session
returns under Educnet.

Note that with CMake we have two folders:

• The source folder containing files Tp1.cpp and CMakeLists.txt;

• The build folder, with name chosen by Qt Creator.

The most important one is the first, since the second can always be generated
again with CMake. Send your instructor only the source folder, the build will be
done on his machine. Your build folder is useless on another machine if its system
is not the same. When you have finished a project, do not hesitate to clean up by
removing your build folder, but keep cautiously your source folder, it is the result
of your hard work. Though CMake allows using the same folder for both, it is
better to avoid it, to separate clearly sources and automatically generated files.
To understand a little how these tools coordinate, you can read Appendix C of
the lecture notes.

The precious folder containing your work is the source
folder, Tp1_Initial. The disposable one is the build folder,
build-Tp1_Initial-...

194

A. Practicals A.1. Programming environment

7. Check that everything could be restarted from scratch: quit Qt Creator, erase
your source and build folders, extract the source folder from your archive; if a
file CMakeLists.txt.user remains, it was created by Qt Creator, remove it
before launching Qt Creator and opening the project.

A.1.2 First errors

You will make many,3 it is perfectly normal. Let’s get used to it right now.

1. Modify the program:
Modify the program by changing for example the displayed sentence.

(a) Test a new generation/execution. Check that Qt Creator saves the file auto-
matically (or proposes to save it) before generating.

Launching directly an execution saves and builds automatically.

Knowing that, the hammer tool may seem useless. However, it is good when
coding to check simply compilation very frequently, even before taking care
of execution because there is nothing to observe yet.

2. Compilation errors
Provoke, observe and learn to recognize some compilation errors:

(a) includ instead of include

(b) iostrem instead of iostream

(c) Forget the ; after std

(d) inte instead of int

(e) cou instead of cout

(f) Forget the double quotes " ending the string "Hello ... "

(g) Add a line i=3; before return.

Talking about errors, it is useful to discover that:

Double-clicking on an error message (Tab 1 “Issues”) shows in the ed-
itor the code line where it occurs.

Note that tab 1 is only an automatic and clickable extract of tab 4, the full error
message is found in tab 4. Sometimes, the automatic extraction may have defects
and the error message in tab 1 is not clear since incomplete.

3. Linker errors
It is a bit early to have the linker fail,4 but it will happen at some point. It is still
necessary to know the difference between linker and compiler errors. In general,
the linker will notify an error if it does not find a function or some variables
because some object file or a library is missing. It is also an error if it finds twice
the same function. . .

3Even the expert programmer will make some.
4It will happen more often when we separate our source in several files.

195

A.1. Programming environment A. Practicals

(a) Add a line f(2); before return and build. It is for now a compilation error
(the compiler does not know what f designates).

(b) Fix the compilation error by adding the line (for the moment "magic")
void f(int i); before the line with main. Build the program: the linker com-
plains about the absence of the function f() used by main().

(c) Remove now the call to f in main(). Everything works again. Rename main
as main2. The absence of function main will be noticed by the linker, and it
will refuse to build the program.

4. Indents:
With all these changes, the code may not correctly “indented” anymore. It is
still essential for a good understanding and to spot some parenthesis error, curly
brace, etc. The menu Edit/Advanced includes an option to reindent automati-
cally.

To spot errors, always indent. Ctrl+I = indent the selected zone.
Ctrl+A,Ctrl+I = indent all file.

5. Warnings of the compiler
Modifying the main(), provoke some warnings:5

(a) int i ;
i =2.5;
cout << i << endl;
Execute to see the result.

(b) int i ;
i=4;
if (i=3) cout << "hello" << endl;
Launch!

(c) Add exit; as first instruction of main. Trying to call a function without ar-
guments can happen (and does nothing)! Launch to see. Correct by putting
exit (0); (The function exit () ends the program at once!)

Some warnings are not not meaningful (false positives) and are not programmer
errors. The problem with not correcting them is that they can drown the true
positives, you should thus try to fix all of them.

It is advised not to leave warnings in your code! Correct them as they
appear. A compiler option can even propose to consider them as errors
and prevent the compilation to go through!

A.1.3 Debugger

Knowing how to use the debugger is fundamental. It should be the first
reflex in front of an incorrect program. It is a true investigative tool, simpler
and more powerful than stuffing the code with additional instructions to
spy its run.

5Warnings are not errors: they may be present to warn the programmer about possible mistakes, but
the sense for the compiler is clear. Hence, depending on compiler options, the warnings may not appear.

196

A. Practicals A.1. Programming environment

1. Type the following function main.

i n t main ()
{

i n t i , j , k ;
i =2 ;
j =3∗ i ;
i f (j ==5)

k =3;
e l s e

k =2;
re turn 0 ;

}

2. To use the debugger with Qt Creator, we need to compile in Debug mode. The

mode is chosen by clicking on the small terminal on top of the green start
triangle. Observe that the variable CMAKE_BUILD_TYPE takes then value Debug
in tab “Projects”.

3. Launch the program “under the debugger control” with the green triangle button
with superimposed bug. The program executes but nothing seems to happen.

4. Put a “breakpoint” by clicking on the left margin at the level of line i=2; then
relaunch the debugger.

5. Advance in “Step over” with key F10 or the corresponding button and ob-
serve the values of variables (in the special window on the top right or by placing
the mouse cursor without click on the variable in source code).

6. Place a second breakpoint and note that F5 continues the program until the next
reached breakpoint.

7. Add i=max(j,k); before the return. Use “Step into” or F11 or the correspond-
ing button when the cursor is on this line. Note the difference with F10: max is
a function call and we indicate the debugger we want to follow what happens
inside.

8. At last, see how machine code looks like: execute until some breakpoint then
activate menu Debug/Operate by Instruction. We can also in the same
menu see the registers of the microprocessor. It can happen we fall in the window
“machine code” unwillingly when we debug a program for which we do not have
the source file anymore. This display is actually very useful to the programmer
to check what the compiler produced and check it optimizes well.

9. The registers are visible by going in the menu Window then Views. See Fig-
ure A.1.

Useful keys:
F5 = = Debug

F10 = = Step over

F11 = = Step inside

197

A.1. Programming environment A. Practicals

Figure A.1: Qt Creator showing machine code and registers.

A.1.4 If there is time left

Download the supplementary program Tp1_Final.zip on the course web page
(http://imagine.enpc.fr/~monasse/Info)
play with it. . . and complete it with the right rebounds!

A.1.5 Install Imagine++ at home

Go to http://imagine.enpc.fr/~monasse/Imagine++. Install on your laptop
computer and try the supplementary program with Qt Creator.

A.1.6 Launching the program from the command line

1. Find the build folder through button "Projects" (Figure A.2).

2. For Windows users: to open the PowerShell at the correct location, go there in
the Explorer and shift-click on the blank background, Figure A.3.

3. For Windows users: the program depends on shared libraries (files with exten-
sion dll) whose location is not remembered by the program. As they are not in
the build folder, you need to give the search path, see Figure A.4.

198

http://imagine.enpc.fr/~monasse/Info
http://imagine.enpc.fr/~monasse/Imagine++

A. Practicals A.2. Variables, loops, conditions, functions

Figure A.2: Finding the build folder in QtCreator

Figure A.3: Opening the PowerShell directly from the build folder (Windows).

A.2 Variables, loops, conditions, functions

A.2.1 First program with functions

1. Get the example program:
Download archive Tp2.zip on webpage, extract the files and open the project by
opening the CMakeLists.txt of Tp2_Initial from Qt Creator. Check project
Hop whose source looks like:

199

A.2. Variables, loops, conditions, functions A. Practicals

Figure A.4: Opening the PowerShell directly from the build folder (Windows). Adapt
the paths to your local installation, and do not forget the semicolon ’;’ at each line. The
second path is needed for Tp1Supplement as it has graphical output.

1 # inc lude <iostream >
2 using namespace std ;
3
4 i n t plus (i n t a , i n t b) {
5 i n t c ;
6 c=a+b ;
7 re turn c ;
8 }
9

10 void t r i p l e 1 (i n t a) {
11 a=a ∗3 ;
12 }
13
14 void t r i p l e 2 (i n t& a) {
15 a=a ∗3 ;
16 }
17
18 i n t main () {
19 i n t i , j =2 ,k ;
20 i =3;
21 k=plus (i , j) ;
22 t r i p l e 1 (i) ;
23 t r i p l e 2 (i) ;
24 re turn 0 ;
25 }

Mini tennis. . .

2. Debugger:
Run the program step by step and study how variables change. You must use the
program in Debug mode.

A.2.2 First program with Imagine++

In this practical session and the following, we will use the graphics library of Imag-
ine++ (see Appendix of lecture notes). It allows to manage easily the windowing sys-
tem, drawings, and input/output of keyboard and mouse.

1. Starter program:
Input your name in the placeholder of file tennis.cpp. You must do that at
each practical. Study the code of project Tennis:

200

A. Practicals A.2. Variables, loops, conditions, functions

1 # include <Imagine/Graphics . h>
2 using namespace Imagine ;
3 . . .
4 i n t main () {
5 / / Open window
6 openWindow (2 5 6 , 2 5 6) ;
7 / / P o s i t i o n and s p e e d o f b a l l
8 i n t xb =128 ,
9 yb=20 ,

10 ub=2 ,
11 vb =3;
12 / / Main l o o p
13 while (t rue) {
14 / / D i s p l a y b a l l
15 f i l l R e c t (xb−3,yb−3 ,7 ,7 ,RED) ;
16 / / T e m p o r i s a t i o n
17 m i l l i S l e e p (2 0) ;
18 / / E r a s e b a l l
19 f i l l R e c t (xb−3,yb−3 ,7 ,7 ,WHITE) ;
20 / / Rebound
21 i f (xb+ub>253)
22 ub=−ub ;
23 / / up da t e b a l l p o s i t i o n
24 xb+=ub ;
25 yb+=vb ;
26 }
27 endGraphics () ;
28 re turn 0 ;
29 }

Do not care how function keyboard() works (it is a bit technical)

Build then execute the program.6 What happens?

2. Online help. At any moment, the key F1 allows accessing the documentation of
the keyword under cursor. Test this with keywords if , while and return.

Useful key: F1 = Access documentation

3. Understand how the program works:
Identify the main loop of the program. It proceeds so:

(a) Display ball

(b) Temporisation of a few milliseconds so that the ball does not move too fast

6Since the project has two executable programs, make sure the project Tennis is selected with the
Project button on top of the start green triangle

201

A.2. Variables, loops, conditions, functions A. Practicals

(c) Erase ball

(d) Handle rebounds by updating speed

(e) Update ball coordinates.

The line with instruction while may signal a warning. Can you understand why?
What is the point of the condition by instruction if ?

4. Managing all rebounds:
Complete the program so that all rebounds are handled. For example, inverse
the horizontal component ub of the speed vector when the balls is going to meet
the left or right border of the window.

5. Global variables:
Double the window height. Modify the ball size. This requires hanging the code
at several locations. Instead of placing numerical variables “in the rock”, it is
better to define variables for them. To make it clear, use constant global variables.
For that, insert right after the two include lines the following code:

const i n t width = 2 5 6 ; / / Window width
const i n t height = 2 5 6 ; / / Window h e i g h t
const i n t b a l l _ s i z e = 3 ; / / Radius o f b a l l

and reformulate numeric values in the program with these variables. The key-
word const indicates that the variables cannot be modified after their initaliza-
tion. Try to add the line width=300; at the start of function main and note that it
makes a compilation error.

6. Usage of functions:
The ball is drawn twice in the loop, the first time in red and the second one in
white to erase it. Here, drawing the ball requires a single line but could be much
more if it had a more complex shape. Thus, to structure the program and make
the code more readable while minimizing duplication, group the display of the
ball and its erasure in a function DrawBall defined before the function main:

void DrawBall (i n t x , i n t y , Color c o l) {
. . .

}

In the same manner, define a function
void MoveBall(int &x, int &y, int &u, int &v)
to handle rebounds and movement of the ball.

A.2.3 Tennis

We are going to make the program more fun by adding two rackets moving horizon-
tally at top and bottom of the screen, and controlled by the keyboard.

1. Display of rackets:
Add in function main variables xr1,yr1,xr2,yr2 dedicated to the position of both
rackets. Then define a function DrawRacket taking example from DrawBall. Put
the calls to these functions at appropriate locations in the loop.

202

A. Practicals A.2. Variables, loops, conditions, functions

2. Keyboard handling:
Management of the keyboard is ready for use in function keyboard whose content
we will not comment. This functions allows knowing directly if one of the keys
of interest (s and d for the first raquet, k and l for the second) are pressed or not.
This function, keyboard(int& sens1, int& sens2), returns in sens1 and sens2, the
values 0, -1 or 1 (0: no move, -1: to the left, 1: to the right).

3. Racket motion:
Code the motion of a racket in a function
void MoveRacket(int &x, int sens)
then call this function in the main loop for each racket. Naturally, make sure the
rackets do not move outside the window.

4. Rebounds on rackets:
Take inspiration from the management of rebounds of the ball. Here, we have to
check not only whether the ball will reach the top or bottom of the screen, but
also if it is close enough in abscissa to the corresponding racket.

5. Count and display score:
Modify the function MoveBall so as to keep track of the score of the players and
display it in the terminal.

6. For the ones that have finished:
During a rebound on the racket, modify the inclination of the trajectory of the
ball as a function of the speed of the racket and of the location of the rebound.

You should have obtained a program looking like the one in the figure.

203

A.3. Arrays A. Practicals

Mastermind in console. . .

Mastermind with
graphics. . .

Figure A.5: The two forms of our game.

A.3 Arrays

In this practical, we will program a game of Mastermind, where the player has to guess
a combination generated randomly by the computer. The user has a predetermined
number of trials. For each compbination trial, the computer answers with two hints:
the number of correctly placed pieces and the number of pieces of the right color but
at a wrong position.

A.3.1 Text Mastermind

1. Get the initial code:
Download the archive Tp3_Initial.zip from the course webpage, decom-
press it and open the project. Study the project MasterMind. Input your name
in the placeholder of file mastermind.cpp.

2. Represent a combination:
We will take here a combination of 5 pieces of 4 different colors. The color of a
piece will be represented by an integer in the range from 0 to 3. For a combination
of 5 pieces, we will therefore use an array of 5 integers.

i n t combin [5] ; / / a r r a y o f 5 i n t e g e r s

3. Display a combination:
Code a function displaying a combination on the screen. The simplest manner it
to display the different numbers of the combinations on the same line one after
the other.

4. Generate a random combination:
At the start of the game, the computer must generate randomly a combination

204

A. Practicals A.3. Arrays

for the user to guess. We will use for that the functions declared in file cstdlib ,
notably the function rand() allowing to generate a random number between 0
and RAND_MAX (a constant, which may vary depending on the compiler). To
get a number between 0 and n, we can proceed like this:

i n t x = rand ()%n ;

So that the sequence of generated numbers is not the same at each run of the pro-
gram, it is necessary to initialize the generator with a variable seed. The simplest
way is to use the current time. The function time() declared in file ctime gives
access to it.

Finally, our function allows generating a combination:

inc lude < c s t d l i b >
include <ctime >
using namespace std ;

void generateCombination (i n t combin [5]) {
f o r (i n t i =0 ; i <5 ; ++ i)

combin [i] = rand ()%4 ; / / c a l l s t o g e n e r a t o r
}

srand ((unsigned i n t) time (0)) ; / / i n i t i a l i z a t i o n
generateCombination (combin) ;

5. Change the game complexity:
You will soon become experts in Mastermind and will want to increase the diffi-
culty. It is enough to extend the length of the combination, or change the number
of possible colors. It is quite easy if you thought of using a global constant for
each quantity. If not, it is not too late to remedy it. Define for example:

const i n t nbcases = 5 ; / / l e n g t h o f c o m b i n a t i o n
const i n t nbcol = 4 ; / / number o f c o l o r s

Review the code you have written using these constants. It is very important to
store constant parameters in variables, it saves a lot of effort when we need to
change them.

6. Input combination from the keyboard:
The following function, that we will admit for now, get a character string (type
string) from the keyboard and fills the array combi[] with the nbcases first char-
acters of the string.

void getCombination (i n t t r i a l , i n t combi [nbcases]) {
cout << " T r i a l # " << t r i a l << " : " ;
s t r i n g s ;
c in >> s ;
f o r (i n t i =0 ; i <nbcases ; i ++)

combi [i]= s [i]− ’ 0 ’ ;
}

Beware, the cin does not work from the integrated terminal in Qt Creator (that
is why the window is called Application Output, it does not support Input), we

205

A.3. Arrays A. Practicals

need to use an external terminal. Go into mode Projects, section Run and select
the button “Run in Terminal”.

In the framework of our Mastermind, we are going to modify this function so that
it controls the input string is of the correct size and that its digits are beween 0
and nbcol−1. The trial will be asked again until a valid combination is submitted.
We will use the function s . size () that returns the size of a string s (the syntax of
this function call7 will be explained much later in the course. . .)

A small explanation on the line s[i]−’0’. Characters (of type char) are actually
numeric values, their ASCII code. ’0’ gives the ASCII code of character zero. We
can check it writing for example

cout << (i n t) ’ 0 ’ << endl ;

(We need to cast to an integer, otherwise we ask to display a char, and then the
computer prints the character associated to the ASCII code, 0!) This values is 48.
It happens that digits from 0 to 9 have consecutive ASCII codes: ’0’=48, ’1’=49,
’9’=57. The type string of variable s behaves like an array of char. Hence, s[i]−’0’
is the integer 0 if s[i] is character 0, ’1’-’0’=1 if it is the character 1, etc.

7. Combination analysis:
We should now program a function comparing a given combination to the one
to guess. It should return two values: the number of pieces of correct color at
correct position, and, for the remaining pieces, the number of correct color but at
a wrong position.

For example, if the secret combination is 02113:
00000 : 1 piece well placed (0xxxx), 0 piece wrongly placed (xxxxx)
20000 : 0 well placed (xxxxx), 2 wrongly placed (20xxx)
13133 : 2 well placed (xx1x3), 1 wrongly placed (1xxxx)
13113 : 3 well placed (xx113), 0 wrongly placed (xxxxx)
12113 : 4 well placed (x2113), 0 wrongly placed (xxxxx)
. . .
To begin and to be able to test right away the game, program first a function
returning only the number of well placed pieces.

8. Game loop: We have now at disposal all the necessary fundation,8 we just have
to assemble them to have a mastermind game. Think also to add the detection
of victory (all pieces are well placed), and of failure (number of trials have been
reached, in which case the solution must be printed).

9. Complete version: Complete the function of combination comparison so that it
returns also the number of wrongly placed pieces.

A.3.2 Mastermind in graphics mode

The mastermind game we built has a rudimentary user interface. We will fix it by
adding a graphical user interface (GUI).

7You could have expected something like size(s).
8even if the function of combination analysis is not yet complete

206

A. Practicals A.3. Arrays

1. Study of initial project:
Switch to project MastermindGraphique9

Graphic functions are already defined. They work following a principle of divi-
sion of the window in lines. The function:

void displayCombination (i n t n , i n t combi [nbcases]) ;

prints the combination combi at line n. At the start, we leave at the top of the
window as many free lines as the number of trials in order to display the game.
We display at the bottom a mini user guide that sums up the correspondence
between keys and colors.

2. Graphic Mastermind:
Reinsert in the project the functions of random generation of a combination and
of comparison of two combinations. Reprogram the main loop of the game using
the graphic display.

3. Last improvement:
We wish to be able to erase a color after its input in case of error. Study the
functions
int keyboard(); and void getCombination(int,int []);
The first one already takes care of the backspace key, but not the second one that
considers it as a wrong key. Modify the latter in consequence.

4. In both projects, make the program display from the start the supposedly secret
combination, so that your instructor can check your program more easily.

9Under Qt Creator, select it with the icon representing a screen on the left of the window.

207

A.4. Structures, Separate Files A. Practicals

A.4 Structures, Separate Files

Warning: In this practical, we will have bodies evolving under gravitation and under-
going elastic shocks. It is a long practical that will take several sessions. Actually, the
second part is a reorganization of the first one. In section A.4.4 some functions to use
are presented, and in A.4.5 their physics justification.

A.4.1 Part 1: Single file

Translation motion

1. To begin, study the project:
Download Tp4_Initial.zip, decompress it and launch Qt Creator. Input
your name in the placeholder of file gravitation1.cpp. Browse the project,
look out for global variables and the function main (do not waste time with the
contents of functions already defined but not used yet). The program lets a point
(x, y) evolve according to a constant translation (vx, vy), and displays regularly
a disk centered at this point. For that, to erase it, we store the position of the
disk at the last display (in ox and oy); besides, two instructions beginning with
noRefresh nest the graphics instructions to have a smoother display without
flicker.

2. Use a structure:
Modify the program so as to use a structure Ball keeping all information about
the disk (position, speed, radius, color).

3. Display:
Implement (and use!) a function void DisplayBall(Ball D) printing the disk D,
and another void EraseBall(Ball D) that erases it.

4. Make the disk move properly:
To have the position of the disk evolve, replace the corresponding instructions
already present in the main by a call to a function modifying the coordinates of a
Ball, by adding the speed of the Ball multiplied by a certain time step defined
as a global variable (dt = 1 for now).

Gravitation

5. Evolution with acceleration:
Create (and use) a function that modifies the speed of a Ball so that it undergoes
a constant acceleration ax = 0 and ay = 0.0005. Hint: proceed as before, that is
add 0.0005 ∗ dt to vy.

6. Add a sun:
We wish not to have a uniform gravitation. Add a field storing the mass to the
structure Ball. Create a sun (of type Ball), yellow, fixed (null speed) at the
window center, of mass 10 and radius 4 pixels (the mass of the moving planet is
1). Display it.

208

A. Practicals A.4. Structures, Separate Files

7. Gravitational acceleration:
Create (and use instead of the uniform gravitation) a function that takes as argu-
ment the planet and the sun, and that makes the speed of the planet evolve. Re-
minder in physics: remember since Newton that the acceleration is−GmS/r

3 −→r ,
here G = 1 (meaning our mass is not expressed in kg but in another unit, which
does not matter). You may need the square root function double sqrt(double x).
Do not forget the factor dt. . . Let it run and observe. Initialize the position of the
planet at x = width/3, y = height/3, vx = vy = 0. Note that the expression of
acceleration becomes huge when r is near 0; we will therefore apply no accelera-
tion when r is too small, such as r < r1 + r2 with r1 and r2 the radii of the planet
and the sun.

8. Elliptic orbit:
In a separate simulation (that is, another initialization and motion loop) start
from the same position but put vx = 0.3, vy = 0. You should observe an elliptic
orbit of the planet. You can play with the initial speed to observe the different
behaviors.

9. Make the asteroid bounce:
Have the asteroid undergo elastic shocks each time it goes too close to the sun,
so that it never goes inside it (function shockSimple). To know if two spheri-
cal bodies will undergo a shock, use the function Collision. Do not modify the
given functions shock, shockSimple and collision. Instead, you will cre-
ate new ones taking as argument Ball (with the same name, it is fine as long as
the function arguments are different, it is called function overload), they call the
correponding initial function.

10. Finish first program:
Handle the bounce in both loops. For the one with null initial speed, the planet
should go out of the window soon after the bounce. Stop the loop when it hap-
pens, and let the program wait for a mouse click before proceeding with the sec-
ond loop. The user must be warned by a message that a mouse click is expected.

A.4.2 Reorganization, suns galore

11. Several files
We will have our project manage a second program. For that, copy/paste the
file gravitation1.cpp to gravitation2.cpp in the same folder. Add into the file
CMakeLists.txt the two lines adapted to the program Gravitation2, based on
gravitation2.cpp. Make sure to run CMake (that should happen automatically if
you modified the file from Qt Creator, otherwise look for the option in the Build
menu). Notice that a new project tree for Gravitation2 appears. From now on,
we will work on this file. In the “Project” button above the “Run” button (green
arrow), select Gravitation2, so that it is this program that is run.

209

A.4. Structures, Separate Files A. Practicals

Tools functions

12. A file of definitions. . .
Add a new source file named tools.cpp to the project. Put there the initial func-
tions of TP4 (shock, shockSimple and collision), removing them from gravitation2.cpp.

Do not forget to modify the arguments of add_executable in the CMakeLists.txt
to add tools.cpp (source files are separated just by a blank space). Qt Cre-
ator should note the change when you save the file and should relaunch CMake,
as you should observe in the tab “General Messages”. If not, relaunch CMake
through the menus.

If something goes wrong, which can happen if you apply changes to CMakeLists.txt
and Qt Creator gets confused, save all files, quit Qt Creator, remove the file
CMakeLists.txt.user and relaunch Qt Creator. That should fix the problem.

13. . . . and a declaration file
Add a header file tools.h. Insert the protection against double inclusion with
#pragma once, instead of the other preprocessor instructions (beginning in #)
put there by Qt Creator. Place the declarations of functions of tools.cpp, so as
the definition of dt, removing it from main. Add at the beginning of tools.cpp
and gravitation2.cpp the inclusion directive

include " t o o l s . h"

Vectors

14. Structure Vector:
Create in a new file vector.h a structure representing a plane vector, with two
members of type double. Do not forget the mechanism against double inclusion.
Declare (but do not define yet) the operators and functions that follow:

Vector operator +(Vector a , Vector b) ; / / Sum
Vector operator−(Vector a , Vector b) ; / / D i f f e r e n c e
double norm2 (Vector a) ; / / E u c l i d e a n norm
Vector operator ∗ (Vector a , double lambda) ; / / Mult . s c a l a r
Vector operator ∗ (double lambda , Vector a) ; / / Mult . s c a l a r

15. Functions and operators with Vector:
Create a new file vector.cpp. Put the #include for the header file and define
the operators declared there (Reminder: sqrt is provided by the header file
<cmath>). Once a version of operator∗ is defined, the second one can use the
first in its definition.10

16. Vector speed and vector position:
Replace in gravitation2.cpp the speeds and positions by structures of type
Vector (also in the definition of structure Ball). Use as much as possible the
operators and functions defined in vector.h.

10It is elegant to do like that, it makes sure the two calls are consistent.

210

A. Practicals A.4. Structures, Separate Files

Putting Ball apart

17. Structure Ball:
Move the definition of structure Ball in its own header file ball.h. Since Ball
uses types Vector and Color, you need to add the lines:

inc lude <Imagine/Graphics . h>
using namespace Imagine ;
inc lude " vec tor . h"

18. Associated functions:
Move all functions taking some Ball as argument to a new file Ball.cpp. At
this point, in gravitation2.cpp the only function left should be main. De-
clare in ball.h the functions defined in ball.cpp. Add the #include necessary
in this file and in gravitation2.cpp and perform necessary adaptations (for
instance, if some functions use width or height, since these constants are de-
fined only in gravitation2.cpp, they need to take them as argument. . .)

Back to physics

19. Random initialization:
Create (and use instead of initial conditions given for the sun) a function initial-
izing a Ball, with position in the window, null speed, radius between 5 and 15,
and mass being radius divided by 20 (beware not to use Euclidean division). You
will use the Imagine++ random functions of Section A.4.4.

20. Suns galore. . .
Place 10 suns randomly (and take them into account in the computation of the
motion for the asteroid. . .).

21. Tune the time step of the computation:
To avoid errors due to discretization of time, decrease the time step dt, such as
0.01 (or even 0.001 if the machine is powerful enough). Tune the display fre-
quency accordingly (inversely proportional to dt). Launch several times the pro-
gram.

22. Everything moving, everything bouncing:
Have everything move, including suns. Use for elastic shocks the function shock
(that makes the two bodies bounce).

A.4.3 A third program: Duel

23. Add a new program:
Create a file duel.cpp, initially a copy of gravitation2.cpp. Modify then the
file CMakeLists.txt to append two lines indicating that the executable Duel
depends on duel.cpp and uses the Graphics library of Imagine++.

211

A.4. Structures, Separate Files A. Practicals

24. Creating a library:
The program will be different but will reuse exactly the same files for tools, vec-
tors and balls. Thus we make them as a library, as indicated in the CMakeLists.txt:

add_l ibrary (G r a v i t a t i o n f i l e 1 . cpp f i l e 2 . cpp f i l e 3 . cpp . . .)
ImagineUseModules (G r a v i t a t i o n Graphics)

replacing filei.cpp with the common files. Then we can remove these files from
the add_executable line of Gravitation2, and instead add the line

t a r g e t _ l i n k _ l i b r a r i e s (Grav i ta t ion2 G r a v i t a t i o n)

At this point, you can add the three lines for program Duel, which uses also the
library Gravitation.

25. Your turn!
Transform the project Duel, with the help of the functions already defined, in a
shooting game with two players. Each player has a fixed position, and various
suns are placed randomly on screen. Each player in turn can launch a Ball with
the chosen initial speed, the ball undergoing the gravitation of the different suns
and disappearing after 250 display time steps. The winner is the first one that
launches the ball to the other one. . . Practical advice: place the players symmet-
rically with respect to the center, at mid-height leaving a margin of one eighth
of the width; use the function getMouse to know the position of the mouse at a
click; deduce the chosen speed by subtracting from these coordinates the ones of
the ball center to launch and multiplying by a factor 0.00025.

26. Correct initialization:
Modify the function putting suns so that they do not intersect initially, and that
they are at least at distance 100 pixels from the players.

27. Trace of the shoot:
Instead of simply erasing the previous position of the ball, we also redraw it with
half radius.

A.4.4 Help

Given functions:

void initRandom () ;

(in Imagine++) is to be executed before the first call to random (and only once).

double intRandom (i n t a , i n t b) ;

(in Imagine++) returns an int drawn randomly between a and b.

double doubleRandom () ;

(in Imagine++) returns a double drawn randomly between 0 and 1.

void shockSimple (double x , double y , double& vx , double& vy , double m,
double x2 , double y2 , double vx2 , double vy2) ;

212

A. Practicals A.4. Structures, Separate Files

Figure A.6: Duel: on the left, the green player failed hitting the blue one (black line
showing the shooting direction and impluse). On the right, a slight correction led to a
win. . .

makes the first particle bounce, with coordinates (x, y), speed (vx, vy) and mass m, on
the second one, with coordinates (x2, y2) and speed (vx2, vy2), without moving the
first one.
void shock (double x , double y , double& vx , double& vy , double m,

double x2 , double y2 , double& vx2 , double& vy2 , double m2) ;

makes both particles bounce.
bool c o l l i s i o n (double x1 , double y1 , double vx1 , double vy1 , double r1 ,

double x2 , double y2 , double vx2 , double vy2 , double r2) ;

returns true if the body at (x1, y1), with speed (vx1, vy1) and with radius r1 is about
to collide with the body at (x2, y2), with speed (vx2, vy2) and radius r2, and false
otherwise.

A.4.5 Physics

Remark: this section is here only to explain the contents of the function already pro-
grammed. You can skip it if not interested.

Acceleration

The sum of forces applying on a body A is equal to the product of its mass by the
acceleration of its center gravity.∑

i

−→
F i/A = mA

−→a G(A)

Universal gravitation

Given two bodies A and B, A undergoes an attraction force from B:
−→
F B/A = −GmAmB

1

d2A,B

−→u B→A.

213

A.4. Structures, Separate Files A. Practicals

Elastic shocks

Let A and B two particles involed in a collision. Knowing all parameters before the
shock, how to determine their values after? Actually, only the speed of the particles
need to be updated, since at the shock moment, no position is changed.

During a shock said elastic, three quantitites are preserved:

1. momentum
−→
P = mA

−→v A +mB
−→v B

2. cinetic moment M = mA
−→r A × −→v A + mB

−→r B × −→v B (a real number in the case of
plane motion).

3. cinetic energy Ec = 1
2
mAv

2
A + 1

2
mBv

2
B.

Therefore, we get 4 equations for 4 unknowns.

Shock resolution

We move into the corrdinate frame of the center of mass. We get at each time:

1.
−→
P = 0 (by definition of this frame), hence mA

−→v A = −mB
−→v B.

2. M = (−→r A −−→r B)×mA
−→v A, hence, noting ∆−→r = −→r A −−→r B, M = ∆−→r ×mA

−→v A.

3. 2Ec = mA(1 + mA

mB
)v2A.

The constancy of Ec indicates that in this frame, the norm of speed is preserved,
and the constancy of the cinetic moment that the speeds vary parallely to ∆−→r . Apart
from the initial speeds, there is a unique possibility left: multiply by−1 the component
of −→v i along ∆−→r . That leads to a simple algorithm for the shock.

Deciding if a shock is going to happen

We won’t be happy, along the step by step evolution of the coordinates of the disks,
while deciding if a shock will happen between t and t + dt, with just estimating the
distance between the two candidates to collision at time t, not even by taking in con-
sideration this distance at t+dt, because, if the speed is too high, one disk may already
have gone through the other and gone out at t + dt. . . The best solution is to explicitly
compute the minimum distance between the disks along the time, between t and t+dt.

Let N(u) = (−→r A(u)−−→r B(u))2 be the square of the distance. We get:

N(u) = (−→r A(t)−−→r B(t) + (u− t)(−→v A(t)−−→v B(t)))2

This gives, with supplementary notations:

N(u) = ∆−→r (t)2 + 2(u− t)∆−→r (t) ·∆−→v (t) + (u− t)2∆−→v (t)2

The norm, always positive, is minimal at point u so that ∂uN(u) = 0, hence:

(tm − t) = −∆−→r (t) ·∆−→v (t)

∆−→v (t)2

Thus:

214

A. Practicals A.4. Structures, Separate Files

1. if tm < t, the minimum is reached at t,

2. if t < tm < t+ dt, the minimum is reached at tm;

3. otherwise, t+ dt < tm, the minimum is reached at t+ dt.

That gives easily and explicitly the smallest distance between the bodies between times
instants t and t+ dt.

215

A.5. Images A. Practicals

A.5 Images

Figure A.7: Two images and various processing on the second one (negative, blur,
relief, deformation, contrast and edges).

In this practical, we will play with bidimensional arrays (but stored in 1D arrays),
first static then dynamic. To change from matrices, however fascinating they can be,
we will work with images (figure A.7).

A.5.1 Allocation

1. Get the project:
Download the file Tp6_Initial.zip, decompress it and launch your favorite
development environment, Qt Creator.

2. Fill the memory:
Nothing to do with what we will do after, but it is nice to have seen it at least
once. . . Do, in an infinite loop, allocations of 1000000 integers without deallo-
cation, each followed by a pause of 0.5 seconds, and look at the process size
growing. (Use Ctrl+Shift+Echap to get the task manager under Windows,
use command top in a terminal in Linux or MacOS).11

A.5.2 Static arrays

3. Gray levels:
A black and white image is represented by an array of pixels of constant dimen-
tions W=300 and H=200. Each pixel (i,j) is a byte (integers between 0 and

11Your program should crash at a certain point, when no more memory is available. If not, try in
mode Release to have a true handling of the heap (The mode Debug may behave differently. . .)

216

A. Practicals A.5. Images

255) with value 0 for black and 255 for white. The origin of coordinates is the top
left, i is horizontal and j is vertical. In a mono-dimensional array of byte t of
size W*H store the pixel (i,j) in t[i+W*j]:

• Create a black image and display it with putGreyImage(0,0,t,W,H).

• Same for a white image.

• Same for a gradation from black to white (be careful with risks of Euclidean
division with integers, conversion to double may be necessary).

• Same with t(i, j) = 128 + 127 sin(4πi/W) sin(4πj/H) (see figure A.7). Use

include <cmath>

to get mathematical functions and constants: M_PI vaut π.12

4. Colors:
Display with putColorImage(0,0,r,g,b,W,H), an image in color stored in
three arrays r, g and b (red, green, blue). Use function click() to wait a user
mouse click after each new display.

A.5.3 Dynamic arrays

5. Dimensions from the keyboard:
Modify the program so that W and H are not constant anymore but values input
from the user with the keyboard. Do not forget deallocation.

A.5.4 Load a file

6. Color image:
The call loadColorImage(srcPath("ppd.jpg"),r,g,b,W,H); loads the
file "ppd.jpg" that is located in the source folder (srcPath), allocates by itself
the arrays r,g,b, fills them with image pixel values, and assigns also W and H.13

Warning: do not forget to deallocate arrays r,g,b with delete [] after use.

• Load this image and display it. Do not forget deallocation, again.

7. Black and white image:
The function loadGreyImage(srcPath("ppd.jpg"),t,W,H) does the same
but converts the image to grayscale. Display this image. . .

12To be exact, M_PI is not standard, some compilers may not define it. Don’t worry, your compiler
has it.

13The size of the image is stored in a header of the file, and read by the function. This is fortunate,
otherwise the program would have to know in advance the size of the images it uses.

217

A.5. Images A. Practicals

A.5.5 Functions

8. Split the work:
We will only work with the graylevel image from now on. Write functions to
allocate, destroy, display and load images:

byte∗ al locImage (i n t W, i n t H) ;
void deallocImage (byte ∗ I) ;
void displayImage (byte∗ I , i n t W, i n t H) ;
byte∗ loadImage (const char∗ name , i n t &W, i n t &H) ;

9. Files:
Create files image.cpp and image.h for the functions above. . .

A.5.6 Structure

10. Principle:
Modify the preceding program to use a structure:

s t r u c t Image {
byte∗ t ;
i n t w, h ;

} ;

AllocImage() and LoadImage() can return some Image.

11. Independence:
To avoid having to remember how pixels are stored, add:

byte get (Image I , i n t i , i n t j) ;
void s e t (Image I , i n t i , i n t j , byte g) ;

12. Processing:
Add in main.cpp different functions to process images

Image negat ive (Image I) ;
Image blur (Image I) ;
Image r e l i e f (Image I) ;
Image edges (Image I , double threshold) ;
Image deform (Image I) ;

and use them:

(a) negative: invert black and white by an affine transform.

(b) blur: each pixel becomes the average of itself and its 8 neighbors. Beware
of pixels at image border that have fewer than 8 neighbors (leave them un-
changed and use instruction continue!). In general, when you do image
processing, you must always be careful not to get outside the image.

(c) relief: the derivative along a diagonal gives the impression of cast shad-
ows from an oblique lighting.

218

A. Practicals A.5. Images

• Approximate this derivative by finite difference: it is proportional to
I(i+ 1, j + 1)− I(i− 1, j − 1).
• Rescale the gray levels by an affine function to get back in range 0 to

255.

(d) edges: compute by finite differences the horizontal dx = (I(i+ 1, j)− I(i−
1, j))/2 and the vertical dy derivatives, then the norm of gradient |∇I| =√
d2x + d2y and display in white the points where this is above some thresh-

old.

(e) deform: Build a new image with the principle J(i, j) = I(f(i, j)) with f
smartly chosen. You can use a sine to to from 0 to W-1 and from 0 to H-1 in
a nonlinear fashion.14

A.5.7 Final clean-up

13. Clean up everything: it is likely you have put in comments the code for first
questions in order to save time during further development. Put them back un-
commented, and check that everything still compiles and runs as expected.

14. If you have time left, you can try:

• Make a reduced image.

• Instead of negative, you can change the contrast, for example by multiplying
(by a small factor λ) the difference between a pixel and the average of its
neighbors (this is the negative of Laplacian):15

J(i, j) = I(i, j)+λ

(
I(i, j)− I(i− 1, j) + I(i+ 1, j) + I(i, j − 1) + I(i, j + 1)

4

)

14Whatever your choice, if function f goes outside the image I , just replace with a white pixel.
15Saturate values that go out of range 0 to 255, otherwise it will perform a modulo and you will get

for example white pixels appearing in a dark region.

219

A.6. First objects and fractals A. Practicals

A.6 First objects and fractals

Figure A.8: Fractals. . .

In this practical, we will try some modest object oriented programming. We will
transform a structure for a vector in a class and use it to draw fractals (figure A.8).

A.6.1 Sierpinski triangle

1. Get the project:
Download the file Tp7_Initial.zip, decompress it and launch your IDE. Study
the structure Vector defined in files Vector.cpp and Vector.h.

2. Interface with Imagine++:
The structure Vector does not provide any graphic display. Add in main.cpp
functions drawLine and drawTriangle taking some Vector as arguments
(here, a vector is used to note a plane point). Just call the regular function from
Imagine++

void drawLine (i n t x1 , i n t y1 , i n t x2 , i n t y2 ,
Color c , i n t pen_w)

The last argument controls the thickness of the pencil.

3. Sierpinski Triangle:
This is the figure chosen by ENPC for its logo. Figure A.9 illustrates its construc-
tion.
Write a recursive function to draw the Sierpinski triangle. This functions takes

as arguments the three points of the current triangle and the thickness of the pen-
cil. The three subtriangles are drawn with a pencil less thick. Do not forget the
break condition for the recursion!
Use this function in main by giving it an initial equilateral triangle of thickness 6
pixels.

220

A. Practicals A.6. First objects and fractals

Figure A.9: Construction of Sierpinski triangle.

A.6.2 A class rather than a structure

4. Class vector:
Transform the structure Vector into a class. Incorporate all functions and op-
erators. Put in public only what is necessary, do the required modifications in
main.cpp.

5. Accessors for members:
Add accessors for reading and writing members, and use them systematically
in the main program. The idea is to hide from the user of the class Vector the
details of its implementation.

6. Recursive drawing of a tree:
We are now going to draw a tree. For that, we start from a trunk and replace the
second half of each branch by two branches of same length with an angle of 20
degrees with the originating branch. Figure A.10 illustrates the result for differ-
ent depths of recursion.

Write a recursive function to draw such a curve. You will use the method

Figure A.10: Tree construction.

rotate of class Vector.

It is natural to think of erasing the half of the preceding segment to draw the new
branches, but it is not a great idea: the segments are discretized (in pixels), and
a discretized subsegment may not go exactly on the same pixels as the master
segment, hence some residual stains after erasing. The same remark will apply
to the Koch curve below.

A.6.3 Change the implementation

7. Second implementation:
Modify the implementation of class Vector by replacing the members double x,y;
by an array double coord[2];. What modifications should be applied in main.cpp?

221

A.6. First objects and fractals A. Practicals

8. Vectors of higher dimension:
The advantage of the latest implementaion is that it can be generalized to vec-
tors of higher dimension. Put a global constant DIM of value 2 at the top of file
vector.h and make the class Vector independent of the dimension.
NB: The method rotate and the accessors we defined cannot be generalized
directly to higher dimension. Leave them unchanged but reserve their use to
dimension 2 by putting an assert. . .

A.6.4 The snowflake

9. Koch curve:
This fractal curve can be built by starting from a segment and replacing the sec-
ond third of each segment by two segments so as to get an equilateral triangle.
Write a recursive function to draw this curve.

Figure A.11: Construction of the Koch curve.

10. Snowflake:
It is obtained by building three Koch curves from each of the sides of an equilat-
eral triangle.

222

A. Practicals A.7. Tron

Figure A.12: Game of Tron.

A.7 Tron

In this practical, we are going to program the game of TRON. It is game with 2 players
in which each controls a mobile that moves with constant speed and leaves behind a
trace. The first player that crashes on its trace or the adversary’s trace (or exits the
window) loses the game. This practical is rather ambitious and is a mini-project. It will
take us several sessions.

A.7.1 Snake

We will proceed in two steps. First program a game of Snake with a single player. In
this game, the single player controls a snake that grows little by little (of one element
each x round, with the convention that the total length is bounded by a constant nmax
elements).

The starting project has two files, utils.h and utils.cpp, that contain a struc-
ture point (that we may enrich with useful methods later) and a function meant to get
the keys pressed by the players.

We will build an object Snake with adequate methods, and a function game_1p
exploiting the capacities of the Snake to reproduce the desired behavior. First, we won’t
care about collisions (with the border or with itself), and only do that in a second time.
Your work is split into 6 steps.

1. (on paper) Define an interface for class Snake (list all necessary functionalities).

2. (on paper) Think about implementation of the class Snake: how to store the data?
How to program the different methods? (read first some remarks from next para-
graph).

3. In a file snake.h, write the declaration of the class Snake: its members, its meth-
ods, what is public, what is not.

4. Submit the result of your thoughts to the instructor to validate your choices.

5. Implement the class Snake (that is, program the methods that you declared).

6. Program the function game_1p using a Snake.

223

A.7. Tron A. Practicals

Remark: the file utils.h defines:

1. 4 integers left, down, up, right such that:

(a) the function x → (x + 1)%4 transforms left to down, down to right, right to
up and up to left; it corresponds to a quarter turn in trigonometric sense.

(b) the function x→ (x+ 3)%4 makes the same but in clockwise direction.16

2. an array of 4 points dir such that, after definition of a function computing the
sum of two points, the function p→ p+ dir[d] returns:

(a) for d = left the point corresponding to a shift of p of 1 unit left.

(b) for d = up the point corresponding to a shift of p of 1 unit up.

(c) for d = right the point corresponding to a shift of p of 1 unit right.

(d) for d = down the point corresponding to a shift of p of 1 unit down.

A.7.2 Tron

From the game of Snake, it will be easy to implement the game of Tron.

1. Two players.

Inspired by function game_1p, create a function game_2p with two players. We
will use for this player the keys S, X, D and F.17 The function keyboard() will
return the integers int (’S’), int (’X’), int (’D’) and int (’F’). Remark: we treat
only one key per round, hence a single call to function keyboard() per round,
otherwise the snakes are in concurrency for the keyboard.

2. Ultimate tuning.

(a) Handle the collision of the snakes.

(b) The principle of Tron is that the trace of mobiles remains. To implement that,
we just need to extend the snake at each round.

A.7.3 Graphics

Small bonus to make our game more attractive: we will see how to handle graphics
instead of the uniform rectangles we had until now. The objective is to replace the
heading square by an image that we will move at each step.

We are going to use the NativeBitmap of Imagine++, that are images that are
faster to draw on screen then regular images. To put an image in a NativeBitmap we
proceed like follows:

/ / I n t e g e r s p a s s e d by r e f e r e n c e when l o a d i n g t h e image
/ / s o a s t o s t o r e t h e width and h e i g h t o f t h e image
i n t w, h ;
/ / Image l o a d i n g

16In mathematics, (x+ 3)%4 = (x− 1)%4, but for C++ −1%4 = −1, which is wrong for our purpose.
17The keys A, Z, Q and W are not in the right configuration for a Qwerty keyboard, thus avoid them.

224

A. Practicals A.7. Tron

byte∗ rgb ;
loadColorImage (srcPath (" image_name .bmp") , rgb ,w, h) ;
/ / D e c l a r a t i o n o f a Nat iveBi tmap
NativeBitmap my_native_bitmap (w, h) ;
/ / Put t h e image in t h e Nat iveBi tmap
my_native_bitmap . setColorImage (0 , 0 , rgb ,w, h) ;
d e l e t e [] rgb ; / / We don ’ t need t h e image anymore

The display of a NativeBitmap on screen can be done using the function of Imag-
ine++:

void putNativeBitmap (i n t x , i n t y , NativeBitmap nb)

1. Replace in the snake the display of the head by a bitmap. You can use the images
moto_blue.bmp and moto_red.bmp in the archive.

2. Use the image explosion.bmp to show the crash of a player.

A.7.4 Make the code great

To have a clean code of which you may be proud, heed the following guidelines:

• The class Snake has one/several constructor(s).

• The class Snake has a destructor only if necessary. Hint: did some dynamic
allocation occur?

• No useless copy of a Snake when passing as argument of a function. Hint: are
objects of type Snake passed by reference? See the course about copy constructor
to understand why it matters.

• Only methods used by the exterior are public. All others must be private.

• The methods that do not change the Snake are const.

• The indentation is correct. Do we really have to repeat this obvious guideline?

• The bitmaps are read with srcPath and the program stops if one image file is
not found.

225

B. Imagine++

Appendix B

Imagine++

Imagine++ is a set of libraries (sometimes called a framework) allowing to do simply
graphics and linear algebra. They rely for that on projects Qt (for 2D and 3D graphics)
and Eigen (linear algebra). These provide a wealth of possibilities much greater than
Imagine++, but are much more complex, especially for the beginner.

Imagine++ is free and open-source software, so that you can use and distribute it
as you wish (for free!), but if you distribute it modified, you must offer the sources of
your modifications under identical terms. A complete documentation is available on
its Web page, including installation and usage.

To use a module (that is a library), such as Images, a source file must include it

inc lude <Imagine/Images . h>

for a correct compilation, and your file CMakeLists.txt must use

ImagineUseModules (MyProgram Images)

for the link to succeed.
Everything is in a namespace Imagine, so that if you want to avoid prefixing all

by Imagine:: you must use in your code

using namespace Imagine ;

B.1 Common

The module Common defines among others the class Color, a mix of red, green and
blue (though used primarily in Graphics). The quantity of each is given by an integer
between 0 and 255 (type unsigned char):

Color black (0 , 0 , 0) ;
Color white (2 5 5 , 2 5 5 , 2 5 5) ;
Color red (2 5 5 , 0 , 0) ;

A few constants of this type are already defined: BLACK, WHITE, RED, GREEN, BLUE,
CYAN, MAGENTA, YELLOW, ORANGE, PURPLE.

The type byte (synonym of unsigned char) is defined to store an integer value
between 0 and 255. Components of Color are of this type and can be accessed in
several manners:

B.2. Graphics B. Imagine++

cout << " Blue component of c o l o r white : " << white [2]
<< ’= ’ << white . b () ;

Quite convenient, srcPath prefixes its character string argument with the com-
plete path to the folder containing the source file. The same for an argument of type
string is stringSrcPath:

const char∗ f i l e = srcPath (" my_fi le . t x t ") ;
s t r i n g s = " my_fi le . t x t " ;
s = s t r i n g S r c P a t h (s) ;

In other words, the file will be found whatever the location of the executable program.
The template class FArray is used for arrays of small size, which must be known at

compile time (static array). For arrays whose size is unknown at compilation time (dy-
namic allocation), use Array. For matrices and vectors, use FMatrix and FVector,
using static allocation as indicated by the prefix F (fixed). Equivalent dynamic ones are
present in LinAlg.

Also convenient, the call to function intRandom(5,10) returns a random integer in
range [5, 10]. To obtain at each run of the program a new sequence of random draws,
use initRandom(), a function normally called only once, typically at the beginning
of the main function. doubleRandom() and gaussianRandom() return a uniform
in [0, 1] or normal Gaussian-distributed number.

B.2 Graphics

The module Graphics provides 2D and 3D graphics. The 2D coordinates are in pixel
unit, the x-axis goes to the right and y to the bottom (beware, it is not the usual mathe-
matical orientation!). Point (0,0) is at upper-left corner of the window (for drawing) or
of the screen (for openWindow).

openWindow (5 0 0 , 5 0 0) ; / / S i z e o f window
drawRect (1 0 , 1 0 , 480 ,480 ,RED) ; / / Top− l e f t (1 0 , 1 0) , s i z e 480 x480
drawLine (1 0 , 1 0 , 490 ,490 ,BLUE) ; / / Diagona l
Window w = openWindow (1 0 0 , 1 0 0) ; / / Other window
setActiveWindow (w) ; / / S e l e c t f o r nex t drawings
drawString (1 0 , 1 0 , "Some t e x t " , MAGENTA) ; / / P u t t i n g t e x t
endGraphics () ; / / Wait f o r a mouse c l i c k th en c l o s e windows

The last function is normally called just before getting out of main function so that the
user can see the graphics as long as desired before the program stops.

If we have many drawings at once and we want to display only the final result (to
avoid flicker), we frame the drawing code by:

noRefreshBegin () ;
. . .
noRefreshEnd () ;

To have an animation, it is useful to have a little pause between images to tune the
rythm:

m i l l i S l e e p (5 0) ; / / Time in m i l l i s e c o n d s

228

B. Imagine++ B.3. Images

Do not put such an instruction between noRefreshBegin and noRefreshEnd, be-
cause nothing would display during that period.

We can load an image in memory (loadGreyImage, loadColorImage) or save
(saveGreyImage, saveColorImage) it in a file. The former functions allocate mem-
ory that should be freed (with delete []) after usage.

byte∗ g ;
i n t width , height ;
i f (! loadGreyImage (srcPath (" image . jpg ") , g , width , height)) {

c e r r << " Error opening f i l e "
<< srcPath (" image . jpg ") << endl ;

e x i t (1) ;
}
/ / Draw with top− l e f t c o r n e r a t (0 , 0) :
putGreyImage (0 , 0 , g , width , height) ;
d e l e t e [] g ; / / Do not f o r g e t !

Note the srcPath, defined in Common, indicating to look for the file name in the folder
containing the source file.

To avoid managing by hand the memory used by images, there is a class dedicated
to this:

B.3 Images

The module Images manages loading, manipulating and saving images.

Image<byte > im ; / / Image in gray l e v e l s
i f (! load (im , srcPath (" i m a g e _ f i l e . png "))) {

c e r r << " Error opening f i l e "
<< srcPath (‘ ‘ i m a g e _ f i l e . png ’ ’) << endl ;

e x i t (1) ;
}
d isplay (im) ; / / Draw in a c t i v e window
im (0 , 0) = 1 2 8 ; / / Put top− l e f t p i x e l in m i d l e v e l gray
save (im , " image_f i l e2 . png ") ; / / Save in f i l e

Beware: copy and assignment (operator=) are cheap and only perform a link be-
tween images (shallow copy). The consequence is that modifying one impacts the
other:

Image<Color > im1 (1 0 0 , 1 0 0) ;
Image<Color > im2 = im1 ; / / Copy c o n s t r u c t o r
im1 (1 0 , 1 0) = CYAN;
a s s e r t (im2 (1 0 , 1 0) == CYAN) ; / / im2 i s i m p a c t e d a l s o !

To do a real copy (deep copy) rather than a link, we use:

im2 = im1 . c lone () ;
im1 (1 0 , 1 0) = CYAN; / / No e f f e c t on im2

The consequence is that if an image is passed as argument of a function, since the copy
constructor is called, everything happens as if the image were passed by reference:

229

B.4. LinAlg B. Imagine++

void f (Image<Color > im) { / / Value p a s s i n g
im (1 0 , 1 0) = CYAN;

}
f (im1) ; / / S t i l l m o d i f i e s p i x e l (1 0 , 1 0)

A classical error is trying to read or write at coordinates beyond the array bound-
aries, typically an error in a loop index.

B.4 LinAlg

The module LinAlg proposes linear algebra with matrices and vectors.

Matrix < f l o a t > I (2 , 2) ; / / S i z e 2x2
I . f i l l (0 . 0 f) ; / / Null ma t r ix
I (0 , 0) = I (1 , 1) = 1 . 0 f ; / / I d e n t i t y ma t r ix
cout << " det (I)= " << det (I) << endl ; / / Determinant

Operators for sum (matrix+matrix and vector+vector), subtraction (matrix-matrix
and vector-vector) and multiplication (matrix*matrix and matrix*vector) are of course
defined.

As for images, beware not to go out the bounds while accessing coefficients of ma-
trix and vector!

A very useful function is linSolve to solve a system of linear equations (by least
squares in case there are more equations than unknowns). Several standard matrix
factorizations are also implemented.

B.5 Installation

Let’s look at the file CMakeLists.txt of a program using Imagine++.

cmake_minimum_required(VERSION 2.6)
project(Ball)
find_package(Imagine REQUIRED)

add_executable(Ball Ball.cpp)
ImagineUseModules(Ball Graphics)

In order for the find_package to work, it may be necessary to define the system
variable Imagine_DIR.1 This command will load the file2

/usr/share/Imagine++/CMake/ImagineConfig.cmake

that contains CMake commands, including the definition of ImagineUseModules.
The latter performs two things:

• Indicate to the compiler3 where to look for header files with #include, such as
in the folder

1It is the case when Imagine++ is not installed in the standard installation folders, which depend on
the platform.

2This example is based on Linux, where /usr/share is a standard installation folder.
3More precisely, the preprocessor, which is launched just before actual compilation.

230

B. Imagine++ B.5. Installation

/usr/share/Imagine++/include

Therefore, the instruction

#include "Imagine/Graphics.h"

will include the file

/usr/share/Imagine++/include/Imagine/Graphics.h

(this calls the standard CMake function include_directories).

• Indicate to the linker to use the library libImageGraphics.a after compilation.
This is located in folder

/usr/share/Imagine++/lib

(this calls the standard CMake function target_link_libraries).

231

C. Compiler, CMake, Linker, Qt. . . Help!

Appendix C

Compiler, CMake, Linker, Qt. . . Help!

All right, all this seems quite complex, and indeed it is not that simple. However, if you want
to understand the tools you use, we will see that we can get around them, despite the fright of
being overwhelmed by so many tools. Reading this appendix is not required to use them, but it
should be helpful to help understanding how they are organized.

—

C.1 Compilation

C.1.1 Compiler and linker

Let’s begin with the basic principle: to go from source code, that is files with extension
.h and .cpp,1 to an executable program, we need to launch the build, often called abu-
sively compilation, whereas the true compilation is only a part of the process.2 It is
composed of two phases, compilation (the job of the compiler) followed by the link
(the job of the linker). The linker’s role is to gather the products of the compilation
phase, the object files (with extension .o or .obj), with possible libraries, that are in
essence only archive-like files (like a zip) of object files. This is summed up by the
scheme of Figure C.1.

Several things are worth noticing:

• The compiler is launched independently on each source .cpp, to the point that the
compilations could be launched in parallel. An important consequence is that the
modification of a .cpp does not require recompilation of the others, hence a time
saving in the build.

• The header files (in .h) are not passed directly to the compiler, but they are in-
directly by the .cpp that #include them. Besides, since several .cpp can
#include " file1 .h", this file will go several times under the compiler. It is thus es-
sential that the compiler dos not generate symbols from file1.h, such as global
variables (which should be avoided as much as possible anyway) or function

1Sometimes extension .h is replaced by .hpp to avoid confusion with language C header files. We
can also meet the conventions .hxx and .cxx, since the + in file name could be badly managed by
certain file systems, and after all x is just a rotated +.

2This is a synecdoque. Doing engineering may not hinder the taste for literary figures!

C.1. Compilation C. Compiler, CMake, Linker, Qt. . . Help!

file2.cpp

compiler

compiler linker

file1.o

file2.o

file3.o

libImagineGraphics.a

libQtCore.so

program

file1.cpp

file3.cpp

compiler

Figure C.1: Phases of compilation and link. File extensions here are for Unix systems
(Linux and Mac), under Windows object files end with .obj, libraries with .lib and
the program with .exe.

definitions, but only declarations (of classes, functions, constants).3 Otherwise,
at link time, there will be an error: Multiply defined symbol...

• The role of the linker is to check that each used function or class method4 is de-
fined one and only one time, that is, in a unique .o or library. Moreover, it checks
that the entry function of the program, the main, is present (exactly once).

• Libraries can be present in two forms: static (extension .a) and dynamic (exten-
sion .so, as shared object). At link time, used symbols of static libraries are
included in the resulting program, whereas those of dynamic libraries are not,
the linker just checking their existence. The advantage of the latter is that the
program is lighter in memory, that several running programs using the same li-
brary require only a single load in memory of the library, and that the correction
of security default or a bug in a dynamic library does not require a recompilation
of all programs using it but only to redistribute it to users (provided these bugs
are corrected without changing arguments of functions, etc). The counterpart is
that the executable program cannot be launched directly since it is incomplete, it
has to find the dynamic libraries it depends on.

Actually, under Windows, the dynamic libraries are separated in two: the .lib is
used at link time (can be considered as a kind of header for the library) whereas the
part .dll is used when the program is run. The program cannot be run if it does not
find the needed .dll.5 One can list the dynamic libraries a program depends on with
the tools ldd (Linux), otool (Mac) and depend.exe (Windows).

3Exceptions are functions inline, class methods defined directly in the class, that are also inline,
and functions or methods template, that are very particular since they cannot be compiled as long as
the template parameters are not known, we talk about instantiation of templates.

4A function or class method just declared but not called does not require a definition but is simply
considered as superfluous by the linker.

5It searches in the folder containing the program and in the list of folders indicated by the en-
vironment variable PATH. Under Linux and Mac, the equivalent variable to search .so is named
LD_LIBRARAY_PATH.

234

C. Compiler, CMake, Linker, Qt. . . Help! C.2. With command line

C.2 With command line

Here is an example6 of command-line invocation of the compiler on a file test.cpp,
resulting in object file test.o:
/usr/bin/c++ -DQT_CORE_LIB -DQT_GUI_LIB -DQT_NO_DEBUG

-DQT_OPENGL_LIB -DQT_WIDGETS_LIB -O3 -DNDEBUG

-I/home/pascal/Ponts/svn/ImagineQt/Imagine/Common/src

-I/home/pascal/Ponts/svn/ImagineQt/Imagine/Graphics/src

-I/usr/include/qt5 -I/usr/include/qt5/QtCore

-I/usr/lib/x86_64-linux-gnu/qt5/mkspecs/linux-g++-64

-I/usr/include/qt5/QtWidgets -I/usr/include/qt5/QtGui

-I/usr/include/qt5/QtOpenGL

-DSRCDIR="/home/pascal/Ponts/svn/ImagineQt/Imagine/Graphics/test"

-o CMakeFiles/ImagineGraphicsTest.dir/test.o

-c /home/pascal/Ponts/svn/ImagineQt/Imagine/Graphics/test/test.cpp

The compiler program is called c++, the options -D do as if test.cpp had a corre-
sponding #define. The option -O3 indicates optimization of level 3 (the highest one).
The options -I indicate the folders where the #include must look for header files if
they are not in current folder. Now, the link of this single object file with the libraries
it needs:

/usr/bin/c++ CMakeFiles/ImagineGraphicsTest.dir/test.o

-o ImagineGraphicsTest ../src/libImagineGraphics.a

/usr/lib/x86_64-linux-gnu/libQt5Core.so.5.2.1

/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5.2.1

/usr/lib/x86_64-linux-gnu/libQt5Gui.so.5.2.1

/usr/lib/x86_64-linux-gnu/libQt5OpenGL.so.5.2.1

-lGLU -lGL -lSM -lICE -lX11 -lXext

The resulting program is called ImagineGraphicsTest, using the static library
libImagineGraphics.a and dynamic Qt libraries, so as the system libraries, namely
libGLU.so, libGL.so, etc. The latter are installed at locations known from the linker,
so it does not need indication of where to find them, though it could have been pre-
cised with options -L, in the same manner as -I for the compiler. Actually, the same
program c++ understands from its arguments that it has to call the linker and not the
compiler.

We see that to use a library in our program, we need to indicate (1) where the
compiler will find its header files .h, (2) where the linker will find the libraries.

C.3 Make and CMake

We see that the command lines above are not too complex but fastidious, and repeating
these steps for each build would get tiresome. At this point the build automaton make
appears. It reads a file named Makefile that describes the dependencies between
files.7 A Makefile for the program above would indicate that the executable program
ImagineGraphicsTest depends on test.o, which itself depends on test.cpp,

6Under Linux. This can be entered into a terminal window.
7Among others, that a .cpp file depend on the header files .h it includes, so that if one these headers

was modified, the file must be recompiled.

235

C.3. Make and CMake C. Compiler, CMake, Linker, Qt. . . Help!

but it does not stop here,since test.cpp performs some #include of header files .h,
that themselves could depend on other .h through #include, etc.

The commands of generation of test.o and of ImagineGraphicsTest are those
of compilation and link of the example above. The program make relies on the modi-
fication time of files to know what is up to date and needs no specific action, and what
is not and requires application of the build rules: if file A, on which file B depends,
was modified more recently than B, the rule of build of B is applied. In this manner
the unique command make can perform both compilation and link. Running make
a second time just after has no effect, since everything is up to date based on their
modification time. It is the least effort principle and is reasonable.

To find all dependencies of a file .cpp, we need to look at its #include and follow
them transitively. The compiler (actually, the preliminary phase of the compiler, the
preprocessor, to which all instructions with # are addressed) is actually able to do
it and writing dependencies by hand in a Makefile is long and probably difficult
to maintain correct along development of the source code. To complicate things, the
make command of Linux and Mac is GNU make whereas the one of Windows that
comes with Visual Studio is nmake. They are not completely compatible, and since
anyway the compilers are different and do not use the same options, we would need
two versions of Makefile for a portable program. To avoid all this complexity, a more
modern tool is CMake, a kind of meta-make. Its advantages are:

• A simpler format, uniform for all OS, of meta-Makefile called CMakeLists.txt.

• Automatic computation of dependencies.

• Built-in possibility (and it is strongly advised) to put the generated files in a dif-
ferent folder (build directory) than the sources (source directory), so that a cleaning
procedure is very simple: remove the build directory.

The CMakeLists.txt for the preceding example is elementary:
cmake_minimum_required(VERSION 3.4)
find_package(Imagine REQUIRED COMPONENTS Graphics)
add_executable(ImagineGraphicsTest test.cpp)
ImagineUseModules(ImagineGraphicsTest Imagine::Graphics)

The first line is boilerplate. The second line indicates we need Imagine++, looking
for a file named ImagineConfig.cmake. Imagine++ is composed of several compo-
nents, the Graphics one is the most frequently used. The third line indicates that the
built program8 is called ImagineGraphicsTest(.exe under Windows) and that it
depends only on test.cpp. If there were several .cpp, their name would be included
separated by blanks. We can also add .h, even though they are not compiled directly:
they will be just visible in the part headers when we ask CMake to create a project (see
IDE below). The last line indicates that our program needs the library Graphics of
Imagine++, which indicates the path of headers and of the library. The fact that this
library depends on Qt is automatically handled. A typical example of usage of CMake
in command line under Linux or Mac:
mkdir Build← Create build directory
cd Build← Go in the directory

8to create a library (dynamic by default) instead, it is enough to replace by add_library.

236

C. Compiler, CMake, Linker, Qt. . . Help! C.4. Usage of an IDE

cmake .. ← Indicates the source directory as the parent (..)
make← Now the classic make command is run

Launching cmake creates a file CMakeCache.txt in the build directory that con-
tains a list of variables for CMake. The most important is CMAKE_BUILD_TYPE that
indicates the degree of optimization to apply. The maximum one is Release, whereas
mode Debug is for a program we want to follow line by line. We can modify one of
the variables9 and run again cmake. This generates the file Makefile for us, which is
then the configuration of make.

It is convenient that a further modification to CMakeLists.txt, for example to
add source files at line add_executable, does not require to launch again explicitly
cmake, since the generated Makefile keeps the information that CMakeCache.txt
is a dependency of CMakeLists.txt. Hence the fact of launching make directly is
enough to launch in turn cmake before continuing with normal build.

Finally, the power of CMake is that it knows all classic IDE (Visual Studio, Eclipse,
Code::Blocks, etc) and is able to generate projects for these (cf Figure C.2). Absent from
this list are Kdevelop (Linux) and Qt Creator (all platforms). Indeed, they generate
themselves projects of type CMake, and we can launch cmake from their interface.

Figure C.2: Creation of a project with choice of IDE and interaction with variables of
CMake stored in CMakeCache.txt thanks to cmake-gui. Note that CMake handles
the different versions of Visual Studio, in 32 and 64 bits. The compiler MinGW be-
ing installed (it comes with the Qt installer under Windows), it can also create Make-
files as under Linux and Mac, except that GNU make that interprets them is called
mingw32-make and not make.

The interest of all this is that the user can choose the IDE at will (or none if preferred)
and that a single configuration file CMakeLists.txt ensures portability of build on
all platforms. Then, it is the programmer’s responsibility to respect the C++ norm for
a maximum of portability.10

C.4 Usage of an IDE

The comfort provided by an IDE is notable: integrated editor, easy code navigation, in-
tegrated build, debugger, version control (especially git), memory analyzer (vagrind

9directly in a text editor, or with tools ccmake or cmake-gui that offer a graphic interface
10Some compilers have extensions by default, features that are not portable because not part of the

standard but deemed convenient.

237

C.5. Configuration of Qt Creator C. Compiler, CMake, Linker, Qt. . . Help!

under Linux and Mac). . . One can also modify the CMakeLists.txt from the inte-
grated editor and not launch cmake after: CMake is smart enough to create projects
that know when it is necessary to run the cmake command. Once the project created,
we can do everything from the IDE.

However, in order for all these tools to work in harmony, things must be correctly
configured. For instance, Qt Creator must know where to find the program cmake,
so as the compiler, the debugger, etc. At last, we have to be careful to keep CMake as
build system, and refuse, when a new source file is created, the proposition of the IDE
to integrate it in the project. This must be done at the level of CMake, by modifying
CMakeLists.txt accordingly.

For Imagine++, the command find_package(Imagine REQUIRED)must be able
to find the file ImagineConfig.cmake. If it is not in a standard location, it needs help
in the form of the installation folder in a variable Imagine_DIR.

When the IDE seems to be malfunctioning, it is wise to close the project and restart
it from scratch: erase generated files of the IDE, and reopen it. That can happen when
major changes are done in the project and the IDE is unable to keep track.

At last, note that Qt is not an IDE but a set of multi-platform C++ libraries (some-
times called a framework), used by Imagine++ (which is also a framework). It happens
that the IDE Qt Creator11 uses also the Qt libraries, and if it has been installed together
with the Qt libraries, it knows where to find them, which is helpful for an Imagine++
project.

C.5 Configuration of Qt Creator

To integrate all the different developer tools, the IDE needs to be configured. The
procedure is specific to each one, we develop here the one of Qt Creator. The en-
try point is accessible through a menu, “Edit/Preferences...” (Windows), “Tools/Op-
tions...” (Linux) or “Qt Creator/Preferences...” (Mac).

C.5.1 CMake and Qt

Since we use CMake, Qt Creator must know where it is installed (Figure C.3). Notice
that here CMake was found under the Qt installation folder: some installers of Qt
provide a version of CMake. The Qt libraries information come from a program called
qmake, which Qt Creator needs to be aware of. Notice there is also a “Compilers” tab,
where the different compilers found on the system are registered.

C.5.2 Kit

A collection of tools to use is registered in a kit. It specifies the version of CMake, com-
pilers and Qt version to use. Figure C.4 shows one kit. Several kits may be installed,
each time a new project is built the different kits to use are proposed to the user. Pay
attention to the “CMake Generator”: by default, it is frequently set as “Ninja”, which
is an alternative to “make”, but is not generally installed, provoking a failure in the

11A very popular IDE nowadays is Visual Studio Code (VS Code). It can perfectly be used for Imag-
ine++, but it requires some configuration: where to find Qt libraries, installing the extension to handle
cmake, etc.

238

C. Compiler, CMake, Linker, Qt. . . Help! C.5. Configuration of Qt Creator

Figure C.3: CMake and Qt configuration in Qt Creator

build phase. This must be corrected by configuring the kit to use a “Makefile” (of type
MinGW for Windows, Unix for Linux and Mac) and an extra generator.

C.5.3 Project

For our purposes, a project is a directory with a file CMakeLists.txt and accompa-
nying source and header files. Qt has no specific “project” format, it reuses the one
of another IDE (CodeBlocks). This is a file with extension .cbp in the build directory,
which we do not have to care about.

The first time a project is opened (through opening its file CMakeLists.txt), it
creates a file CMakeLists.txt.user in the source directory. Among others, it speci-
fies the kit that was used. The next time the project is opened, the presence of this file
makes Qt Creator skip the proposition of a kit and the check that the compiler is work-
ing (which may be a bit slow under Windows). However, if the kit had some problems
and we changed it, this .user file is out of sync. To reinit, it is generally a good idea
to remove the file before opening the project.

239

C.5. Configuration of Qt Creator C. Compiler, CMake, Linker, Qt. . . Help!

Figure C.4: A kit. Notice the CMake Generator, here the one for Windows. On Linux
and Mac, the Generator must be “Unix Makefiles” and the Extra generator is the same.

240

D. Final reference card

Appendix D

Final reference card

Reference Card (1/6)

Variables

• Definition:
int i;
int k,l,m;

• Assignment:
i=2;
j=i;
k=l=3;

• Initialization:
int n=5,o=n;

• Constants:
const int s=12;

• Scope:
int i;
// i=j; forbidden!
int j=2;
i=j; // OK!
if (j>1) {

int k=3;
j=k; // OK!

}
//i=k; forbidden!

• Types:
int i=3;
double x=12.3;
char c=’A’;
string s="hop";
bool t=true;
float y=1.2f;
unsigned int j=4;
signed char d=-128;
unsigned char d=25;
complex<double>

z(2,3);

• Global variables:
int n;
const int m=12;
void f() {

n=10; // OK
int i=m; // OK
...

• Conversion:
int i=int(x),j;
float x=float(i)/j;

• Stack/Heap

• Enumerated type:
enum Dir{N,E,S,W};
void advance(Dir d);

• Staic variables:
int f() {
static bool once=true;
if (once) {
once=false;
...

}
...
}

Tests

• Comparison:
== != < > <= >=

• Negation: !

• Combinations: && ||

• if (i==0) j=1;

• if (i==0) j=1;
else j=2;

• if (i==0) {
j=1;
k=2;

}

• bool t=(i==0);
if (t)

j=1;

• switch (i) {
case 1:

...;

...;
break;

case 2:
case 3:

...;
break;

default:
...;

}

• mx=(x>y)?x:y;

Loops

• do {
...

} while(!ok);

• int i=1;
while(i<=100) {

...
i=i+1;

}

• for(int i=1;i<=10;i++)
...

• for(int i=1,j=10;j>i;
i=i+2,j=j-3)

...

D. Final reference card

Reference Card (2/6)

Loops

• for (int i=...)
for (int j=...) {

//skip case i==j
if (i==j)

continue;
...

}

• for (int i=...) {
...
if (t[i]==s){

// exit loop
break;

}
...

}

Functions

• Definition:
int plus(int a,int b){

int c=a+b;
return c;

}
void display(int a) {

cout << a << endl;
}

• Declaration:
int plus(int a,int b);

• Return:
int sign(double x) {

if (x<0)
return -1;

if (x>0)
return 1;

return 0;
}
void display(int x,

int y) {
if (x<0 || y<0)

return;
if (x>=w || y>=h)

return;
DrawPoint(x,y,RED);

}

• Call:
int f(int a) { ... }
int g() { ... }
...
int i=f(2),j=g();

• References:
void swap(int& a,

int& b){

int tmp=a;
a=b;b=tmp;

}
...
int x=3,y=2;
swap(x,y);

• Overload:
int chance(int n);
int chance(int a,

int b);
double chance();

• Operators:
vect operator+(

vect A,vect B) {
...

}
...
vect C=A+B;

• Call stack

• Iterative/Recursive

• Constant references (avoid
copy):
void f(const obj& x){
...

}
void g(const obj& x){

f(x); // OK
}

• Default values:
void f(int a,int b=0);
void g() {

f(12); // f(12,0);
f(10,2);// f(10,2);

}
void f(int a,int b) {

// ...
}

• Inline (fast call):
inline double

sqr(double x) {
return x*x;

}
...
double y=sqr(z-3);

• Return as reference:
int i; // global var
int& f() {

return i;
}
...

f()=3; // i=3!

Arrays

• Definition:

– double x[5],y[5];
for(int i=0;i<5;i++)

y[i]=2*x[i];

– const int n=5;
int i[n],j[2*n];

• Initialization:
int t[4]={1,2,3,4};
string s[2]={"ab","c"};

• Assignment:
int s[3]={1,2,3},t[3];
for (int i=0;i<3;i++)

t[i]=s[i];

• As parameter:

– void init(int t[4]){
for(int i=0;i<4;i++)

t[i]=0;
}

– void init(int t[],
int n) {

for(int i=0;i<n;i++)
t[i]=0;

}

• Variable size:
int* t=new int[n];
...
delete[] t;

• As argument:

– void f(int* t,int n)
{ t[i]=... }

– void alloc(int*& t){
t=new int[n];

}

• 2D:
int A[2][3];
A[i][j]=...;
int A[2][3]=

{{1,2,3},{4,5,6}};
void f(int A[2][2]);

• 2D in 1D:
int A[2*3];
A[i+2*j]=...;

• Variable size:
int *t,*s,n;

242

D. Final reference card

Reference Card (3/6)

Arrays

• As argument (end):
void f(const int* t,

int n) {
...

s+=t[i]; // OK
...

t[i]=...; // NO!
}

Structures

• struct Point {
double x,y;
Color c;

};
...
Point a;
a.x=2.3; a.y=3.4;
a.c=RED;
Point b={1,2.5,BLUE};

• A structure is an objet fully
public (→ see objects!)

Objects

• struct obj {
int x; // field
int f(); // method
int g(int y);

};
int obj::f() {

int i=g(3); // my g
int j=x+i; // my x
return j;

}
...
int main() {

obj a;
a.x=3;
int i=a.f();

• class obj {
int x,y;
void mine();

public:
int z;
void for_all();
void another(obj A);

};

void obj::mine() {
x=..; // OK
..=y; // OK
z=..; // OK

}
void obj::for_all(){

x=..; // OK
mine(); // OK

}
void another(obj A) {

x=A.x; // OK
A.mine(); // OK

}
...
int main() {

obj A,B;
A.x=..; //NO
A.z=..; //OK
A.mine(); //NO
A.for_all(); //OK
A.another(B); //OK

• class obj {
obj operator+(obj B);
};
...
int main() {

obj A,B,C;
C=A+B;
// C=A.operator+(B)

• Constant methods:
void obj::f() const{

...
}
void g(const obj& x){

x.f(); // OK
}

• Constructor:
class point {

int x,y;
public:

point(int X,int Y);
};
point::point(int X,

int Y){
x=X;
y=Y;

}

...
point a(2,3);

• Empty constructor:
obj::obj() {
...

}
...
obj a;

• Temporary objects:
vec vec::operator+(

vec b) {
return vec(x+b.x,

y+b.y);
}
...
c=vec(1,2)
+f(vec(2,3));

• Accessors:
class mat {

double *x;
public:
double& operator()

(int i,int j){
assert(i>=0 ...);
return x[i+M*j];

}
double operator()
(int i,int j)const{
assert(i>=0 ...);
return x[i+M*j];

}
...

Separate compilation

• #include "vect.h", also
in vect.cpp

• Functions: declarations in .h,
definitions in .cpp

• Types: definitions in .h

• Declare in .h only useful
functions

• #pragma once at beginning
of header file

• Do not cut too much. . .

243

D. Final reference card

Reference Card (4/6)

STL

• min,max,...

• complex<double> z;

• pair<int,string> p;
p.first=2;
p.second="hop";

• #include<list>
using namespace std;
...
list<int> l;
l.push_front(1);
...

• if(l.find(3)!=l.end())
...

• list<int>::
const_iterator it;

for (it=l.begin();
it!=l.end();it++)

s+= *it;

• list<int>::iterator it
for (it=l.begin();

it!=l.end();it++)
if (*it==2)

*it=4;

• stack, queue, heap,
map, set, vector...

Input/Output

• #include <iostream>
using namespace std;
...
cout <<"I="<<i<<endl;
cin >> i >> j;

• #include <fstream>
using namespace std;
ofstream f("hop.txt");
f << 1 << ’ ’ << 2.3;
f.close();
ifstream g("hop.txt");
if (!g.is_open()) {

return 1;
}
int i;
double x;
g >> i >> x;
g.close();

• do {
...

} while (!(g.eof());

• ofstream f;
f.open("hop.txt");

• double x[10],y;
ofstream f("hop.bin",

ios::binary);
f.write((const char*)x,

10*sizeof(double));
f.write((const char*)&y,

sizeof(double));
f.close();
ifstream g("hop.bin",

ios::binary);
g.read((char*)x,

10*sizeof(double));
g.read((const char*)&y,

sizeof(double));
g.close();

• string s;
ifstream f(s.c_str());

• #include <sstream>
using namespace std;
stringstream f;
// String to int
f << s; f >> i;
// int to string
f.clear();
f << i; f >> s;⇔
s = std::to_string(i);

• ostream& operator<<(
ostream& f,
const point&p){

f<<p.x<<’ ’<< p.y;
return f;

}
istream& operator>>(
istream& f,point& p){

f>>p.x>>p.y;
return f;

}

Template

• Functions:
// To put in
// file that uses
// or in .h
template <typename T>
T maxi(T a,T b) {

...
}
...
// Type is found
// alone!
maxi(1,2); //int
maxi(.2,.3); //double
maxi("a","c");//string

• Objects:
template <typename T>
class pair {
T x[2];
public:
pair() {}
pair(T a,T b) {
x[0]=a;x[1]=b;

}
T add() const;
};
...
template <typename T>
T pair<T>::add()const{
return x[0]+x[1];
}
...
// Type must be
// precised!
pair<int> a(1,2);
int s=a.add();
pair<double> b;
...

• Multiple:
template <typename T,

typename S>
class hop {
...

};
...
hop<int,string> A;
...

• Integers:
template <int N>
class hop {
..

};
...
hop<3> A;
...

Advice

• Errors/warnings: click.

• Indent!

• Fix warnings.

• Use the debugger.

• Write functions.

• Arrays: not to translate math
formula!

• Make structures.

244

D. Final reference card

Reference Card (5/6)

Advice

• Do separate source files

• The .h must be enough for
the user (who must not look
into .cpp)

• Don’t abuse recursion.

• Don’t forget delete.

• Compile regularly.

• #include <cassert>
...
assert(x!=0);
y=1/x;

• Make objects.

• Do not always make objects!

• Think interface / implemen-
tation / usage.

Keys

• Debug: F5

• Step over: F10

• Step inside: F11

• Indent: Ctrl+A,Ctrl+I

• Switch source/header: F4

• Swith decl./def.: F2

• Step out: Maj+F11

• Gest. tâches: Ctrl+Maj+Ech

Misc.

• i++;
i--;
i-=2;
j+=3;

• j=i%n; // Modulo

• #include <cstdlib>
...
i=rand()%n;
x=rand()/

double(RAND_MAX);

• #include <ctime>
// Single call
srand((unsigned int)

time(0));

• #include <cmath>
double sqrt(double x);
double cos(double x);
double sin(double x);
double acos(double x);

• #include <string>
using namespace std;
string s="hop";
char c=s[0];
int l=s.size();
if (s1==s1) ...

if (s1!=s2) ...
if (s1<s2) ...
size_t i=s.find(’h’),

j=s.find(’h’,3);
k=s.find("hop");
l=s.find("hop",3);

a="how";
b="are you?";
txt=a+" "+b;
s1="one two three";
s2=string(s1,4,3);
getline(cin,s);
getline(cin,s,’:’);
const char *t=s.c_str();

• #include <ctime>
s=double(clock())
/CLOCKS_PER_SEC;

• #include <cmath>
double pi=M_PI;

• Bitwise operators
and: a&b
or: a|b
xor: a^b
right shift: a>>n
left shift: a<<n
complement: ~a

examples:
set(i,1): i|=(1<<n)
reset(i,1): i&=~(1<<n)
test(i,1): if (i&(1<<n))
flip(i,1): i^=(1<<n)

245

D. Final reference card

Reference Card (5/6)

Frequent errors

• No definition of function in-
side a function!

• int q=r=4; // NO!

• if (i=2) // NO!
if i==2 // NO!
if (i==2) then // NO!

• for(int i=0,i<100,i++)
// NO!

• int f() {...}
int i=f; // NO!

• double x=1/3; // NO!
int i,j;
x=i/j; // NO!
x=double(i/j); //NO!

• double x[10],y[10];
for(int i=1;i<=10;i++)

y[i]=2*x[i];//NO

• int n=5;
int t[n]; // NO

• int f()[4] { // NO!
int t[4];
...
return t; // NO!

}
int t[4]; t=f();

• int s[3]={1,2,3},t[3];
t=s; // NO!

• int t[2];
t={1,2}; // NO!

• struct Point {
double x,y;

} // NO!

• Point a;
a={1,2}; // NO!

• #include "tp.cpp"//NO

• int f(int t[][]);//NO
int t[2,3]; // NO!
t[i,j]=...; // NO!

• int* t;
t[1]=...; // NO!

• int* t=new int[2];
int* s=new int[2];
s=t; // lost s!
delete[] t;
delete[] s;//Crash!

• int *t,s;// s is int
// not int*

t=new int[n];
s=new int[n];// NO!

• class vec {
int x,y;

public:
...

};
...

vec a={2,3}; // NO

• vec v=vec(1,2);//NO
vec v(1,2); // Yes

• //NO!
void f(int a=2,int b);

• void f(int a,int b=0);
void f(int a);// NO!

• Not anything inline!

• int f() {
...

}
f()=3; // HORROR!

• int& f() {
int i;
return i;

}
f()=3; // NO!

• if (i>0 & i<n) // NO
if (i<0 | i>n) // NO

• if (...) {
...
if (...)

break; // No,
// loops only

}

• for (i ...)
for (j ...) {
...
if (...)
break;//NO, exit
// loop j only

• int i;
double x;
j=max(i,0);//KO
y=max(x,0);//NO
// 0.0 and not 0: max
// is an STL template

Imagine++

• See documentation. . .

246

	Preamble
	Why learn programming?
	How to learn?
	Language choice
	Choice of environment
	Principles and advice

	Hello, World!
	The Computer
	The microprocessor
	The memory
	Other Components

	Operating System
	The Compilation
	The Programming Environment
	File Names
	Debugger

	The bare minimum
	To understand the practical session
	A bit more…
	The debugger
	Practical Session

	First programs
	Everything in main()!
	Variables
	Tests
	Loops
	Recreations

	Functions
	Return
	Parameters
	Reference passing
	Scope, Declaration, Definition
	Local and global variables
	Overload

	Practical
	Reference Card

	Arrays
	First arrays
	Initialization
	Specifics of arrays
	Arrays and Functions
	Assignment

	Recreation
	Multi-balls
	With shocks!
	Shuffling letters

	Practical
	Reference card

	Structures
	Reminders
	Classic mistakes
	Original mistakes
	Advice

	Structures
	Definition
	Usage

	Recreation: Practical
	Reference card

	Several Files!
	Separate Files
	Principle
	Advantages
	Usage in another project
	Header files
	Don'ts…
	Implementation
	Mutual inclusions
	Inclusion path

	Operators
	Fun: Practical continued and finished
	Reference card

	The memory
	Call of function
	Example
	Call stack and debugger

	Local variables
	Parameters
	The stack

	Recursive functions
	Why does it work?
	Efficiency

	The heap
	Limits
	Variable size arrays
	Explanation (or trial of)

	The optimizer
	Assertions
	Bidimensional arrays
	Reference card

	Dynamic Allocation
	Bidimensional arrays
	Principle
	Limitations
	Solution

	Dynamic allocation
	Why does it work?
	Classical errors
	Consequences

	Structures and dynamic allocation
	Loops and continue
	Practical
	Reference card

	First objects
	Philosophy
	Simple example
	Visibility
	Example with matrices
	Case of operators
	Interface
	Protection
	Principle
	Structures vs Classes
	Accessors

	Practical
	Reference card

	Constructors
	The problem
	The solution
	General case
	Empty constructor
	Several constructors
	Array of objects
	Field of object type

	Temporary objects
	Practical
	Constant References
	Principle
	Constant methods

	Reference card

	Destructor
	Destructor
	Destructors and arrays
	Copy constructors
	Assignment
	Objects with dynamic allocation
	Construction and destruction
	Problems!
	Solution!

	Reference card

	Strings, files
	Strings
	Files
	Principle
	String and file
	Objects and files

	Default values for parameters
	Principle
	Usefulness
	Frequent errors

	Accessors
	Reference as return type
	Usage
	operator()
	Overload and constant method
	Inline functions

	Assertions
	Enumerated types
	Reference card

	Parameterized functions and classes (templates)
	template
	Principle
	template and files
	Classes
	STL

	Bitwise operators
	Conditional values
	Loops and break
	Static variables
	const and arrays
	Reference card

	Practicals
	Programming environment
	Hello, World!
	First errors
	Debugger
	If there is time left
	Install Imagine++ at home
	Launching the program from the command line

	Variables, loops, conditions, functions
	First program with functions
	First program with Imagine++
	Tennis

	Arrays
	Text Mastermind
	Mastermind in graphics mode

	Structures, Separate Files
	Part 1: Single file
	Reorganization, suns galore
	A third program: Duel
	Help
	Physics

	Images
	Allocation
	Static arrays
	Dynamic arrays
	Load a file
	Functions
	Structure
	Final clean-up

	First objects and fractals
	Sierpinski triangle
	A class rather than a structure
	Change the implementation
	The snowflake

	Tron
	Snake
	Tron
	Graphics
	Make the code great

	Imagine++
	Common
	Graphics
	Images
	LinAlg
	Installation

	Compiler, CMake, Linker, Qt…Help!
	Compilation
	Compiler and linker

	With command line
	Make and CMake
	Usage of an IDE
	Configuration of Qt Creator
	CMake and Qt
	Kit
	Project

	Final reference card

