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The “pinhole” camera model
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PrOjeCtion (Source: Wikipedia)
The"pinhole” camera (French: sténopé):

> |deal model with an aperture reduced to a single point.

» No account for blur of out of focus objects, nor for the lens
geometric distortion.



Central projection in camera coordinate frame
» Rays from C are the same: Cx = A\CX

In the camera coordinate frame CXYZ:
X X
yl =AY
f V4

X\ _ ¢ X/Z
y) \Y/Z
In pixel coordinates:

v\ (ax+c\  [((af)X/Z 4+ c

v) \ay+c¢ ) \(af)Y/Z+¢,
af: focal length in pixels, (c«, c,): position of principal point
P in pixels.
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Thus A =f/Z and
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Projective plane

» We identify two points of R® on the same ray from the origin
through the equivalence relation:

R:xRy< dJAF#0:x= Xy

» Projective plane: P? = (R®\ O)/R

» Point (x y z)=(x/z y/z 1)ifz#0.

> The point (x/e y/e 1)=(x y e€)isa point “far away” in
the direction of the line of slope y/x. The limit value
(x y O) is the infinite point in this direction.

» Given a plane of R? through O, of equation
aX + bY + ¢Z = 0. It corresponds to a line in P? represented
in homogeneous coordinates by (a b c). Its equation is:

ab oKX v 2 =o



Projective plane
» Line through points X1 and xa:
¢ = x1 X xg since (x3 X xz)Txi =|x; x2 X%|=0
> Intersection of two lines ¢; and /5:
x =01 x U since 0] (01 x b)) =|0; €1 €| =0
> Line at infinity:

0 X
loo=10] sincetT [y] =0
1 0

> Intersection of two “parallel” lines:

a a b
blx|b|l=(—a)|-a] €ls
5] o] 0



Calibration matrix

> Let us get back to the projection equation:
u\ _ (X/Z 4\ _ 1 (X +caZ
v) \Y/Z+c¢ ) Z\Y+¢Z
(replacing af by f)

(9

» The 3D point being expressed in another orthonormal
coordinate frame:

X

f Cx v
x( f cy)(R T) 7
1

» We rewrite:

1



Calibration matrix
» The (internal) calibration matrix (3 x 3) is:

f Cx
K = f ¢
1

» The projection matrix (3 x 4) is:
P=K (R T)

» If pixels are trapezoids, we can generalize K:
i

k. s ¢
K= f, ¢ | (with s = —f, cotan )
1

Theorem

Let P be a 3 x 4 matrix whose left 3 x 3 sub-matrix is invertible.
There is a unique decomposition P = K (R T).

Proof: Gram-Schmidt on rows of left sub-matrix of P starting from
last row (RQ decomposition), then T = K-1P,.
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Homographies
Let us see what happens when we take two pictures in the following
particular cases:
1. Rotation around the optical center (and maybe change of
internal parameters).

x' = K'RK1x := Hx
2. The world is flat. We observe the plane Z = 0:
X

X/:K(Rl R2 R3 T) :K(Rl R2 T)X::HX

0
1

In both cases, we deal with a 3 x 3 invertible matrix H, a
homography.

Property: a homography preserves alignment. If xq, X2, X3 are
aligned, then

|Hx1 Hxa Hxsz|=|H|[x1 x2 x3/=0
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Panorama construction

» We stitch together images by correcting homographies. This
assumes that the scene is flat or that we are rotating the
camera.

» Homography estimation:

M = Hx = x' x (Hx) =0,

which amounts to 2 independent linear equations per
correspondence (x,x).

» 4 correspondences are enough to estimate H (but more can be
used to estimate through mean squares minimization).

R T

E')

Panorama from 14 photos



Algebraic error minimization

» xi X (Hx;) = 0 is a system of three linear equations in H.

» We gather the unkwown coefficients of H in a vector of 9 rows
T
h= (H11 Hip ... H33)

» We write the equations as A;h = 0 with

X; Vi 1 0 0 0 —xx —xyi —x
Ai=| o 0 0 x yi 1 —yxi —yiyi —y
/

=Xiyi =yiy; —yi xixi xyi x 0 0 0

1

» We can discard the third line and stack the different A; in A.
> his a vector of the kernel of A (8 x 9 matrix)

» We can also suppose Hz 3 = hg = 1 and solve

A 1ghig =—A



Geometric error

» When we have more than 4 correspondences, we minimize the
algebraic error

e= > Ix x (Hx)[%,

but it has no geometric meaning.
» A more significant error is geometric:

— Hx
Image 1 a e Image 2
X
X’
g
- .‘y/
H x’

> Either d'2 = d(x’, Hx)? (transfer error) or

d? +d'? = d(x, H'x')? + d(x, Hx)?(Symmetric transfer error)



Gold standard error

» Actually, we can consider x and x’ as noisy observations of
ground truth positions & and & = H&.

Image 1
X
X

d.
o
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X

Hx

H — | g d.
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Image 2

e(H,R) = d(x,8)? + d(x, HR)?

» Problem: this has a lot of parameters: H, {%;}i=1..n




Sampson error

» A method that linearizes the dependency on R in the gold
standard error so as to eliminate these unknowns.
0=¢€(H,R) = e(H,x) + J(& — x) with J = gf((H,x)
» Find & minimizing ||x — &||? subject to J(x — &) = ¢
» Solution: x — & = JT(JJT)7 e and thus:

Ix = &% = €T(JUT) e (1)

» Here, ¢; = Ajh = x; x (Hx;) is a 3-vector.
» For each /, there are 4 variables (xi,xf), so Jis 3 x 4.

» This is almost the algebraic error € e but with adapted scalar
product.

» The resolution, through iterative method, must be initialized
with the algebraic minimization.



Applying homography to image

Two methods:

1. push pixels to transformed image and round to the nearest

2. pull pixels from original image by interpolation.

pixel center.

Image 1
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Camera calibration by resection

[R.Y. Tsai,An efficient and accurate camera calibration technique
for 3D machine vision, CVPR'86] We estimate the camera internal
parameters from a known rig, composed of 3D points whose
coordinates are known.

» We have points X; and their projection x; in an image.

» In homogeneous coordinates: x; = PX; or the 3 equations (but

only 2 of them are independent)

X; X (PX;) =0

» Linear system in unknown P. There are 12 parameters in P,
we need 6 points in general (actually only 5.5).

» Decomposition of P allows finding K.

Restriction: The 6 points cannot be on a plane,
otherwise we have a degenerate situation; in that
case, 4 points define the homography and the two
extra points yield no additional constraint.



Calibration with planar rig
[Z. Zhang A flexible new technique for camera calibration 2000]

» Problem: One picture is not enough to find K.

» Solution: Several snapshots are used.

» For each one, we determine the homography H between the
rig and the image.

» The homography being computed with an arbitrary
multiplicative factor, we write

M=K (R1 Ry T)
> We rewrite:
AKIH = MKTH K'Hy, K 'Hs)=(Ri Ry T)
» 2 equations expressing orthonormality of Ry and R»:
HI (K-TK YH, = HI (K- TK Y H,
HI (K"TKH)H, =0

» With 3 views, we have 6 equations for the 5 parameters of
K~TK=1; then Cholesky decomposition.



The problem of geometric distortion

» At small or moderate focal length, we cannot ignore the
geometric distortion due to lens curvature, especially away
from image center.

» This is observable in the non-straightness of certain lines:

Photo: 5600 x 3700 pixels Deviation of 30 pixels
» The classical model of distortion is radial polynomial:

Xd . dx o 2 4 X—dx
(}’d) (dy)_(l—i—alr 4 aor +...)(y_dy)



Estimation of geometric distortion

> If we integrate distortion coefficients as unknowns, there is no
more closed formula estimating K.

» We have a non-linear minimization problem, which can be
solved by an iterative method.

» To initialize the minimization, we assume no distortion
(a1 = a» = 0) and estimate K with the previous linear
procedure.
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Linear least squares problem

» For example, when we have more than 4 point
correspondences in homography estimation:

Anxsh=Bn m>38
> In the case of an overdetermined linear system, we minimize
e(X) = |AX — B = [|f(X)]
» The gradient of € can be easily computed:
Ve(X) =2(ATAX — ATB)
» The solution is obtained by equating the gradient to 0:
X=(ATA)1ATB
» Remark 1: this is correct only if AT A is invertible, that is A
has full rank.
» Remark 2: if A is square, it is the standard solution X = A"1B
» Remark 3: ACD = (AT A)~1AT is called the pseudo-inverse of
A, because ACDA = ly.



Non-linear least squares problem

» We would like to solve as best we can f(X) = 0 with f
non-linear. We thus minimize

e(X) = F(X)[I?
» Let us compute the gradient of e:
Ve(X) = 2JTF(X) with J; = o
Ox;

» Gradient descent: we iterate until convergence
AX = —aJTf(X), a>0

» When we are close to the minimum, a faster convergence is
obtained by Newton's method:

e(Xg) ~ e(X) + Ve(X)T(AX) + (AX)T (V2e)(AX)

and minimum is for AX = —(V2¢)~!Ve



Levenberg-Marquardt algorithm

» This is a mix of gradient descent and quasi-Newton method
(quasi since we do not compute explictly the Hessian matrix,
but approximate it).

» The gradient of € is

Ve(X) = 2JTF(X)

so the Hessian matrix of ¢ is composed of sums of two terms:
1. Product of first derivatives of f.
2. Product of f and second derivatives of f.

» The idea is to ignore the second terms, as they should be small
when we are close to the minimum (f ~ 0). The Hessian is
thus approximated by

H=2J7J
> Levenberg-Marquardt iteration:

AX =—JTJ+XN)TTITF(X),A>0



Levenberg-Marquardt algorithm

» Principle: gradient descent when we are far from the solution
(X large) and Newton's step when we are close (A small).

1. Start from initial X and A = 1073,
2. Compute

AX =TI+ X)HITF(X), A >0

3. Compare €(X + AX) and €(X):
3a If ¢(X + AX) ~ ¢(X), finish,
3b If (X + AX) < ¢(X),

X X+AX A< A/10

3¢ If ¢(X + AX) > ¢(X), A < 10A
4. Go to step 2.



Example of distortion correction

Results of Zhang:

l

Snapshot 2

Snapshot 1



Example of distortion correction

Results of Zhang:

Corrected image 1 Corrected image 2
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Conclusion

» Camera matrix K (3 x 3) depends only on internal parameters
of the camera.

» Projection matrix P (3 x 4) depends on K and
position /orientation.

» Homogeneous coordinates are convenient as they linearize the
equations.

» A homography between two images arises when the observed
scene is flat or the principal point is fixed.

> 4 or more correspondences are enough to estimate a
homography (in general)
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