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The �pinhole� camera model

Projection (Source: Wikipedia)

Model

The�pinhole� camera (French: sténopé):

I Ideal model with an aperture reduced to a single point.

I No account for blur of out of focus objects, nor for the lens
geometric distortion.



Central projection in camera coordinate frame

I Rays from C are the same: ~Cx = λ ~CX

I In the camera coordinate frame CXYZ :x

y

f

 = λ

X

Y

Z


I Thus λ = f /Z and (

x

y

)
= f

(
X/Z
Y /Z

)
I In pixel coordinates:(

u

v

)
=

(
αx + cx
αy + cy

)
=

(
(αf )X/Z + cx
(αf )Y /Z + cy

)
I αf : focal length in pixels, (cx , cy ): position of principal point

P in pixels.
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Projective plane

I We identify two points of R3 on the same ray from the origin
through the equivalence relation:

R : xRy⇔ ∃λ 6= 0 : x = λy

I Projective plane: P2 = (R3 \ O)/R
I Point

(
x y z

)
=
(
x/z y/z 1

)
if z 6= 0.

I The point
(
x/ε y/ε 1

)
=
(
x y ε

)
is a point �far away� in

the direction of the line of slope y/x . The limit value(
x y 0

)
is the in�nite point in this direction.

I Given a plane of R3 through O, of equation
aX + bY + cZ = 0. It corresponds to a line in P2 represented
in homogeneous coordinates by

(
a b c

)
. Its equation is:(

a b c
) (

X Y Z
)T

= 0.



Projective plane

I Line through points x1 and x2:

` = x1 × x2 since (x1 × x2)Txi = |x1 x2 xi| = 0

I Intersection of two lines `1 and `2:

x = `1 × `2 since `Ti (`1 × `2) = |`i `1 `2| = 0

I Line at in�nity:

`∞ =

0
0
1

 since `T∞

x

y

0

 = 0

I Intersection of two �parallel� lines: a

b

c1

×
 a

b

c2

 = (c2 − c1)

 b

−a
0

 ∈ `∞



Calibration matrix

I Let us get back to the projection equation:(
u

v

)
=

(
fX/Z + cx
fY /Z + cy

)
=

1

Z

(
fX + cxZ

fY + cyZ

)
(replacing αf by f )

I We rewrite:

Z

u

v

1

 := x =

f cx
f cy

1

X

Y

Z


I The 3D point being expressed in another orthonormal

coordinate frame:

x =

f cx
f cy

1

(R T
)

X

Y

Z

1





Calibration matrix

I The (internal) calibration matrix (3× 3) is:

K =

f cx
f cy

1


I The projection matrix (3× 4) is:

P = K
(
R T

)
I If pixels are trapezoids, we can generalize K :

K =

fx s cx
fy cy

1

 (with s = −fx cotan θ)

Theorem

Let P be a 3× 4 matrix whose left 3× 3 sub-matrix is invertible.

There is a unique decomposition P = K
(
R T

)
.

Proof: Gram-Schmidt on rows of left sub-matrix of P starting from
last row (RQ decomposition), then T = K−1P4.
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Homographies
Let us see what happens when we take two pictures in the following
particular cases:

1. Rotation around the optical center (and maybe change of
internal parameters).

x′ = K ′RK−1x := Hx

2. The world is �at. We observe the plane Z = 0:

x′ = K
(
R1 R2 R3 T

)
X

Y

0
1

 = K
(
R1 R2 T

)
x := Hx

In both cases, we deal with a 3× 3 invertible matrix H, a
homography.
Property: a homography preserves alignment. If x1, x2, x3 are
aligned, then

|Hx1 Hx2 Hx3| = |H||x1 x2 x3| = 0
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Panorama construction

I We stitch together images by correcting homographies. This
assumes that the scene is �at or that we are rotating the
camera.

I Homography estimation:

λx′ = Hx⇒ x′ × (Hx) = 0,

which amounts to 2 independent linear equations per
correspondence (x, x′).

I 4 correspondences are enough to estimate H (but more can be
used to estimate through mean squares minimization).

Panorama from 14 photos



Algebraic error minimization

I x′
i
× (Hxi) = 0 is a system of three linear equations in H.

I We gather the unkwown coe�cients of H in a vector of 9 rows

h =
(
H11 H12 . . . H33

)T
I We write the equations as Aih = 0 with

Ai =

(
xi yi 1 0 0 0 −x ′

i
xi −x ′

i
yi −x ′

i

0 0 0 xi yi 1 −y ′
i
xi −y ′

i
yi −y ′

i

−xiy
′
i
−yiy

′
i
−y ′

i
x ′

i
xi x ′

i
yi x ′

i
0 0 0

)

I We can discard the third line and stack the di�erent Ai in A.

I h is a vector of the kernel of A (8× 9 matrix)

I We can also suppose H3,3 = h9 = 1 and solve

A:,1:8h1:8 = −A:,9



Geometric error

I When we have more than 4 correspondences, we minimize the
algebraic error

ε =
∑
i

‖x′i × (Hxi)‖2,

but it has no geometric meaning.
I A more signi�cant error is geometric:

Image 1 Image 2d’

d

H

H
−1

x
x’

Hx

−1
H  x’

I Either d
′2 = d(x′,Hx)2 (transfer error) or

d2 + d
′2 = d(x,H−1x′)2 + d(x′,Hx)2(Symmetric transfer error)



Gold standard error

I Actually, we can consider x and x′ as noisy observations of
ground truth positions x̂ and x̂′ = H x̂.

Image 1 Image 2d’

d

x
x’

H
Hx

^x

^

ε(H, x̂) = d(x , x̂)2 + d(x′,H x̂)2

I Problem: this has a lot of parameters: H, {x̂i}i=1...n



Sampson error

I A method that linearizes the dependency on x̂ in the gold
standard error so as to eliminate these unknowns.

0 = ε(H, x̂) = ε(H, x) + J (̂x− x) with J =
∂ε

∂x
(H, x)

I Find x̂ minimizing ‖x− x̂‖2 subject to J(x− x̂) = ε

I Solution: x− x̂ = JT (JJT )−1ε and thus:

‖x− x̂‖2 = εT (JJT )−1ε (1)

I Here, εi = Aih = x′
i
× (Hxi) is a 3-vector.

I For each i , there are 4 variables (xi, x
′
i
), so J is 3× 4.

I This is almost the algebraic error εT ε but with adapted scalar
product.

I The resolution, through iterative method, must be initialized
with the algebraic minimization.



Applying homography to image

Two methods:

1. push pixels to transformed image and round to the nearest
pixel center.

2. pull pixels from original image by interpolation.

H(Image 1)Image 1
H

H
−1

push

pull
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Camera calibration by resection
[R.Y. Tsai,An e�cient and accurate camera calibration technique

for 3D machine vision, CVPR'86] We estimate the camera internal
parameters from a known rig, composed of 3D points whose
coordinates are known.

I We have points Xi and their projection xi in an image.

I In homogeneous coordinates: xi = PXi or the 3 equations (but
only 2 of them are independent)

xi × (PXi) = 0

I Linear system in unknown P . There are 12 parameters in P ,
we need 6 points in general (actually only 5.5).

I Decomposition of P allows �nding K .

Restriction: The 6 points cannot be on a plane,
otherwise we have a degenerate situation; in that
case, 4 points de�ne the homography and the two
extra points yield no additional constraint.



Calibration with planar rig
[Z. Zhang A �exible new technique for camera calibration 2000]

I Problem: One picture is not enough to �nd K .
I Solution: Several snapshots are used.
I For each one, we determine the homography H between the

rig and the image.
I The homography being computed with an arbitrary

multiplicative factor, we write

λH = K
(
R1 R2 T

)
I We rewrite:

λK−1H = λ
(
K−1H1 K−1H2 K−1H3

)
=
(
R1 R2 T

)
I 2 equations expressing orthonormality of R1 and R2:

HT
1 (K−TK−1)H1 = HT

2 (K−TK−1)H2

HT
1 (K−TK−1)H2 = 0

I With 3 views, we have 6 equations for the 5 parameters of
K−TK−1; then Cholesky decomposition.



The problem of geometric distortion

I At small or moderate focal length, we cannot ignore the
geometric distortion due to lens curvature, especially away
from image center.

I This is observable in the non-straightness of certain lines:

Photo: 5600× 3700 pixels Deviation of 30 pixels
I The classical model of distortion is radial polynomial:(

xd
yd

)
−
(
dx
dy

)
= (1+ a1r

2 + a2r
4 + . . . )

(
x − dx
y − dy

)



Estimation of geometric distortion

I If we integrate distortion coe�cients as unknowns, there is no
more closed formula estimating K .

I We have a non-linear minimization problem, which can be
solved by an iterative method.

I To initialize the minimization, we assume no distortion
(a1 = a2 = 0) and estimate K with the previous linear
procedure.
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Linear least squares problem

I For example, when we have more than 4 point
correspondences in homography estimation:

Am×8h = Bm m ≥ 8

I In the case of an overdetermined linear system, we minimize

ε(X) = ‖AX− B‖2 = ‖f (X)‖2

I The gradient of ε can be easily computed:

∇ε(X) = 2(ATAX− ATB)

I The solution is obtained by equating the gradient to 0:

X = (ATA)−1ATB

I Remark 1: this is correct only if ATA is invertible, that is A
has full rank.

I Remark 2: if A is square, it is the standard solution X = A−1B
I Remark 3: A(−1) = (ATA)−1AT is called the pseudo-inverse of

A, because A(−1)A = In.



Non-linear least squares problem

I We would like to solve as best we can f (X) = 0 with f

non-linear. We thus minimize

ε(X) = ‖f (X)‖2

I Let us compute the gradient of ε:

∇ε(X) = 2JT f (X) with Jij =
∂fi
∂xj

I Gradient descent: we iterate until convergence

4X = −αJT f (X), α > 0

I When we are close to the minimum, a faster convergence is
obtained by Newton's method:

ε(X0) ∼ ε(X) +∇ε(X)T (4X) + (4X)T (∇2ε)(4X)

and minimum is for 4X = −(∇2ε)−1∇ε



Levenberg-Marquardt algorithm

I This is a mix of gradient descent and quasi-Newton method
(quasi since we do not compute explictly the Hessian matrix,
but approximate it).

I The gradient of ε is

∇ε(X) = 2JT f (X)

so the Hessian matrix of ε is composed of sums of two terms:
1. Product of �rst derivatives of f .
2. Product of f and second derivatives of f .

I The idea is to ignore the second terms, as they should be small
when we are close to the minimum (f ∼ 0). The Hessian is
thus approximated by

H = 2JT J

I Levenberg-Marquardt iteration:

4X = −(JT J + λI )−1JT f (X), λ > 0



Levenberg-Marquardt algorithm

I Principle: gradient descent when we are far from the solution
(λ large) and Newton's step when we are close (λ small).

1. Start from initial X and λ = 10−3.

2. Compute

4X = −(JT J + λI )−1JT f (X), λ > 0

3. Compare ε(X+4X) and ε(X):
3a If ε(X+4X) ∼ ε(X), �nish.
3b If ε(X+4X) < ε(X),

X← X+4X λ← λ/10

3c If ε(X+4X) > ε(X), λ← 10λ

4. Go to step 2.



Example of distortion correction

Results of Zhang:

Snapshot 1 Snapshot 2



Example of distortion correction

Results of Zhang:

Corrected image 1 Corrected image 2
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Conclusion

I Camera matrix K (3× 3) depends only on internal parameters
of the camera.

I Projection matrix P (3× 4) depends on K and
position/orientation.

I Homogeneous coordinates are convenient as they linearize the
equations.

I A homography between two images arises when the observed
scene is �at or the principal point is �xed.

I 4 or more correspondences are enough to estimate a
homography (in general)
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