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Some useful rules of vector calculus



Compact matrix multiplication formulas

» Block matrix multiplication

A(Bi B))=(ABi AB)) A(Bi --- Bn) = (AB
Al AlB

@e-(8) ()

Ay AB - :

Al AlB

» Both matrices split into blocks

B
(A1 Ar) <B;> =A1B1 + AB

By

AB,)



Vector product

» Definition
X x' yz' — zy'
axb=[lxb=|y| x|y ]|=|2x—x
z z xy' — yx’'
0 —z y
[a]x == V4 0 —X
-y x 0
» Properties: bilinear, antisymmetric.
» Link with determinant
a'(bxc)=la b c
» Composition
(axb)xc=(a'c)b—(b'c)a
» Composition with isomorphism M

(Ma) x (Mb) = |[M|M~T(axb) [Ma], =|M M~ T[a], M~}
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Triangulation

Fundamental principle of stereo vision
C B C’

h=

z Lz _ d”H
B/(H—h)  B/H*~°F
f focal length.

H distance optical center-ground.

B distance between optical centers
(baseline).

Goal

Given two rectified images, point correspondences and computation
of their apparent shift (disparity) gives information about relative
depth of the scene.



Epipolar constraints

Rays from matching points must
intersect in space

/
"~ cpipolar line
7 forx

» The vectors Cx, C'x’ and T are coplanar. We write it in
camera 1 coordinate frame: x, Rx’ and T coplanar,

’x T Rx" =0,
which we can write:
x"(T x RX) =0.
» We note [T]xx = T X x and we get the equation
xTEx' =0 with E = [T]«xR
(Longuet-Higgins 1981)



Epipolar constraints

» E is the essential matrix but deals with points expressed in
camera coordinate frame.

» Converting to pixel coordinates requires multiplying by the
inverse of camera calibration matrix K: Xcam = K_lx,-mage

» We can rewrite the epipolar constraint as:

x"FxX' =0 with F= K" TEK'™ = K= T[T]«RK'™!
(Faugeras 1992)
» F is the fundamental matrix. The progress is important: we
can constrain the match without calibrating the cameras!

» It can be easily derived formally, by expressing everything in
camera 2 coordinate frame:

Mx=K(RX+T) Nx =KX
We remove the 5 unknowns X, X and )\ from the system
MK I = NRK™IX + T = AT x (K 1x) = N[T]« RK'~ X/

followed by scalar product with K~1x



Anatomy of the fundamental matrix
Glossary:
» e = KT satisfies e’ F = 0, that is
the left epipole
» ¢ = K'R™IT satisfies Fe' =0,
that is the right epipole

» Fx' is the epipolar line (in left

e image) associated to x’
‘7/epipolm1ine T - . . . .
for » F ' x is the epipolar line (in right

image) associated to x

» Observe that if T =0 we get F = 0, that is, no constraints:
without displacement of optical center, no 3D information.

» The constraint is important: it is enough to look for the match
of point x along its associated epipolar line (1D search).

Theorem
A 3 x 3 matrix is a fundamental matrix iff it has rank 2



Example
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Singular Value Decomposition
Theorem (SVD)

Let A be an m x n matrix. We can decompose A as:

min(m,n)
A=UsVT = > oV
i=1

with ¥ diagonal m x n matrix and oj = ¥;; >0, U (m x m) and V
(n x n) composed of orthonormal columns.

» The rank of A is the number of non-zero o;
» An orthonormal basis of the kernel of A is composed of V; for
indices i such that o; = 0.

Theorem (Thin SVD)
ifm>n Umxn and Ifm<n V nxmand
o1 o1

A=U L vT A=U L v’



Singular Value Decomposition

» Proof:
1. Orthonormal diagonalization of ATA = VIV’
2. Write U; = AV;/n; (n; for norm 1) if o; # 0. Complement the
U; by orthonormal vectors.
3. Check A= ULV by comparison on the basis formed by V;.
» Implementation: efficient algorithm but:
As much as we dislike the use of black-box routines, we need
to ask you to accept this one, since it would take us too far
afield to cover its necessary background material here.
Numerical Recipes
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Computation of F

» The 8 point method (actually 84) is the simplest as it is linear.
» We write the epipolar constraint for the 8 correspondences

xiT FX{ =0 ATF=0with f = (A1 fio fis f1 ... fi3)

» Each one is a linear equation in the unknown f.
» f has 8 independent parameters, since scale is indifferent.

» We impose the constraint ||f|| = 1:
Al
m/{n |Af||? subject to ||f]|> =1 with A= | :
Ag
» Solution: f is an eigenvector of AT A associated to its smallest

eigenvalue.

» Constraint: to enforce rank 2 of F, we can decompose it as
SVD, put o3 = 0 and recompose.



Computation of F

» Enforcing constraint det F = 0 after minimization is not
optimal.

» The 7 point method imposes that from the start.

» We get linear system Af = 0 with A of size 7 x 9.

> Let f1, f» be 2 free vectors of the kernel of A (from SVD).
» Look for a solution fi + xf, with det F = 0.

» det(F1 + xFp) = P(x) with P polynomial of degree 3, we get 1
or 3 solutions.

» The main interest is not computing F with fewer points (we
have many more in general, which is anyway better for
precision), but we have fewer chances of selecting false
correspondences.

» By the way, how to ensure we did not incorporate bad
correspondences in the equations?



Normalization

» The 8 point algorithm “as is” yields very imprecise results

» Hartley (1997): In Defense of the Eight-Point Algorithm

» Explanation: the scales of coefficients of F are very different.
Fi1, Fi2, F»1 and Fy; are multiplied by x;x!, x;y!, yix/ and
viy!, that can reach 10°. On the contrary, Fi3, F23, F31 and
F3» are multiplied by x;, y;, x/ and y/ that are of order 10°.
F33 is multiplied by 1.

» The scales being so different, A is badly conditioned.

» Solution: normalize points so that coordinates are of order 1.

1073
N = 103 ,Xi = Nxj, x'; = NX,{
1

» We find F for points (X;,x';) then F = NTFN



Computation of E

» E depends on 5 parameters (3 for R+3 for T-1 for scale)

» A 3 x 3 matrix E is essential iff its singular values are 0 and
two equal positive values. It can be written:

2EETE —tr(EET)E=0

» 5 point algorithm (Nister, 2004)
» We have Ae = 0, A of size 5 x 9, we get a solution of the form

E=xX+yY+zZ+ W

with X, Y, Z W a basis of the kernel of A (SVD)

> Write the 9 contraints+det E = 0, we get 10 polynomial
equations of degree 3 in x,y,z

» 1) Gauss pivot to eliminate terms of degree 2+ in x,y, then
B(z) (x y 1)T =0, that is det B(z) = 0, degree 10.
2) Grobner bases. 3) C(z) (1 x y x* xy ... y3)T =0
and det C(z) = 0.
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RANSAC algorithm

» How to solve a problem of parameter estimation in presence of
outliers? This is the framework of robust estimation.

» Example: regression line of plane points (x;, y;) with for
certain / bad data (not simply imprecise).

» Correct data are called inliers and incorrect outliers.
Hypothesis: inliers are coherent while outliers are random.
» RANdom SAmple Consensus (Fishler&Bolles, 1981):

1. Select k samples out of n, k being the minimal number to
estimate uniquely a model.

2. Compute model and count samples among n explained by
model at precision o.

3. If this number is larger than the most coherent one until now,
keep it.

4. Back to 1 if we have iterations left.

» Example: k = 2 for a plane regression line.



RANSAC for fundamental matrix

» Choose k=7 0or k=38
!

» Classify (x;, x!) inlier/outlier as a function of the distance of x’

to epipolar line associated to x; (F ' x;).

» k =7 is better, because we have fewer chances to select an
outlier. In that case, we can have 3 models by sample. We
test the 3 models.
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Recovery of R and T

» Suppose we know K, K’, and F or E. Recover R and T7
» From E = [T]«R,

ETE — _RT(TTT_||T||2/)R — —(RTT)(RTT)T+||RTT||2/
> Ifx=RTT, ETEx=0andify-x =0, ETEy = || T|J%.

» Therefore 01 = 0o = || T|| and 03 = 0.
> Inversely, from E = Udiag(o,0,0)V T, we can write:
0 -1 0 0 1 0
E=cU[1 0 O0|JU'U[-1 0 0|V =0[T]xR
0 0 O 0 01

» Actually, there are up to 4 solutions:

'3

Source: Hartley-Zisserman (2003)



What is possible without calibration?

» We can recover F, but not E.
» Actually, from
x=PX x =PX

we see that we have also:
x = (PH H(HX) x' = (P'HY)(HX)

> Interpretation: applying a space homography and transforming
the projection matrices (this changes K, K’, R and T), we get
exactly the same projections.

» Consequence: in the uncalibrated case, reconstruction can only
be done modulo a 3D space homography.



Epipolar rectification

» It is convenient to get to a situation where epipolar lines are
parallel and at same ordinate in both images.
» As a consequence, epipoles are at horizontal infinity:

1
e=¢e =10
0

> |t is always possible to get to that situation by virtual rotation
of cameras (application of homography)

\j <

¥

C(e) C'(e)

» Image planes coincide and are parallel to baseline.
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Epipolar rectification




Epipolar rectification

Rectified image 1



Epipolar rectification

=

Image 2 Rectified image 2



Epipolar rectification

» Fundamental matrix can be written:

1 0 0 O
F=(0] =[0 0 —1] thusx'FX =0y—y =0
0 01 0

X

> Writing matrices P = K (I 0) and P' = K’ (I Bey):

i s f, s ¢,

K=|(0 1, ¢ K'=10 f ¢

0 0 1 0 0 1

B 0 0 0

F=BK T[e]xK' ! = (0 0 —f,
YVo\O £ o f, —of,

» We must have f, = f;, and ¢, = c)’,, that is identical second

rows of K and K’



Epipolar rectification

» We are looking for homographies H and H’ to apply to images
such that
F=HT[e)]xH
» That is 9 equations and 16 variables, 7 degrees of freedom
remain: the first rows of K and K’ and the rotation angle
around baseline o

» Invariance through rotation around baseline:
T

1 0 0 0 0 O 1 0 0
0 cosa —sina 0 0 —1 0 cosa —sina | = [e]x
0 sina cosa 01 0 0 sina cosa

¥

> Several methods exist,
they try to distort as | T——

little as possible the e T —— =
image

«

Rectif. of Gluckman-Nayar (2001)



Epipolar rectification of Fusiello-Irsara (2008)

» We are looking for H and H’ as rotations, supposing K = K’
known:
H=K,RK ' and H' = K.R'K™!
with K, and K], of identical second row, R and R’ rotation
matrices parameterized by Euler angles and

f 0 w/2
K=[0 f hp2
00 1

» Writing R = R(0x)R,(6,)R2(0;) we must have:
F = (KaRK ) [e1]x (K,R'K™) = KT TR R [er] xR'K ™!

» We minimize the sum of squares of points to their epipolar line
according to the 6 parameters

(6y,6z,05,0,,0;,1)



Ruins

[

|Eoll = 3.21 pixels. |Es|| = 0.12 pixels.



Ruins

|Eo| = 3.21 pixels. || Es| = 0.12 pixels.



Cake
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= 0.65 pixels.



Cake




Cluny

|| Eol| = 4.87 pixels. || E1]] = 0.26 pixels. 7



Cluny

TR (] T o -

|| Eol| = 4.87 pixels. || E14]] = 0.26 pixels.



Carcassonne

|Eo|| = 15.6 pixels. 1|Eal[ = 0.2 pixels.



Carcassonne

= e

|Ea|| = 0.24 pixels.

pixels.

1ol = 15.
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|| E14]| = 0.27 pixels.
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||E0|| = 3 22 p|xe|s



Conclusion

v

Epipolar constraint:

1. Essential matrix E (calibrated case)
2. Fundamental matrix F (non calibrated case)

v

F can be computed with the 7- or 8-point algorithm.

v

Computation of E is much more complicated (5-point
algorithm)
» Removing outliers through RANSAC algorithm.



Practical session: RANSAC algorithm for F computation

Objective: Fundamental matrix computation with RANSAC
algorithm.

» Write a function ComputeF. Use RANSAC algorithm (500
iterations should be enough), based on 8-point algorithm.
Solve the linear system estimating F from 8 matches. Do not
forget normalization! Hint: it is easier to use SVD with a
square matrix. For that, add the 9th equation 07 f = 0.

» After RANSAC, refine resulting F with least square
minimization based on all inliers (use SVD: last column of V).

» Write a function displayEpipolar: when user clicks, find in
which image (left or right). Display this point and show
associated epipolar line in other image.

» Useful Matlab functions: imread, importdata, svd, ginput,
plot.
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