# Vision 3D artificielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm, rectification

Pascal Monasse monasse@imagine.enpc.fr

IMAGINE, École des Ponts ParisTech



#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

#### Contents

#### Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

## Compact matrix multiplication formulas

► Block matrix multiplication

$$A(B_1 \quad B_2) = (AB_1 \quad AB_2) \quad A(B_1 \quad \cdots \quad B_n) = (AB_1 \quad \cdots \quad AB_n)$$

$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} B = \begin{pmatrix} A_1 B \\ A_2 B \end{pmatrix} \qquad \begin{pmatrix} A_1' \\ \vdots \\ A_m^T \end{pmatrix} B = \begin{pmatrix} A_1' B \\ \vdots \\ A_m^T B \end{pmatrix}$$

► Both matrices split into blocks

$$(A_1 \quad A_2) \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = A_1 B_1 + A_2 B_2$$

$$(A_1 \quad \cdots \quad A_k) \begin{pmatrix} B_1 \\ \vdots \\ B_k \end{pmatrix} = A_1 B_1 + \cdots + A_k B_k$$

### Vector product

Definition

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$
$$[\mathbf{a}]_{\times} = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- Properties: bilinear, antisymmetric.
- ► Link with determinant

$$\mathbf{a}^T(\mathbf{b} \times \mathbf{c}) = |\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}|$$

Composition

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a}^T \mathbf{c}) \mathbf{b} - (\mathbf{b}^T \mathbf{c}) \mathbf{a}$$

Composition with isomorphism M

$$(Ma) \times (Mb) = |M| M^{-T} (a \times b) \quad [Ma]_{\times} = |M| M^{-T} [a]_{\times} M^{-1}$$

#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

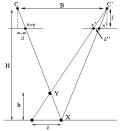
Singular Value Decomposition

Computation of E and F

RANSAC algorithm

## Triangulation

#### Fundamental principle of stereo vision



$$h = \frac{z}{B/(H-h)} \simeq \frac{z}{B/H}, z = d'' \frac{H}{f}.$$
f focal length.
H distance optical center-ground.

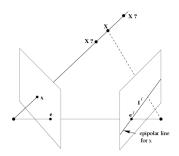
B distance between optical centers (baseline).

#### Goal

Given two rectified images, point correspondences and computation of their apparent shift (disparity) gives information about relative depth of the scene.

# Epipolar constraints

Rays from matching points must intersect in space



The vectors  $\vec{C}\mathbf{x}$ ,  $\vec{C'}\mathbf{x'}$  and T are coplanar. We write it in camera 1 coordinate frame:  $\mathbf{x}$ ,  $R\mathbf{x'}$  and T coplanar,

$$|\mathbf{x} \ T \ R\mathbf{x}'| = 0,$$

which we can write:

$$\mathbf{x}^T(T \times R\mathbf{x}') = 0.$$

We note  $[T]_{\times} \mathbf{x} = T \times \mathbf{x}$  and we get the equation  $\mathbf{x}^T E \mathbf{x}' = 0$  with  $E = [T]_{\times} R$  (Longuet-Higgins 1981)

## Epipolar constraints

- ► E is the essential matrix but deals with points expressed in camera coordinate frame.
- ▶ Converting to pixel coordinates requires multiplying by the inverse of camera calibration matrix  $K: \mathbf{x}_{cam} = K^{-1}\mathbf{x}_{image}$
- ▶ We can rewrite the epipolar constraint as:

$$\mathbf{x}^T F \mathbf{x}' = 0$$
 with  $F = K^{-T} E K'^{-1} = K^{-T} [T]_{\times} R K'^{-1}$  (Faugeras 1992)

- ► F is the fundamental matrix. The progress is important: we can constrain the match without calibrating the cameras!
- ► It can be easily derived formally, by expressing everything in camera 2 coordinate frame:

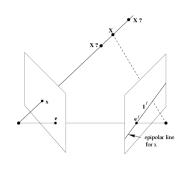
$$\lambda \mathbf{x} = K(R\mathbf{X} + T) \quad \lambda' \mathbf{x}' = K'\mathbf{X}$$

We remove the 5 unknowns  $\mathbf{X}$ ,  $\lambda$  and  $\lambda'$  from the system

$$\lambda K^{-1} \mathbf{x} = \lambda' R K'^{-1} \mathbf{x}' + T \Rightarrow \lambda T \times (K^{-1} \mathbf{x}) = \lambda' [T]_{\times} R K'^{-1} \mathbf{x}'$$

followed by scalar product with  $K^{-1}x$ 

## Anatomy of the fundamental matrix



#### Glossary:

- e = KT satisfies  $e^T F = 0$ , that is the left epipole
- $e' = K'R^{-1}T$  satisfies Fe' = 0, that is the right epipole
- ► Fx' is the epipolar line (in left image) associated to x'
- ► F<sup>T</sup>x is the epipolar line (in right image) associated to x
- ▶ Observe that if T = 0 we get F = 0, that is, no constraints: without displacement of optical center, no 3D information.
- ► The constraint is important: it is enough to look for the match of point x along its associated epipolar line (1D search).

#### **Theorem**

 $A \ 3 \times 3$  matrix is a fundamental matrix iff it has rank 2

# Example



Image 1



Image 2

#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

# Singular Value Decomposition

## Theorem (SVD)

Let A be an  $m \times n$  matrix. We can decompose A as:

$$A = U \Sigma V^{T} = \sum_{i=1}^{\min(m,n)} \sigma_{i} U_{i} V_{i}^{T}$$

with  $\Sigma$  diagonal  $m \times n$  matrix and  $\sigma_i = \Sigma_{ii} \ge 0$ , U  $(m \times m)$  and V  $(n \times n)$  composed of orthonormal columns.

- ▶ The rank of A is the number of non-zero  $\sigma_i$
- An orthonormal basis of the kernel of A is composed of  $V_i$  for indices i such that  $\sigma_i = 0$ .

## Theorem (Thin SVD)

If 
$$m \ge n$$
,  $U$   $m \times n$  and  $M = U \begin{pmatrix} \sigma_1 & \cdots & \sigma_n \end{pmatrix} V^T$ 

$$A = U \begin{pmatrix} \sigma_1 & \cdots & \sigma_n \end{pmatrix} V^T$$

$$A = U \begin{pmatrix} \sigma_1 & \cdots & \sigma_n \end{pmatrix} V^T$$

## Singular Value Decomposition

- Proof:
  - 1. Orthonormal diagonalization of  $A^T A = V \Sigma V^T$
  - 2. Write  $U_i = AV_i/n_i$  ( $n_i$  for norm 1) if  $\sigma_i \neq 0$ . Complement the  $U_i$  by orthonormal vectors.
  - 3. Check  $A = U\Sigma V^T$  by comparison on the basis formed by  $V_i$ .
- ▶ Implementation: efficient algorithm but:

As much as we dislike the use of black-box routines, we need to ask you to accept this one, since it would take us too far afield to cover its necessary background material here.

Numerical Recipes

#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

## Computation of F

- ► The 8 point method (actually 8+) is the simplest as it is linear.
- ▶ We write the epipolar constraint for the 8 correspondences

$$\mathbf{x_i}^T F \mathbf{x_i'} = \mathbf{0} \Leftrightarrow A_i^T f = \mathbf{0} \text{ with } f = \begin{pmatrix} f_{11} & f_{12} & f_{13} & f_{21} & \dots & f_{33} \end{pmatrix}^T$$

- Each one is a linear equation in the unknown f.
- f has 8 independent parameters, since scale is indifferent.
- ▶ We impose the constraint ||f|| = 1:

$$\min_{A} \|Af\|^2 \text{ subject to } \|f\|^2 = 1 \text{ with } A = \begin{pmatrix} A_1^T \\ \vdots \\ A_8^T \end{pmatrix}$$

- ▶ Solution: f is an eigenvector of  $A^TA$  associated to its smallest eigenvalue.
- ▶ Constraint: to enforce rank 2 of F, we can decompose it as SVD, put  $\sigma_3 = 0$  and recompose.

## Computation of F

- ▶ Enforcing constraint  $\det F = 0$  after minimization is not optimal.
- ► The 7 point method imposes that from the start.
- We get linear system Af = 0 with A of size  $7 \times 9$ .
- ▶ Let  $f_1$ ,  $f_2$  be 2 free vectors of the kernel of A (from SVD).
- ▶ Look for a solution  $f_1 + xf_2$  with det F = 0.
- ▶  $det(F_1 + xF_2) = P(x)$  with P polynomial of degree 3, we get 1 or 3 solutions.
- ► The main interest is not computing F with fewer points (we have many more in general, which is anyway better for precision), but we have fewer chances of selecting false correspondences.
- ▶ By the way, how to ensure we did not incorporate bad correspondences in the equations?

#### Normalization

- ► The 8 point algorithm "as is" yields very imprecise results
- ▶ Hartley (1997): In Defense of the Eight-Point Algorithm
- Explanation: the scales of coefficients of F are very different.  $F_{11}$ ,  $F_{12}$ ,  $F_{21}$  and  $F_{22}$  are multiplied by  $x_ix_i'$ ,  $x_iy_i'$ ,  $y_ix_i'$  and  $y_iy_i'$ , that can reach  $10^6$ . On the contrary,  $F_{13}$ ,  $F_{23}$ ,  $F_{31}$  and  $F_{32}$  are multiplied by  $x_i$ ,  $y_i$ ,  $x_i'$  and  $y_i'$  that are of order  $10^3$ .  $F_{33}$  is multiplied by 1.
- ▶ The scales being so different, A is badly conditioned.
- ► Solution: normalize points so that coordinates are of order 1.

$$N = \begin{pmatrix} 10^{-3} & & \\ & 10^{-3} & \\ & & 1 \end{pmatrix}, \tilde{x}_i = Nx_i, \tilde{x'}_i = Nx'_i$$

▶ We find  $\tilde{F}$  for points  $(\tilde{x}_i, \tilde{x'}_i)$  then  $F = N^T \tilde{F} N$ 

## Computation of E

- $\triangleright$  E depends on 5 parameters (3 for R+3 for T-1 for scale)
- ▶ A  $3 \times 3$  matrix E is essential iff its singular values are 0 and two equal positive values. It can be written:

$$2EE^TE - tr(EE^T)E = 0$$

- ▶ 5 point algorithm (Nister, 2004)
- ▶ We have Ae = 0, A of size  $5 \times 9$ , we get a solution of the form

$$E = xX + yY + zZ + W$$

with X, Y, Z, W a basis of the kernel of A (SVD)

- ▶ Write the 9 contraints+det E = 0, we get 10 polynomial equations of degree 3 in x, y, z
- ▶ 1) Gauss pivot to eliminate terms of degree 2 + in x, y, then  $B(z) \begin{pmatrix} x & y & 1 \end{pmatrix}^T = 0$ , that is  $\det B(z) = 0$ , degree 10.
  - 2) Gröbner bases. 3)  $C(z) \begin{pmatrix} 1 & x & y & x^2 & xy & \dots & y^3 \end{pmatrix}^T = 0$  and det C(z) = 0.

#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

## RANSAC algorithm

- ► How to solve a problem of parameter estimation in presence of outliers? This is the framework of robust estimation.
- Example: regression line of plane points  $(x_i, y_i)$  with for certain i bad data (not simply imprecise).
- Correct data are called inliers and incorrect outliers.
   Hypothesis: inliers are coherent while outliers are random.
- RANdom SAmple Consensus (Fishler&Bolles, 1981):
  - 1. Select *k* samples out of *n*, *k* being the minimal number to estimate uniquely a model.
  - 2. Compute model and count samples among n explained by model at precision  $\sigma$ .
  - If this number is larger than the most coherent one until now, keep it.
  - 4. Back to 1 if we have iterations left.
- ightharpoonup Example: k=2 for a plane regression line.

#### RANSAC for fundamental matrix

- ▶ Choose k = 7 or k = 8
- Classify (x<sub>i</sub>, x'<sub>i</sub>) inlier/outlier as a function of the distance of x'<sub>i</sub> to epipolar line associated to x<sub>i</sub> (F<sup>T</sup>x<sub>i</sub>).
- k = 7 is better, because we have fewer chances to select an outlier. In that case, we can have 3 models by sample. We test the 3 models.

#### Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm

## Recovery of R and T

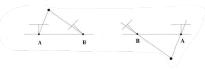
- ▶ Suppose we know K, K', and F or E. Recover R and T?
- From  $E = [T]_{\times}R$ ,

$$E^{T}E = -R^{T}(TT^{T} - ||T||^{2}I)R = -(R^{T}T)(R^{T}T)^{T} + ||R^{T}T||^{2}I$$

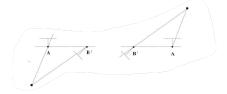
- ▶ If  $\mathbf{x} = R^T T$ ,  $E^T E \mathbf{x} = 0$  and if  $\mathbf{y} \cdot \mathbf{x} = 0$ ,  $E^T E \mathbf{y} = ||T||^2 \mathbf{y}$ .
- ▶ Therefore  $\sigma_1 = \sigma_2 = ||T||$  and  $\sigma_3 = 0$ .
- ▶ Inversely, from  $E = Udiag(\sigma, \sigma, 0)V^T$ , we can write:

$$E = \sigma U \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} U^{T} U \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V = \sigma [T]_{\times} R$$

Actually, there are up to 4 solutions:



Source: Hartley-Zisserman (2003)



# What is possible without calibration?

- We can recover F, but not E.
- Actually, from

$$x = PX$$
  $x' = P'X$ 

we see that we have also:

$$x = (PH^{-1})(HX)$$
  $x' = (P'H^{-1})(HX)$ 

- ▶ Interpretation: applying a space homography and transforming the projection matrices (this changes K, K', R and T), we get exactly the same projections.
- Consequence: in the uncalibrated case, reconstruction can only be done modulo a 3D space homography.

- ▶ It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- As a consequence, epipoles are at horizontal infinity:

$$e=e'=egin{pmatrix}1\\0\\0\end{pmatrix}$$

▶ It is always possible to get to that situation by virtual rotation of cameras (application of homography)

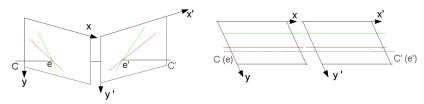


Image planes coincide and are parallel to baseline.



lmage 1



lmage 2



Image 1



Rectified image 1



lmage 2



Rectified image 2

Fundamental matrix can be written:

$$F = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \text{ thus } x^T F x' = 0 \Leftrightarrow y - y' = 0$$

▶ Writing matrices  $P = K(I \ 0)$  and  $P' = K'(I \ Be_1)$ 

$$K = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \quad K' = \begin{pmatrix} f_x' & s' & c_x' \\ 0 & f_y' & c_y' \\ 0 & 0 & 1 \end{pmatrix}$$

$$F = BK^{-T}[e_1]_{\times}K'^{-1} = \frac{B}{f_y f_{y'}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f_y \\ 0 & f'_y & c'_y f_y - c_y f'_y \end{pmatrix}$$

We must have  $f_y = f_y'$  and  $c_y = c_y'$ , that is identical second rows of K and K'

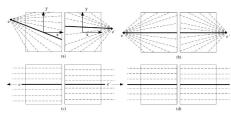
▶ We are looking for homographies H and H' to apply to images such that

$$F = H^T[e_1]_{\times}H'$$

- ▶ That is 9 equations and 16 variables, 7 degrees of freedom remain: the first rows of K and K' and the rotation angle around baseline  $\alpha$
- ► Invariance through rotation around baseline:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}^T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} = [e_1]_{\times}$$

 Several methods exist, they try to distort as little as possible the image



Rectif. of Gluckman-Nayar (2001)

## Epipolar rectification of Fusiello-Irsara (2008)

▶ We are looking for H and H' as rotations, supposing K = K' known:

$$H = K_n R K^{-1}$$
 and  $H' = K'_n R' K^{-1}$ 

with  $K_n$  and  $K'_n$  of identical second row, R and R' rotation matrices parameterized by Euler angles and

$$K = \begin{pmatrix} f & 0 & w/2 \\ 0 & f & h/2 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ Writing  $R = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z)$  we must have:

$$F = (K_n R K^{-1})^T [e_1]_\times (K_n' R' K^{-1}) = K^{-T} R_z^T R_y^T [e_1]_\times R' K^{-1}$$

► We minimize the sum of squares of points to their epipolar line according to the 6 parameters

$$(\theta_y, \theta_z, \theta_x', \theta_y', \theta_z', f)$$

# Ruins



 $||E_0|| = 3.21$  pixels.



 $||E_6|| = 0.12$  pixels.

# Ruins



 $||E_0|| = 3.21$  pixels.



 $||E_6|| = 0.12$  pixels.

## Cake



 $||E_0|| = 17.9$  pixels.



## Cake



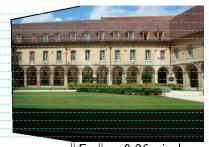
 $\|E_0\| = 17.9$  pixels.



# Cluny



 $||E_0|| = 4.87$  pixels.



 $||E_{14}|| = 0.26$  pixels.

# Cluny



 $||E_0|| = 4.87$  pixels.



 $||E_{14}|| = 0.26$  pixels.

#### Carcassonne



 $||E_0|| = 15.6$  pixels.



 $||E_4|| = 0.24$  pixels.

## Carcassonne



 $||E_0|| = 15.6$  pixels.



 $||E_4|| = 0.24$  pixels.

## Books



 $||E_0|| = 3.22$  pixels.



 $||E_{14}|| = 0.27$  pixels.

## Books



 $||E_0|| = 3.22$  pixels.



 $||E_{14}|| = 0.27$  pixels.

#### Conclusion

- Epipolar constraint:
  - 1. Essential matrix E (calibrated case)
  - 2. Fundamental matrix F (non calibrated case)
- $\triangleright$  F can be computed with the 7- or 8-point algorithm.
- Computation of E is much more complicated (5-point algorithm)
- Removing outliers through RANSAC algorithm.

## Practical session: RANSAC algorithm for F computation

Objective: Fundamental matrix computation with RANSAC algorithm.

- Write a function ComputeF. Use RANSAC algorithm (500 iterations should be enough), based on 8-point algorithm. Solve the linear system estimating F from 8 matches. Do not forget normalization! Hint: it is easier to use SVD with a square matrix. For that, add the 9th equation  $0^T f = 0$ .
- ▶ After RANSAC, refine resulting F with least square minimization based on all inliers (use SVD: last column of V).
- Write a function displayEpipolar: when user clicks, find in which image (left or right). Display this point and show associated epipolar line in other image.
- Useful Matlab functions: imread, importdata, svd, ginput, plot.