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Triangulation
> Let us write again the binocular formulae:

A =K(RX+T) Nx =KX

v

Write YT = (XT X X):

KR —x 03 Y — KT
K' 03 —x' ~\ 03

(6 equations<»5 unknowns+1 epipolar constraint)

» We can then recover X.
» Special case: R=1Id, T = Bey
> We get:
2(x — KK' 1) = (Bf 0 0)
» If also K = K/,
z=1B/[(x —x') - e1] = fB/d
» d is the disparity



Triangulation

Fundamental principle of stereo vision
C B C’

o Z _aH
h = W s zZ = d ?

f focal length.

H distance optical center-ground.

B distance between optical centers
(baseline).

Goal

Given two rectified images, point correspondences and computation
of their apparent shift (disparity) gives information about relative
depth of the scene.



Reminder: Epipolar rectification

» It is convenient to get to a situation where epipolar lines are
parallel and at same ordinate in both images.
» As a consequence, epipoles are at horizontal infinity:

1
e=¢e =10
0

> |t is always possible to get to that situation by virtual rotation
of cameras (application of homography)

\j <

¥

C(e) C'(e)

» Image planes coincide and are parallel to baseline.
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Disparity map

zZ = —

d

Depth z is inversely proportional to disparity d
(apparent motion, in pixels).

» Disparity map: At each pixel, its apparent motion between left
and right images.

» We already know disparity at feature points, this gives an idea
about min and max motion, which makes the search for
matching points less ambiguous and faster.



Local search

» At each pixel, we consider a context window and we look for
the motion of this window.

» Distance between windows:
d(q) = argmin > (g +p) —I'(q + dey + p))?
peF

» Variants to be more robust to illumination changes:
1. Translate intensities by the mean over the window.

I(g+p) = I(a+p)—>_ I(a+r)/#F
refF

2. Normalize by mean and variance over window.



Distance between patches
Several distances or similarity measures are popular:
» SAD: Sum of Absolute Differences

— ; oy
d(q) = argmin D |I(q+p) ~ I'(q + der + p)|
peF
» SSD: Sum of Squared Differences
d(q) = arg mdin Z(I(q +p) — I'(q + de; + p))?
peF
» CSSD: Centered Sum of Squared Differences
d(q) = argmin > (g +p) —Tr = 1'(q + der + p) + )’
peF
» NCC: Normalized Cross-Correlation
ZpeF(/(q +p) — 7F)(I,(q + dey + p) — 71/-')
d(q) = arg max - =
VE(a+p) T2 /S (1 (g + der + p) — Tp)?




Another distance

» The following distance is more and more popular in recent
articles:

e(p,q) = (L —a)min ([1(p) = I"(@)ll1, Teol) +

. ol ol
amin (15:(0) = 51 (@) 7500

with

11(p)—1"(@)llr = |1 (P)—1-(q)| +11g(P) — (@) +/6(P) — I6(q)]

» Usual parameters:
» =09
> Tcol = 30 (not very sensitive if larger)
> Tgrad = 2 (nOt very sensitive if larger)

» Note that o = 0 is similar to SAD.



Problems of local methods

» Implicit hypothesis: all points of window move with same
motion, that is they are in a fronto-parallel plane.

» aperture problem: the context can be too small in certain
regions, lack of information.

» adherence problem: intensity discontinuities influence strongly
the estimated disparity and if it corresponds with a depth
discontinuity, we have a tendency to dilate the front object.

rooftop

» O: aperture problem

» A: adherence problem ]



Example: seeds expansion

» We rely on best found distances and we put them in a priority
queue (seeds)

» We pop the best seed G from the queue, we compute for
neighbors the best disparity between d(G) — 1, d(G), and
d(G) + 1 and we push them in the queue.

Right image
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Adaptive neighborhoods

» To reduce adherence (aka fattening effect), an image patch
should be on the same object, or even better at constant depth

» Heuristic inspired by bilateral filter [Yoon&Kweon 2006]:

!/
—p'll2
wi(p, p') = exp <_pr”> .

Vpos

exp <_H/<p>/(p>lh>

Yeol

> Selected disparity:
d(p) = arg min E(p,q) with
d=q-p
>rerwilp,p+r)wi(g,g+r)e(pt+r.g+r)
2rerwilpp+r)wr(q,q+r)

E(p,q) =

» We can take a large window F (e.g., 35 x 35)



Bilateral weights




Results
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Global

methods

There is another category of methods: global methods

Minimization of an energy:

E(d(.)) = Egata(h(- + d), 2(.)) + Esmootn(d(.))

Eqata related to data attachment: distance between colors or
variant.

Eqata based on some a priori measure of regularity of the
disparity map (e.g., total variation, or Potts measure)
Difficulty: how to minimize such an energy (usually not
convex...)

See also optical flow methods: small displacement, recovery of
dense apparent motion field.



Graph cuts

source

» Graph G ={V, &},
ECVYxV

» Two special nodes s (source)
and t (sink)

» Capacities c : £ — RT

» Cut C = (V5, V") with
V=V"UV'and s € V*,
te V.

» Cost of C:

> cle)

ecEN(Vs x Vt) from [Boykov&Veksler 2006]



Maximum flow

» Flow: f: & — Rt such that

f<candVpeV\ st} Z fe) = Z

e=(q,p)e€ e=(p,q)€€

» Value of flow:

Yo ofle)= > fle)

e=(s,p)€E e=(p,t)e€

o

O
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Min cut=max flow

Theorem

The minimum cut of a graph is equal to the value of its maximal
flow

Proof: they are dual linear problems.
Algorithm (Ford-Fulkerson):

» Find path from s to t with positive weights in residual graph

1

3 1 3 - 3
/ \
[ 1
: e - O @
Q/ “ “ 1 ’/
5 % \ 5, O P 3 1
(a) (b) (©)

> If it exists, push the flow that saturates one edge of the path
> lterate until no more path.



Disparity map estimation

» Put labels to pixels: f: P — L={1,---,k}
> Minimize energy
E=Y Du(f(p))+ D Hpglf(p) = f(a)l
pEP (p,a)eN
» k — 1 nodes for pixel p: p1---px—1, po =5, px = t
> c(pi—1,pi) = Dp(i) + L with L large
> C(piv ql) = )\pq if (P, q) € N
» Exact minimization [Boykov&Veksler&Zabih 1998]

---h‘

tr T .
v.—H E)—>@) 1
4




Other smoothness terms

v

Only approximate minimizations for other smoothness terms
For example: V,q = 1(f(p) = f(q))

Algorithm: «a-expansions

v

v

» f’ a-expansion move of f iff

vp, f'(p) € {f(p), a}



Which binary energies can be minimized?

> E(xt,. .., %) = S Ef(x) + ZU Eij(xi,>(j)
» Only some of these energies can be minimized by graph cuts

» Constraints on the binary terms E¥

Unary terms:
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Which binary energies can be minimized?

> E(Xla s 7Xn) = Z Ei(Xi) + EIJ EU(XHX])
» Only some of these energies can be minimized by graph cuts
» Constraints on the binary terms EY

Submodularity:

. b atct C=Ei(L1)
%f/\ b+d+C=Ei0,0)
b atdtet C=Ei(1,0) (1)
‘ d b+c+f+C=E0,1). (2

Adding equalities (1) and (2) yields
EY(0,1) +EY(1,0) =a+b+c+d+e+f+2C
=(a+c+C)+(b+d+C)+e+f
= EY(0,0) +EV(1,1) + e+ f
EY(0,0) + E¥(1,1) < EY(0,1) + E¥(1,0),

since e + f is nonnegative.



Some examples

With a fairly more complex method that ensures left-right
consistency and detects occlusions:

V. Kolmogorov, P. Monasse, P. Tan (2014)
Kolmogorov and Zabih's Graph Cuts Stereo Matching Algorithm
preprint Image Processing On Line (IPOL)
http://demo.ipol.im/demo/97/


http://demo.ipol.im/demo/97/

Contents

Multi-view geometry



Multi-linear constraints

» Bilinear constraints: fundamental matrix x " Fx’ = 0.

> There are trilinear constraints: x;’ = xT T;x', which are not
combinations of bilinear contraints

» All constraints involving more than 3 views are combinations
of 2- and/or 3-view constraints.



Trilinear constraints

» Write \;x; = K; (R,‘ T,') X
» Write as AY =0 with Y = (X PYREREE )\,,)
» Look at the rank of A...

T



Incremental multi-view calibration

1. Compute two-view correspondences

2. Build tracks (multi-view correspondences)

w

Start from initial pair: compute F, deduce R, T and 3D
points (known K)
4. Add image with common points.
5. Estimate pose (R, T)
6. Add new 3D points
7. Bundle adjustment
8. Goto 4
see open source software Bundler: SfM for Unordered Image

Collections
http://www.cs.cornell.edu/"snavely/bundler/


http://www.cs.cornell.edu/~snavely/bundler/

Incremental multi-view calibration

O, P=?=KI[R|t]
Left view Right view



Incremental multi-view calibration

object point
ol

feature point
!

Pik+1

Pk




Conclusion

» We can get back to the canonical situation by epipolar
rectification. Limit: when epipoles are in the image, standard
methods are not adapted.

» For disparity map computation, there are many choices:

1. Size and shape of window?
2. Which distance?
3. Filtering of disparity map to reject uncertain disparities?

» Very active domain of research, >150 methods tested at
http://vision.middlebury.edu/stereo/


http://vision.middlebury.edu/stereo/
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