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Triangulation

I Let us write again the binocular formulae:

λx = K (RX + T ) λ′x ′ = K ′X

I Write Y T =
(
XT λ λ′

)
:(

KR −x 03
K ′ 03 −x ′

)
Y =

(
KT

03

)
(6 equations↔5 unknowns+1 epipolar constraint)

I We can then recover X .

I Special case: R = Id , T = Be1
I We get:

z(x − KK
′−1x ′) =

(
Bf 0 0

)T
I If also K = K ′,

z = fB/[(x − x ′) · e1] = fB/d

I d is the disparity



Triangulation

Fundamental principle of stereo vision

h w
z

B/H
, z = d ′′

H

f
.

f focal length.
H distance optical center-ground.
B distance between optical centers
(baseline).

Goal
Given two recti�ed images, point correspondences and computation
of their apparent shift (disparity) gives information about relative
depth of the scene.



Reminder: Epipolar recti�cation

I It is convenient to get to a situation where epipolar lines are
parallel and at same ordinate in both images.

I As a consequence, epipoles are at horizontal in�nity:

e = e ′ =

1
0
0


I It is always possible to get to that situation by virtual rotation

of cameras (application of homography)

I Image planes coincide and are parallel to baseline.



Reminder: Epipolar recti�cation

Image 1
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Image 2



Reminder: Epipolar recti�cation

Image 1 Recti�ed image 1
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Disparity map

z =
fB

d

Depth z is inversely proportional to disparity d
(apparent motion, in pixels).

I Disparity map: At each pixel, its apparent motion between left
and right images.

I We already know disparity at feature points, this gives an idea
about min and max motion, which makes the search for
matching points less ambiguous and faster.



Local search

I At each pixel, we consider a context window and we look for
the motion of this window.

I Distance between windows:

d(q) = argmin
d

∑
p∈F

(I (q + p)− I ′(q + de1 + p))2

I Variants to be more robust to illumination changes:
1. Translate intensities by the mean over the window.

I (q + p)→ I (q + p)−
∑
r∈F

I (q + r)/#F

2. Normalize by mean and variance over window.



Distance between patches
Several distances or similarity measures are popular:

I SAD: Sum of Absolute Di�erences

d(q) = argmin
d

∑
p∈F
|I (q + p)− I ′(q + de1 + p)|

I SSD: Sum of Squared Di�erences

d(q) = argmin
d

∑
p∈F

(I (q + p)− I ′(q + de1 + p))2

I CSSD: Centered Sum of Squared Di�erences

d(q) = argmin
d

∑
p∈F

(I (q + p)− ĪF − I ′(q + de1 + p) + Ī ′F )2

I NCC: Normalized Cross-Correlation

d(q) = argmax
d

∑
p∈F (I (q + p)− ĪF )(I ′(q + de1 + p)− Ī ′F )√∑
(I (q + p)− ĪF )2

√∑
(I ′(q + de1 + p)− Ī ′F )2



Another distance

I The following distance is more and more popular in recent
articles:

ε(p, q) = (1− α)min
(
‖I (p)− I ′(q)‖1, τcol

)
+

αmin

(
| ∂I
∂x

(p)− ∂I ′

∂x
(q)|, τgrad

)
with

‖I (p)−I ′(q)‖1 = |Ir (p)−Ir (q)|+|Ig (p)−Ig (q)|+|Ib(p)−Ib(q)|

I Usual parameters:
I α = 0.9
I τcol = 30 (not very sensitive if larger)
I τgrad = 2 (not very sensitive if larger)

I Note that α = 0 is similar to SAD.



Problems of local methods

I Implicit hypothesis: all points of window move with same
motion, that is they are in a fronto-parallel plane.

I aperture problem: the context can be too small in certain
regions, lack of information.

I adherence problem: intensity discontinuities in�uence strongly
the estimated disparity and if it corresponds with a depth
discontinuity, we have a tendency to dilate the front object.

I O: aperture problem

I A: adherence problem

patch

C C’

rooftop

ground



Example: seeds expansion

I We rely on best found distances and we put them in a priority
queue (seeds)

I We pop the best seed G from the queue, we compute for
neighbors the best disparity between d(G )− 1, d(G ), and
d(G ) + 1 and we push them in the queue.

Right image
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Adaptive neighborhoods

I To reduce adherence (aka fattening e�ect), an image patch
should be on the same object, or even better at constant depth

I Heuristic inspired by bilateral �lter [Yoon&Kweon 2006]:

ωI (p, p
′) = exp

(
−‖p − p′‖2

γpos

)
·

exp

(
−‖I (p)− I (p′)‖1

γcol

)
I Selected disparity:

d(p) = arg min
d=q−p

E (p, q) with

E (p, q) =

∑
r∈F ωI (p, p + r)ωI ′(q, q + r) ε(p + r , q + r)∑

r∈F ωI (p, p + r)ωI ′(q, q + r)

I We can take a large window F (e.g., 35× 35)



Bilateral weights

(a)

(c)

(b)

(d)



Results

Tsukuba

Venus

Teddy

Cones

Left image Ground truth Results



Global methods

I There is another category of methods: global methods

I Minimization of an energy:

E (d(.)) = Edata(I1(.+ d), I2(.)) + Esmooth(d(.))

I Edata related to data attachment: distance between colors or
variant.

I Edata based on some a priori measure of regularity of the
disparity map (e.g., total variation, or Potts measure)

I Di�culty: how to minimize such an energy (usually not
convex...)

I See also optical �ow methods: small displacement, recovery of
dense apparent motion �eld.



Graph cuts

I Graph G = {V, E},
E ⊂ V × V

I Two special nodes s (source)
and t (sink)

I Capacities c : E → R+

I Cut C = (Vs ,Vt) with
V = Vs ∪ Vt and s ∈ Vs ,
t ∈ Vt .

I Cost of C :∑
e∈E∩(Vs×Vt)

c(e)

from [Boykov&Veksler 2006]



Maximum �ow

I Flow: f : E → R+ such that

f ≤ c and ∀p ∈ V \ {s, t},
∑

e=(q,p)∈E
f (e) =

∑
e=(p,q)∈E

f (e)

I Value of �ow: ∑
e=(s,p)∈E

f (e) =
∑

e=(p,t)∈E
f (e)
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Min cut=max �ow

Theorem
The minimum cut of a graph is equal to the value of its maximal

�ow

Proof: they are dual linear problems.
Algorithm (Ford-Fulkerson):

I Find path from s to t with positive weights in residual graph
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I If it exists, push the �ow that saturates one edge of the path

I Iterate until no more path.



Disparity map estimation

I Put labels to pixels: f : P → L = {1, · · · , k}
I Minimize energy

E =
∑
p∈P

Dp(f (p)) +
∑

(p,q)∈N
λpq|f (p)− f (q)|

I k − 1 nodes for pixel p: p1 · · · pk−1, p0 = s, pk = t
I c(pi−1, pi ) = Dp(i) + L with L large
I c(pi , qi ) = λpq if (p, q) ∈ N
I Exact minimization [Boykov&Veksler&Zabih 1998]



Other smoothness terms

I Only approximate minimizations for other smoothness terms

I For example: Vpq = 1(f (p) = f (q))

I Algorithm: α-expansions

I f ′ α-expansion move of f i�

∀p, f ′(p) ∈ {f (p), α}



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Unary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s txi

E1 E0



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Unary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s txi

E1 E0



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Unary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s txi

E1 E0



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Binary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Binary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Binary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Binary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts

I Constraints on the binary terms E ij

Binary terms:

Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

title

authors

PREPRINT October 7, 2014

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01



Which binary energies can be minimized?

I E (x1, . . . , xn) =
∑

E i (xi ) +
∑

ij E
ij(xi , xj)

I Only some of these energies can be minimized by graph cuts
I Constraints on the binary terms E ij
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s t

xi

xj

a b

e f

c d

a + c + C = Eij(1, 1)

b + d + C = Eij(0, 0)

a + d + e + C = Eij(1, 0) (1)

b + c + f + C = Eij(0, 1). (2)
Adding equalities (1) and (2) yields

Eij(0, 1) + Eij(1, 0) = a + b + c + d + e + f + 2C

= (a + c + C ) + (b + d + C ) + e + f

= Eij(0, 0) + Eij(1, 1) + e + f

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0),

since e + f is nonnegative.



Some examples

With a fairly more complex method that ensures left-right
consistency and detects occlusions:

V. Kolmogorov, P. Monasse, P. Tan (2014)
Kolmogorov and Zabih's Graph Cuts Stereo Matching Algorithm

preprint Image Processing On Line (IPOL)
http://demo.ipol.im/demo/97/

http://demo.ipol.im/demo/97/


Contents

Triangulation

Disparity map
Local methods
Global methods

Multi-view geometry



Multi-linear constraints

I Bilinear constraints: fundamental matrix xTFx ′ = 0.

I There are trilinear constraints: x ′′i = xTTix
′, which are not

combinations of bilinear contraints

I All constraints involving more than 3 views are combinations
of 2- and/or 3-view constraints.



Trilinear constraints

I Write λixi = Ki

(
Ri Ti

)
X

I Write as AY = 0 with Y =
(
X λ1 · · · λn

)T
I Look at the rank of A...



Incremental multi-view calibration

1. Compute two-view correspondences

2. Build tracks (multi-view correspondences)

3. Start from initial pair: compute F , deduce R , T and 3D
points (known K )

4. Add image with common points.

5. Estimate pose (R , T )

6. Add new 3D points

7. Bundle adjustment

8. Go to 4

see open source software Bundler: SfM for Unordered Image
Collections
http://www.cs.cornell.edu/~snavely/bundler/

http://www.cs.cornell.edu/~snavely/bundler/


Incremental multi-view calibration



Incremental multi-view calibration



Conclusion

I We can get back to the canonical situation by epipolar
recti�cation. Limit: when epipoles are in the image, standard
methods are not adapted.

I For disparity map computation, there are many choices:

1. Size and shape of window?
2. Which distance?
3. Filtering of disparity map to reject uncertain disparities?

I Very active domain of research, >150 methods tested at
http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/
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