Vision 3D artificielle Session 3: Disparity maps, multi-view geometry

Pascal Monasse monasse@imagine.enpc.fr

IMAGINE, École des Ponts ParisTech

Contents

Triangulation

Disparity map Local methods Global methods

Multi-view geometry

Contents

Triangulation

Disparity map Local methods Global methods

Multi-view geometry

Triangulation

Let us write again the binocular formulae:

$$\lambda x = K(RX + T) \quad \lambda' x' = K'X$$
• Write $Y^T = (X^T \quad \lambda \quad \lambda'):$

$$\begin{pmatrix} KR & -x \quad 0_3 \\ K' & 0_3 & -x' \end{pmatrix} Y = \begin{pmatrix} KT \\ 0_3 \end{pmatrix}$$

(6 equations↔5 unknowns+1 epipolar constraint)

- We can then recover X.
- Special case: R = Id, $T = Be_1$
- ► We get:

$$z(x - KK'^{-1}x') = \begin{pmatrix} Bf & 0 & 0 \end{pmatrix}^T$$

• If also K = K',

$$z = fB/[(x - x') \cdot e_1] = fB/d$$

d is the disparity

Triangulation

 $h \simeq \frac{z}{B/H}, \quad z = d'' \frac{H}{f}.$ f focal length. H distance optical center-ground. B distance between optical centers (baseline).

Goal

Given two rectified images, point correspondences and computation of their apparent shift (disparity) gives information about relative depth of the scene.

- It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- > As a consequence, epipoles are at horizontal infinity:

$$e=e'=egin{pmatrix}1\\0\\0\end{pmatrix}$$

 It is always possible to get to that situation by virtual rotation of cameras (application of homography)

Image planes coincide and are parallel to baseline.

lmage 1

Image 2

lmage 1

Rectified image 1

Image 2

Rectified image 2

Contents

Triangulation

Disparity map Local methods Global methods

Multi-view geometry

Disparity map

$$z = \frac{fB}{d}$$

Depth z is inversely proportional to disparity d (apparent motion, in pixels).

- Disparity map: At each pixel, its apparent motion between left and right images.
- We already know disparity at feature points, this gives an idea about min and max motion, which makes the search for matching points less ambiguous and faster.

Local search

 At each pixel, we consider a context window and we look for the motion of this window.

Distance between windows:

$$d(q) = \arg\min_d \sum_{p \in F} (I(q+p) - I'(q+de_1+p))^2$$

Variants to be more robust to illumination changes:
 1. Translate intensities by the mean over the window.

$$I(q+p) \rightarrow I(q+p) - \sum_{r \in F} I(q+r)/\#F$$

2. Normalize by mean and variance over window.

Distance between patches

Several distances or similarity measures are popular:

SAD: Sum of Absolute Differences

$$d(q) = rgmin_d \sum_{p \in F} |I(q+p) - I'(q+de_1+p)|$$

SSD: Sum of Squared Differences

$$d(q) = rgmin_d \sum_{p \in F} (I(q+p) - I'(q+de_1+p))^2$$

CSSD: Centered Sum of Squared Differences

$$d(q) = \arg\min_{d} \sum_{p \in F} (I(q+p) - \overline{I}_F - I'(q+de_1+p) + \overline{I}_F')^2$$

NCC: Normalized Cross-Correlation

$$d(q) = \arg\max_{d} \frac{\sum_{p \in F} (l(q+p) - \bar{l}_{F})(l'(q+de_{1}+p) - \bar{l}_{F}')}{\sqrt{\sum (l(q+p) - \bar{l}_{F})^{2}} \sqrt{\sum (l'(q+de_{1}+p) - \bar{l}_{F}')^{2}}}$$

Another distance

The following distance is more and more popular in recent articles:

$$\begin{aligned} \epsilon(p,q) &= (1-\alpha) \min\left(\|I(p) - I'(q)\|_1, \tau_{\mathsf{col}} \right) + \\ \alpha \min\left(|\frac{\partial I}{\partial x}(p) - \frac{\partial I'}{\partial x}(q)|, \tau_{\mathsf{grad}} \right) \end{aligned}$$

with

$$||I(p) - I'(q)||_1 = |I_r(p) - I_r(q)| + |I_g(p) - I_g(q)| + |I_b(p) - I_b(q)|$$

- Usual parameters:
 - ▶ α = 0.9
 - $\tau_{col} = 30$ (not very sensitive if larger)
 - $\tau_{\rm grad} = 2$ (not very sensitive if larger)
- Note that $\alpha = 0$ is similar to SAD.

Problems of local methods

- Implicit hypothesis: all points of window move with same motion, that is they are in a fronto-parallel plane.
- aperture problem: the context can be too small in certain regions, lack of information.
- adherence problem: intensity discontinuities influence strongly the estimated disparity and if it corresponds with a depth discontinuity, we have a tendency to dilate the front object.

- O: aperture problem
- A: adherence problem

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Right image

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Left image

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Seeds

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Left image

Adaptive neighborhoods

- To reduce adherence (aka fattening effect), an image patch should be on the same object, or even better at constant depth
- Heuristic inspired by bilateral filter [Yoon&Kweon 2006]:

$$\omega_{I}(p, p') = \exp\left(-\frac{\|p - p'\|_{2}}{\gamma_{pos}}\right) \cdot \exp\left(-\frac{\|I(p) - I(p')\|_{1}}{\gamma_{col}}\right)$$

Selected disparity:

$$d(p) = \arg \min_{d=q-p} E(p,q) \text{ with}$$
$$E(p,q) = \frac{\sum_{r \in F} \omega_l(p, p+r) \omega_{l'}(q, q+r) \epsilon(p+r, q+r)}{\sum_{r \in F} \omega_l(p, p+r) \omega_{l'}(q, q+r)}$$

▶ We can take a large window F (e.g., 35 × 35)

Bilateral weights

Results

Left image Ground truth

Results

Global methods

- There is another category of methods: global methods
- Minimization of an energy:

$$E(d(.)) = E_{data}(I_1(.+d), I_2(.)) + E_{smooth}(d(.))$$

- *E*_{data} related to data attachment: distance between colors or variant.
- E_{data} based on some a priori measure of regularity of the disparity map (e.g., total variation, or Potts measure)
- Difficulty: how to minimize such an energy (usually not convex...)
- See also optical flow methods: small displacement, recovery of dense apparent motion field.

Graph cuts

- Graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\},\ \mathcal{E} \subset \mathcal{V} \times \mathcal{V}$
- Two special nodes s (source) and t (sink)
- Capacities $c: \mathcal{E}
 ightarrow \mathbb{R}^+$
- Cut $C = (\mathcal{V}^s, \mathcal{V}^t)$ with $\mathcal{V} = \mathcal{V}^s \cup \mathcal{V}^t$ and $s \in \mathcal{V}^s$, $t \in \mathcal{V}^t$.
- ► Cost of C:

$$\sum_{e\in\mathcal{E}\cap(\mathcal{V}^s\times\mathcal{V}^t)}c(e)$$

Maximum flow

► Flow:
$$f : \mathcal{E} \to \mathbb{R}^+$$
 such that
 $f \leq c \text{ and } \forall p \in \mathcal{V} \setminus \{s, t\}, \sum_{e=(q,p)\in \mathcal{E}} f(e) = \sum_{e=(p,q)\in \mathcal{E}} f(e)$

Value of flow:

Min cut=max flow

Theorem

The minimum cut of a graph is equal to the value of its maximal flow

Proof: they are dual linear problems.

Algorithm (Ford-Fulkerson):

Find path from s to t with positive weights in residual graph

If it exists, push the flow that saturates one edge of the path
Iterate until no more path.

Disparity map estimation

- Put labels to pixels: $f : \mathcal{P} \to \mathcal{L} = \{1, \cdots, k\}$
- Minimize energy

$$E = \sum_{p \in \mathcal{P}} D_p(f(p)) + \sum_{(p,q) \in \mathcal{N}} \lambda_{pq} |f(p) - f(q)|$$

▶
$$k-1$$
 nodes for pixel $p: p_1 \cdots p_{k-1}, p_0 = s, p_k = t$

- $c(p_{i-1}, p_i) = D_p(i) + L$ with L large
- $c(p_i, q_i) = \lambda_{pq}$ if $(p, q) \in \mathcal{N}$
- Exact minimization [Boykov&Veksler&Zabih 1998]

Other smoothness terms

- Only approximate minimizations for other smoothness terms
- For example: $V_{pq} = \mathbf{1}(f(p) = f(q))$
- Algorithm: α-expansions
- $f' \alpha$ -expansion move of f iff

 $\forall p, f'(p) \in \{f(p), \alpha\}$

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

- $\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$
- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

Unary terms:

 $\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$

Only some of these energies can be minimized by graph cuts

Constraints on the binary terms E^{ij}

Unary terms:

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

$$\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$$

- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

- $\blacktriangleright E(x_1,\ldots,x_n) = \sum E^i(x_i) + \sum_{ij} E^{ij}(x_i,x_j)$
- Only some of these energies can be minimized by graph cuts
- Constraints on the binary terms E^{ij}

Submodularity:

sinc

 $a + c + C = \mathsf{E}^{ij}(1, 1)$ $b + d + C = \mathsf{E}^{ij}(0, 0)$ $a + d + e + C = \mathsf{E}^{ij}(1, 0) \quad (1)$ $b + c + f + C = \mathsf{E}^{ij}(0, 1). \quad (2)$

Adding equalities (1) and (2) yields

$$E^{ij}(0,1) + E^{ij}(1,0) = a + b + c + d + e + f + 2C$$

= $(a + c + C) + (b + d + C) + e + f$
= $E^{ij}(0,0) + E^{ij}(1,1) + e + f$
 $E^{ij}(0,0) + E^{ij}(1,1) \le E^{ij}(0,1) + E^{ij}(1,0),$

With a fairly more complex method that ensures left-right consistency and detects occlusions:

V. Kolmogorov, P. Monasse, P. Tan (2014) Kolmogorov and Zabih's Graph Cuts Stereo Matching Algorithm preprint Image Processing On Line (IPOL) http://demo.ipol.im/demo/97/

Contents

Triangulation

Disparity map Local methods Global methods

Multi-view geometry

Multi-linear constraints

- Bilinear constraints: fundamental matrix $x^T F x' = 0$.
- There are trilinear constraints: x_i'' = x^TT_ix', which are not combinations of bilinear contraints
- All constraints involving more than 3 views are combinations of 2- and/or 3-view constraints.

Trilinear constraints

- Write $\lambda_i x_i = K_i \begin{pmatrix} R_i & T_i \end{pmatrix} X$
- Write as AY = 0 with $Y = \begin{pmatrix} X & \lambda_1 & \cdots & \lambda_n \end{pmatrix}^T$
- Look at the rank of A...

Incremental multi-view calibration

- 1. Compute two-view correspondences
- 2. Build tracks (multi-view correspondences)
- 3. Start from initial pair: compute F, deduce R, T and 3D points (known K)
- 4. Add image with common points.
- 5. Estimate pose (R, T)
- 6. Add new 3D points
- 7. Bundle adjustment
- 8. Go to 4

see open source software Bundler: SfM for Unordered Image Collections

```
http://www.cs.cornell.edu/~snavely/bundler/
```

Incremental multi-view calibration

Incremental multi-view calibration

Conclusion

- We can get back to the canonical situation by epipolar rectification. Limit: when epipoles are in the image, standard methods are not adapted.
- ► For disparity map computation, there are many choices:
 - 1. Size and shape of window?
 - 2. Which distance?
 - 3. Filtering of disparity map to reject uncertain disparities?
- Very active domain of research, >150 methods tested at http://vision.middlebury.edu/stereo/