3D Computer Vision Syllabus

Pascal Monasse pascal.monasse@enpc.fr

IMAGINE, École des Ponts ParisTech

Structure from Motion

We will cover the first part of this Stereo pipeline, MVG, and first part of MVS but only with two views.

- Output of MVG: point cloud and camera positions and orientations
- Output of MVS: a mesh surface with colors

Bundle Adjustment

- Observed points in images are central projections of unknown 3D points.
- ► Each image provides a bundle of half-lines containing the 3D points.
- ▶ We must orient the bundles so that the lines intersect.

Source: Manolis Lourakis

One equation to rule them all

$$\arg \min_{\{R_i\}, \{T_i\}, \{\mathbf{X}_j\}} \sum_{i,j} \epsilon_{ij} \ d\left(\mathbf{x}_{ij}, \Pi_i (R_i \mathbf{X}_j + T_i)\right)^2.$$

- \mathbf{x}_{ij} : point number j (among n) in view i (among m), pixel coordinates.
- $ightharpoonup \epsilon_{ij} \in \{0,1\}$: visibility of point j in view i.
- ► d: Euclidean distance in image.
- $ightharpoonup \Pi_i$: 2D projection operator in view *i* from 3D.

Unknowns:

- \triangleright X_j : 3D point in a fixed coordinate frame.
- $ightharpoonup R_i$: rotation matrix of coordinate frame wrt view i.
- $ightharpoonup T_i$: position of origin O of coordinate frame wrt view i.

Session 1

$$\arg\min_{\{R_i\},\{T_i\},\{\mathbf{X}_j\}}\sum_{i,j}\epsilon_{ij}\ d\left(\mathbf{x}_{ij},\Pi_i\big(R_i\mathbf{X}_j+T_i\big)\right)^2.$$

- \triangleright Expression of projection model Π_i (i.e., camera model)
- ▶ Case m = 2, $T_L = T_R = 0$ or all X_i on a single plane:

$$\forall i \in \{L, R\}, \forall j, \ d\left(\mathbf{x}_{ij}, \Pi_i(R_i \mathbf{X}_j + 0)\right) = 0.$$

Then $\mathbf{x}_{Rj} = \mathbf{H}_{\Pi_R,R_R}(\mathbf{x}_{Lj})$, and the homography H can be determined from four pairs $\{\mathbf{x}_{Lj},\mathbf{x}_{Rj}\}$. Application: panorama.

► Case m = 1, $n \ge 6$ pairs $(\mathbf{x}_j, \mathbf{X}_j)$, recover all info about the camera (camera calibration from 3D rig):

$$\arg\min_{\Pi,R,T}\sum_{i}d\left(\mathbf{x}_{ij},\Pi(R\mathbf{X}_{j}+T)\right)^{2}.$$

► Case $m \ge 3$, single camera Π , 4 (or more) pairs $(\mathbf{x}_j, \mathbf{X}_j)$, all X_j on a common plane (camera calibration from 2D rig):

$$\arg\min_{\Pi,\{R_i\},\{T_i\}}\sum_{ii}d\left(\mathbf{x}_{ij},\frac{\Pi(R_i\mathbf{X}_j+T_i))^2\right..$$

$$\arg\min_{\{R_i\},\{T_i\},\{\mathbf{X}_j\}}\sum_{i,j}\epsilon_{ij}\;d\left(\mathbf{x}_{ij},\Pi_i(R_i\mathbf{X}_j+T_i)\right)^2.$$

Case m=2 views.

From $n \geq 5$ pairs $\{\mathbf{x}_{Lj}, \mathbf{x}_{Rj}\}$ and known Π_L , Π_R , deduce a bilinear constraint $\forall j, \mathbf{E}_{R_R, T_R}(\mathbf{x}_{Lj}, \mathbf{x}_{Rj}) = 0$ (essential matrix). Recover (R_R, T_R) from E.

$$\arg\min_{\{R_i\},\{T_i\},\{\mathbf{X}_j\}}\sum_{i\in\{L,R\},i}\epsilon_{ij}\;d\left(\mathbf{x}_{ij},\Pi_i(R_i\mathbf{X}_j+T_i)\right)^2.$$

- From $n \ge 7$ pairs $\{\mathbf{x}_{Lj}, \mathbf{x}_{Rj}\}$ and unknown Π_L , Π_R , deduce a bilinear constraint $\forall j, F(\mathbf{x}_{Li}, \mathbf{x}_{Ri}) = 0$ (fundamental matrix).
- From n pairs $\{\mathbf{x}_{Lj}, \mathbf{x}_{Rj}\}$, maximize the number of matching pairs up to tolerance $\tau \geq 0$ (RANSAC algorithm)

$$\max \sum_{i \in \{L,R\},j} \epsilon_{ij}$$
s.t. $\exists \Pi_L, \Pi_R, \{R_i\}, \{T_i\}, \{X_i\}, d(\mathbf{x}_{ii}, \Pi_i(R_i\mathbf{X}_i + T_i)) \le \tau$.

Sessions 3&4

$$\arg\min_{\{R_i\},\{\mathcal{T}_i\},\{\mathbf{X}_j\}}\sum_{i,i}\epsilon_{ij}\;d\left(\mathbf{x}_{ij},\Pi_i(R_i\mathbf{X}_j+\mathcal{T}_i)\right)^2.$$

Case m=2 views, $R_L=R_R=I$, $T_L=0$, $T_R=Be_1$ (rectified pair).

- Go from generic poses to rectified pair with fundamental matrix F.
- ▶ For all \mathbf{x}_{Lj} , $j \in \{\text{pixels of left image}\}$, find corresponding pixel \mathbf{x}_{Rj} , hence \mathbf{X}_j by triangulation.
- Two categories of methods: local/global.

$$\arg\min_{\{R_i\},\{T_i\},\{\mathbf{X}_j\}}\sum_{i,j}\epsilon_{ij}\;d\left(\mathbf{x}_{ij},\Pi_i(R_i\mathbf{X}_j+T_i)\right)^2.$$

Case $m \geq 3$, multi-view stereovision.

- ▶ For m = 3, trilinear constraints $\mathcal{T}(\mathbf{x}_{1j}, \mathbf{x}_{2j}, \mathbf{x}_{3j}) = 0$. Recovery of tensor \mathcal{T} .
- Recover R_{m+1} and T_{m+1} from known pairs $(\mathbf{x}_{m+1j}, \mathbf{X}_j)$ (resection, PnP Perspective from n Points):

$$\arg\min_{R_{m+1},T_{m+1}}\sum_{j}\epsilon_{m+1j}\;d\left(\mathbf{x}_{ij},\Pi_{m+1}(\textcolor{red}{R_{m+1}}\mathbf{X}_{j}+\textcolor{red}{T_{m+1}})\right)^{2}.$$

- ⇒ incremental multi-view pipeline.
- ▶ Special case $T_i = B_i v$ with v a fixed vector and known B_i :

$$\arg\min_{\{R_i\},\{\mathbf{X}_j\}}\sum_{i,j}\epsilon_{ij}\;d\left(\mathbf{x}_{ij},\Pi_i(R_i\mathbf{X}_j+B_iv)\right)^2.$$

⇒ Light field imagery, epipolar plane imagery

Session 6

$$\arg \min_{\{R_i\}, \{T_i\}, \{\mathbf{X}_j\}} \sum_{i,i} \epsilon_{ij} \ d\left(\mathbf{x}_{ij}, \Pi_i(R_i\mathbf{X}_j + T_i)\right)^2.$$

Case m=2 views, find interest points $\{\mathbf{p}_{Lk}\}$ and $\{\mathbf{p}_{Rk'}\}$. Deduce pairs j=(k,k') of matching points $(\mathbf{x}_{Lj},\mathbf{x}_{Rj})$ with $\mathbf{x}_{Lj}=\mathbf{p}_{Lk}$ and $\mathbf{x}_{Rj}=\mathbf{p}_{Rk'}$.