3D Computer Vision
Session 1: Projective geometry, camera matrix, panorama

Pascal Monasse
pascal.monasse@enpc.fr

IMAGINE, École des Ponts ParisTech

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
The "pinhole" camera model

The "pinhole" camera (French: sténopé):

- Ideal model with an aperture reduced to a single point.
- No account for blur of out of focus objects, nor for the lens geometric distortion.
Central projection in camera coordinate frame

- Rays from C are the same: $\vec{C}m = \lambda \vec{CM}$
- In the camera coordinate frame $CXYZ$:

$$\begin{pmatrix} x \\ y \\ f \end{pmatrix} = \lambda \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

- Thus $\lambda = f / Z$ and

$$\begin{pmatrix} x \\ y \end{pmatrix} = f \begin{pmatrix} X/Z \\ Y/Z \end{pmatrix}$$

- In pixel coordinates:

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \alpha x + c_x \\ \alpha y + c_y \end{pmatrix} = \begin{pmatrix} (\alpha f)X/Z + c_x \\ (\alpha f)Y/Z + c_y \end{pmatrix}$$

- αf: focal length in pixels, (c_x, c_y): position of principal point P in pixels.
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Projective plane

- We identify two points of \mathbb{R}^3 on the same ray from the origin through the equivalence relation:

$$\mathcal{R} : x \mathcal{R} y \iff \exists \lambda \neq 0 : x = \lambda y$$

- Projective plane: $\mathbb{P}^2 = (\mathbb{R}^3 \setminus \{O\})/\mathcal{R}$

- Point $(x \ y \ z) = (x/z \ y/z \ 1)$ if $z \neq 0$.

- The point $(x/\epsilon \ y/\epsilon \ 1) = (x \ y \ \epsilon)$ is a point “far away” in the direction of the line of slope y/x. The limit value $(x \ y \ 0)$ is the infinite point in this direction.

- Given a plane of \mathbb{R}^3 through O, its equation is $aX + bY + cZ = 0$. It corresponds to a line in \mathbb{P}^2 represented in homogeneous coordinates by $(a \ b \ c)$. Its equation is:

$$(a \ b \ c) (X \ Y \ Z)^\top = 0.$$
Projective plane

- Line through points x_1 and x_2:
 \[\ell = x_1 \times x_2 \text{ since } (x_1 \times x_2)^\top x_i = \det{x_1 \ x_2 \ x_i} = 0 \]

- Intersection of two lines ℓ_1 and ℓ_2:
 \[x = \ell_1 \times \ell_2 \text{ since } \ell_i^\top (\ell_1 \times \ell_2) = \det{\ell_i \ \ell_1 \ \ell_2} = 0 \]

- Line at infinity:
 \[\ell_\infty = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ since } \ell_\infty^\top \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = 0 \]

- Intersection of two “parallel” lines:
 \[\begin{pmatrix} a \\ b \\ c_1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c_2 \end{pmatrix} = (c_2 - c_1) \begin{pmatrix} b \\ -a \\ 0 \end{pmatrix} \in \ell_\infty \]
Let us get back to the projection equation:

\[
\begin{pmatrix}
u \\
\end{pmatrix} = \begin{pmatrix} fX/Z + c_x \\ fY/Z + c_y \end{pmatrix} = \frac{1}{Z} \begin{pmatrix} fX + c_xZ \\ fY + c_yZ \end{pmatrix}
\]

(replacing \(\alpha f \) by \(f \))

We rewrite:

\[
Z \begin{pmatrix}
u \\
1 \\
\end{pmatrix} := x = \begin{pmatrix} f & c_x \\ f & c_y \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}
\]

The 3D point being expressed in another orthonormal coordinate frame:

\[
x = \begin{pmatrix} f & c_x \\ f & c_y \\ 1 & 1 \end{pmatrix} (R \ T) \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}
\]
Calibration matrix

- The (internal) **calibration matrix** \((3 \times 3)\) is:

\[
K = \begin{pmatrix}
f & c_x \\
f & c_y \\
1
\end{pmatrix}
\]

- The **projection matrix** \((3 \times 4)\) is:

\[
P = K \begin{pmatrix} R & T \end{pmatrix}
\]

- If pixels are trapezoids, we can generalize \(K\):

\[
K = \begin{pmatrix}
f_x & s & c_x \\
f_y & c_y \\
1
\end{pmatrix} \text{ (with } s = -f_x \cot \theta)\]

Theorem

Let \(P\) be a \(3 \times 4\) matrix whose left \(3 \times 3\) sub-matrix is invertible. There is a unique decomposition \(P = K \begin{pmatrix} R & T \end{pmatrix}\).

Proof: Gram-Schmidt on rows of left sub-matrix of \(P\) starting from last row (\(RQ\) decomposition), then \(T = K^{-1}P_4\).
Projective plane (perspective effect)

▶ Lines parallel in space project to a line bundle (set of lines parallel or concurrent). Let \(\mathbf{d} \) be a fixed direction vector:

\[
K(\mathbf{X} + \lambda \mathbf{d}) = K\mathbf{X} + \lambda K\mathbf{d}
\]

\[
\ell_X = (K\mathbf{X}) \times (K\mathbf{d})
\]

\[
\forall \mathbf{X}, \ell_X^\top \mathbf{v} = 0 \quad \text{for} \quad \mathbf{v} := K\mathbf{d}
\]

▶ \(\mathbf{v} \) is the vanishing point of lines of direction \(\mathbf{d} \).

▶ If \(\mathbf{v}_1 = K\mathbf{d}_1 \) and \(\mathbf{v}_2 = K\mathbf{d}_2 \) are vp of “horizontal” lines, another set of horizontal lines has direction \(\alpha \mathbf{d}_1 + \beta \mathbf{d}_2 \), hence its vp \(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \), which belongs to line \(\mathbf{v}_1 \times \mathbf{v}_2 \), the “horizon”.
Projective plane (perspective effect)
Projective plane (perspective effect)
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Homographies

Let us see what happens when we take two pictures in the following particular cases:

1. **Rotation around the optical center** (and maybe change of internal parameters).

 \[x' = K'RK^{-1}x := Hx \]

2. The world is flat. We observe the plane \(Z = 0 \):

 \[
 \begin{pmatrix}
 X \\
 Y \\
 0
 \end{pmatrix}
 =
 K \begin{pmatrix}
 R_1 & R_2 & R_3 & T
 \end{pmatrix}
 \begin{pmatrix}
 X \\
 Y \\
 0
 \end{pmatrix}
 =
 K \begin{pmatrix}
 R_1 & R_2 & T
 \end{pmatrix}x := Hx
 \]

In both cases, we deal with a \(3 \times 3 \) invertible matrix \(H \), a homography.

Property: a homography preserves alignment. If \(x_1, x_2, x_3 \) are aligned, then

\[
| Hx_1 \ Hx_2 \ Hx_3 | = |H||x_1 \ x_2 \ x_3 | = 0
\]
Homographies

<table>
<thead>
<tr>
<th>Type</th>
<th>Matrix</th>
<th>Invariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid (Rot.+Trans.)</td>
<td>$H = \begin{pmatrix} c & -s & t_x \ s & c & t_y \ 0 & 0 & 1 \end{pmatrix}$ $(c^2 + s^2 = 1)$</td>
<td>angles, distances</td>
</tr>
<tr>
<td>Similarity</td>
<td>$H = \begin{pmatrix} c & -s & t_x \ s & c & t_y \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>angles, ratio of distances</td>
</tr>
<tr>
<td>Affine</td>
<td>$H = \begin{pmatrix} a & b & t_x \ c & d & t_y \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>parallelism</td>
</tr>
<tr>
<td>Homography</td>
<td>H invertible</td>
<td>cross-ratio of 4 aligned points</td>
</tr>
</tbody>
</table>

Given 4 aligned points A, B, C, D, their cross-ratio is:

$$(A, B; C, D) = \frac{AC}{BC} : \frac{AD}{BD}$$
Homographies: estimation from point correspondences

Theorem Let $e_1, \ldots, e_{d+1}, f_1, \ldots, f_{d+1} \in \mathbb{R}^d$ such that any d vectors e_i (resp. f_i) are linearly independent. Then there are (up to scale) a unique isomorphism H and a unique set of scalars $\lambda_i \neq 0$ so that $\forall i, He_i = \lambda_i f_i$.

1. **Analysis**: writing $e_{d+1} = \sum_{i=1}^d \mu_i e_i$ and $f_{d+1} = \sum_{i=1}^d \nu_i f_i$,

$$\sum_{i=1}^d \nu_i \lambda_{d+1} f_i = \lambda_{d+1} f_{d+1} = He_{d+1} = \sum_{i=1}^d \mu_i \lambda_i f_i$$

so that $\forall i = 1, \ldots, d : \mu_i \lambda_i = \nu_i \lambda_{d+1}$.

2. $\forall i, \mu_i \neq 0$ and $\nu_i \neq 0$, since $\mu_i = 0 \Rightarrow \{e_j\}_{j \neq i}$ are linearly dependent.

3. Therefore we get $\lambda_i = \frac{\nu_i}{\mu_i} \lambda_{d+1}$.

4. **Synthesis**: fix $\lambda_{d+1} = 1$ and $\forall i : \lambda_i = \frac{\nu_i}{\mu_i} \neq 0$.

5. There is a unique H mapping basis $\{e_i\}_{i=1,\ldots,d}$ to basis $\{\lambda_i f_i\}_{i=1,\ldots,d}$

Application: given $n + 2$ pairs $(x_i, x'_i) \in \mathbb{P}^n$, there is a unique homography mapping x_i to x'_i.
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Panorama construction

- We stitch together images by correcting homographies. This assumes that the scene is flat or that we are rotating the camera.

- Homography estimation:
 \[\lambda x' = Hx \Rightarrow x' \times (Hx) = 0, \]
 which amounts to 2 independent linear equations per correspondence \((x, x')\).

- 4 correspondences are enough to estimate \(H\) (but more can be used to estimate through mean squares minimization).

Panorama from 14 photos
Algebraic error minimization

▶ \(x_i' \times (H x_i) = 0 \) is a system of three linear equations in \(H \).

▶ We gather the unknown coefficients of \(H \) in a vector of 9 rows

\[
h = \begin{pmatrix} H_{11} & H_{12} & \ldots & H_{33} \end{pmatrix}^\top
\]

▶ We write the equations as \(A_i h = 0 \) with

\[
A_i = \begin{pmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i' x_i & -x_i' y_i & -x_i' \\
0 & 0 & 0 & x_i & y_i & 1 & -y_i' x_i & -y_i' y_i & -y_i' \\
-x_i y_i' & -y_i y_i' & -y_i' & x_i' x_i & x_i' y_i & x_i' & 0 & 0 & 0
\end{pmatrix}
\]

▶ We can discard the third line and stack the different \(A_i \) in \(A \).

▶ \(h \) is a vector of the kernel of \(A \) (8 \(\times \) 9 matrix)

▶ We can also suppose \(H_{3,3} = h_9 = 1 \) and solve

\[
A_{:,1:8} h_{1:8} = -A_{:,9}
\]
Geometric error

- When we have more than 4 correspondences, we minimize the algebraic error

\[\epsilon = \sum_{i} \| x_i' \times (Hx_i) \|^2, \]

but it has no geometric meaning.

- A more significant error is geometric:

Either \(d'^2 = d(x', Hx)^2 \) (transfer error) or
\[d^2 + d'^2 = d(x, H^{-1}x')^2 + d(x', Hx)^2 \] (Symmetric transfer error)
Gold standard error/Maximum likelihood estimator

- Actually, we can consider x and x' as noisy observations of ground truth positions \hat{x} and $\hat{x}' = H\hat{x}$.

\[\epsilon(H, \hat{x}) = d(x, \hat{x})^2 + d(x', H\hat{x})^2 \]

- Problem: this has a lot of parameters: $H, \{\hat{x}_i\}_{i=1}^{n}$
Sampson error

- A method that linearizes the dependency on \hat{x} in the gold standard error so as to eliminate these unknowns.

\[0 = \epsilon(H, \hat{x}) = \epsilon(H, x) + J(\hat{x} - x) \quad \text{with} \quad J = \frac{\partial \epsilon}{\partial x}(H, x) \]

- Find \hat{x} minimizing $\|x - \hat{x}\|^2$ subject to $J(x - \hat{x}) = \epsilon$

- **Solution:** $x - \hat{x} = J^T(JJ^T)^{-1}\epsilon$ and thus:

\[\|x - \hat{x}\|^2 = \epsilon^T(JJ^T)^{-1}\epsilon \quad (1) \]

- Here, $\epsilon_i = A_i h = x_i' \times (Hx_i)$ is a 3-vector.

- For each i, there are 4 variables (x_i, x_i'), so J is 3×4.

- This is almost the algebraic error $\epsilon^T\epsilon$ but with adapted scalar product.

- The resolution, through iterative method, must be initialized with the algebraic minimization.
Applying homography to image

Two methods:

1. **push** pixels to transformed image and round to the nearest pixel center.

2. **pull** pixels from original image by interpolation.
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Camera calibration by resection

[R.Y. Tsai, *An efficient and accurate camera calibration technique for 3D machine vision*, CVPR’86] We estimate the camera internal parameters from a known rig, composed of 3D points whose coordinates are known.

- We have points X_i and their projection x_i in an image.
- In homogeneous coordinates: $x_i = PX_i$ or the 3 equations (but only 2 of them are independent)

$$x_i \times (PX_i) = 0$$

- Linear system in unknown P. There are 12 parameters in P, we need 6 points in general (actually only 5.5).
- Decomposition of P allows finding K.

Restriction: The 6 points cannot be on a plane, otherwise we have a degenerate situation; in that case, 4 points define the homography and the two extra points yield no additional constraint.
Calibration with planar rig

[Z. Zhang A flexible new technique for camera calibration 2000]

- **Problem:** One picture is not enough to find K.
- **Solution:** Several snapshots are used.
- For each one, we determine the homography H between the rig and the image.
- The homography being computed with an arbitrary multiplicative factor, we write
 \[
 \lambda H = K \begin{pmatrix} R_1 & R_2 & T \end{pmatrix}
 \]

- We rewrite:
 \[
 \lambda K^{-1} H = \lambda \begin{pmatrix} K^{-1} H_1 & K^{-1} H_2 & K^{-1} H_3 \end{pmatrix} = \begin{pmatrix} R_1 & R_2 & T \end{pmatrix}
 \]

- 2 equations expressing orthonormality of R_1 and R_2:
 \[
 H_1^T (K^{-T} K^{-1}) H_1 = H_2^T (K^{-T} K^{-1}) H_2
 \]
 \[
 H_1^T (K^{-T} K^{-1}) H_2 = 0
 \]

- With 3 views, we have 6 equations for the 5 parameters of $K^{-T} K^{-1}$; then Cholesky decomposition.
The problem of geometric distortion

- At small or moderate focal length, we cannot ignore the geometric distortion due to lens curvature, especially away from image center.
- This is observable in the non-straightness of certain lines:

![Image 1](photo.jpg) ![Image 2](image.jpg)

Photo: 5600 × 3700 pixels
Deviation of 30 pixels

- The classical model of distortion is radial polynomial:

\[
\begin{pmatrix}
 x_d \\
 y_d
\end{pmatrix}
- \begin{pmatrix}
 d_x \\
 d_y
\end{pmatrix}
= (1 + a_1 r^2 + a_2 r^4 + \ldots) \begin{pmatrix}
 x - d_x \\
 y - d_y
\end{pmatrix}
\]
Estimation of geometric distortion

- If we integrate distortion coefficients as unknowns, there is no more closed formula estimating K.
- We have a non-linear minimization problem, which can be solved by an iterative method.
- To initialize the minimization, we assume no distortion ($a_1 = a_2 = 0$) and estimate K with the previous linear procedure.
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Linear least squares problem

- For example, when we have more than 4 point correspondences in homography estimation:

\[A_{m \times 8} h = B_m \quad m \geq 8 \]

- In the case of an overdetermined linear system, we minimize

\[\epsilon(X) = \|AX - B\|^2 = \|f(X)\|^2 \]

- The gradient of \(\epsilon \) can be easily computed:

\[\nabla \epsilon(X) = 2(AX - B) \]

- The solution is obtained by equating the gradient to 0:

\[X = (A^T A)^{-1} A^T B \]

- **Remark 1**: this is correct only if \(A^T A \) is invertible, that is \(A \) has full rank.

- **Remark 2**: if \(A \) is square, it is the standard solution \(X = A^{-1} B \)

- **Remark 3**: \(A^{(-1)} = (A^T A)^{-1} A^T \) is called the pseudo-inverse of \(A \), because \(A^{(-1)} A = I_n \).
Non-linear least squares problem

- We would like to solve as best we can $f(X) = 0$ with f non-linear. We thus minimize

$$
\epsilon(X) = \|f(X)\|^2
$$

- Let us compute the gradient of ϵ:

$$
\nabla \epsilon(X) = 2J^T f(X) \text{ with } J_{ij} = \frac{\partial f_i}{\partial x_j}
$$

- Gradient descent: we iterate until convergence

$$
\Delta X = -\alpha J^T f(X), \quad \alpha > 0
$$

- When we are close to the minimum, a faster convergence is obtained by Newton’s method:

$$
\epsilon(X_0) \sim \epsilon(X) + \nabla \epsilon(X)^T (\Delta X) + (\Delta X)^T (\nabla^2 \epsilon)(\Delta X)/2
$$

and minimum is for $\Delta X = - (\nabla^2 \epsilon)^{-1}\nabla \epsilon$
Levenberg-Marquardt algorithm

- This is a mix of gradient descent and quasi-Newton method (\textit{quasi} since we do not compute explicitly the Hessian matrix, but approximate it).

- The gradient of ϵ is

$$\nabla \epsilon(X) = 2J^\top f(X)$$

so the Hessian matrix of ϵ is composed of sums of two terms:

1. Product of first derivatives of f.
2. Product of f and second derivatives of f.

- The idea is to ignore the second terms, as they should be small when we are close to the minimum ($f \sim 0$). The Hessian is thus approximated by

$$H = 2J^\top J$$

- Levenberg-Marquardt iteration:

$$\Delta X = -(J^\top J + \lambda I)^{-1} J^\top f(X), \lambda > 0$$
Levenberg-Marquardt algorithm

- Principle: gradient descent when we are far from the solution (\(\lambda \) large) and Newton's step when we are close (\(\lambda \) small).

1. Start from initial \(X \) and \(\lambda = 10^{-3} \).
2. Compute

\[
\Delta X = -(J^T J + \lambda I)^{-1} J^T f(X), \lambda > 0
\]

3. Compare \(\epsilon(X + \Delta X) \) and \(\epsilon(X) \):
 - 3a If \(\epsilon(X + \Delta X) \sim \epsilon(X) \), finish.
 - 3b If \(\epsilon(X + \Delta X) < \epsilon(X) \),
 \[
 X \leftarrow X + \Delta X \quad \lambda \leftarrow \lambda/10
 \]
 - 3c If \(\epsilon(X + \Delta X) > \epsilon(X) \), \(\lambda \leftarrow 10\lambda \)
4. Go to step 2.
Example of distortion correction

Results of Zhang:

Snapshot 1

Snapshot 2
Example of distortion correction

Results of Zhang:

Corrected image 1

Corrected image 2
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Conclusion

- Camera matrix K (3×3) depends only on internal parameters of the camera.
- Projection matrix P (3×4) depends on K and position/orientation.
- Homogeneous coordinates are convenient as they linearize the equations.
- A homography between two images arises when the observed scene is flat or the principal point is fixed.
- 4 or more correspondences are enough to estimate a homography (in general)
References

- Chapter 2: Projective Geometry and Transformations of 2D
- Chapter 4: Estimation–2D Projective Transformations
- Chapter 6: Camera Models
- Chapter 7: Computation of the Camera Matrix P

Semple & Kneebone (1962)

- Chapter IV: Projective Geometry of Two Dimensions
- Appendix: Two Basic Algebraic Theorems
Contents

Pinhole camera model

Projective geometry

Homographies

Panorama

Internal calibration

Optimization techniques

Conclusion

Practical session/Home assignment
Objective: the user clicks 4 or more corresponding points in left and right images. After a right button click, the program computes the homography and shows the resulting panorama in a new window.

- Install Imagine++
- Let the user click the matching points.
- Build the linear system to solve $Ax = b$ and find x.
- Compute the bounding box of the panorama.
- Stitch the images: on overlapping area, take the average of colors at corresponding pixels in both images.

Useful Imagine++ types/functions: `Matrix`, `Vector`, `Image`, `anyGetMouse`, `linSolve`