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Pinhole camera model



The “pinhole” camera model

World point

image point

Y

image plane

z
camera center

Projection (Source: Wikipedia)

. Model
The"“pinhole” camera (French: sténopé):

» |deal model with an aperture reduced to a single point.

» No account for blur of out of focus objects, nor for the lens
geometric distortion.



Central projection in camera coordinate frame

» Rays from C are the same: Cm = \CM
» |In the camera coordinate frame CXYZ:

X
)
Z
)= (2)
> In pixel coordinates:

u\  (ax+c\  [((af)X/Z+ c
v) \ay+¢ ) \(af)Y/Z+¢
» af: focal length in pixels, (cx, c,): position of principal point
P in pixels.

- < X

» Thus A= f/Z and
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Projective plane

>

v

We identify two points of R3 on the same ray from the origin
through the equivalence relation:

R:xRy< dJA#0:x= Xy

Projective plane: P2 = (R3\ O)/R

Point (x y z)=(x/z y/z 1)ifz#0.

The point (x/e y/e€ 1) = (x y e) is a point “far away” in
the direction of the line of slope y/x. The limit value

(x y 0) is the infinite point in this direction.

Given a plane of R3 through O, its equation is
aX 4+ bY 4+ ¢Z = 0. It corresponds to a line in P? represented
in homogeneous coordinates by (a b c). Its equation is:

(ab oKX v 2) =0



Projective plane
» Line through points xq and x»:
)T

¢ =x1 X x2 since (xg X X2) Xj=[x1 x2 x| =0

» Intersection of two lines ¢; and /5:
X = 61 X 52 since E,T(fl X 52) = M, 61 €2| =0

» Line at infinity:

0 X
loo=10] sincetl [y] =0
1 0

> Intersection of two “parallel” lines:

a a b
b X b = (C2 — C1) —a| € goo
C1 (@) 0



Calibration matrix

> Let us get back to the projection equation:
u\ _ (X)Z+c\ _ 1 (X +aZ
v) \fY/Z+¢,) Z\fY+c¢Z

(replacing af by f)

» We rewrite:
u f Cx X
Zlv] =x= f o Y
1 1 Z

» The 3D point being expressed in another orthonormal
coordinate frame:

f Cx
X = f ¢ (R T)

X
Y
V4
1 1



Calibration matrix
» The (internal) calibration matrix (3 x 3) is:

f Cx
K= f o
1

» The projection matrix (3 x 4) is:
P=K (R T)

» If pixels are trapezoids, we can generalize K:
i

fe s &
K= f, ¢, | (with s = —f, cotan 6)
1

Theorem

Let P be a 3 x 4 matrix whose left 3 x 3 sub-matrix is invertible.
There is a unique decomposition P = K (R T).

Proof: Gram-Schmidt on rows of left sub-matrix of P starting from
last row (RQ decomposition), then T = K-1P,.



QR decomposition

Let A be an n x n invertible matrix. Then we can decompose
A= QR with Q € O(n) (QTQ = 1) and R upper triangular
with mindiag(R) > 0, Q and R are unique.

Variants:

> A= LQ with L lower triangular: write AT = QR; and
L=R', Q=Q/.

> A= QL: write JAJ = Q1 Ry with J,'J' = 5i+j:n+1: then
Q=JQ, L=FRJ.

> A= RQ: write AT = Q;L;, take R = LI and Q = QlT.



Projective plane (perspective effect)

» Lines parallel in space project to a line bundle (set of lines
parallel or concurrent). Let d be a fixed direction vector:

K(X+Ad) = KX+ AKd
Ix = (KX) x (Kd)
VX, lxv =0 forv:=Kd

» v is the vanishing point of lines of direction d.

» If vi = Kdy and vo = Kdj are vp of “horizontal” lines,
another set of horizontal lines has direction ady + Sd», hence
its vp avy + Bva, which belongs to line vq x vy, the “horizon”.



Projective plane (perspective effect)




Projective plane (perspective effect)

RS
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Homographies
Let us see what happens when we take two pictures in the following
particular cases:
1. Rotation around the optical center (and maybe change of
internal parameters).

X' = K'RK x := Hx
2. The world is flat. We observe the plane Z = 0:
X

X/:K(Rl R2 R3 T) :K(Rl R2 T)X::HX

0
1

In both cases, we deal with a 3 x 3 invertible matrix H, a
homography.

Property: a homography preserves alignment. If xq, X2, X3 are
aligned, then

|Hx1 Hxz Hxz|=|[H|[x1 x2 x3[=0



Homographies

Type Matrix

c —s ty
Rigid (Rot.4+Trans.) H=1[s ¢
0 0 1
c —s tx
Similarity H=1s ¢ t
0 0 1

a b ty

Affine H=|c d ¢t

0 0 1

Homography H invertible

(2 +s%=1)

Given 4 aligned points A, B, C, D, their cross-ratio is:

(A,B; C,D)

AC

BC

AD

" BD

Invariants

angles,
distances

angles,
ratio of
distances

parallelism

Cross-
ratio of
4 aligned
points



Homographies: estimation from point correspondences
Theorem Let e, -+, eq41,fi,- -, fyr1 € RY such that any d
vectors e; (resp. f;) are linearly independent. Then there are (up to
scale) a unique isomorphism H and a unique set of scalars \; # 0
so that Vi, He; = A;f:.

1. Analysis: writing eq41 = 27:1 piei and fyiq = 27:1 vif;,
d d

Y vidapafi = Aarafarr = Hearn = Y pikif;

i=1 ‘

sothatVi=1,...,d: WiNi = Vidgy1-

2. Vi,pi # 0 and v; # 0, since pu; = 0 = {ej} 4 are linearly

dependent.

3. Therefore we get \; = ﬁ)\d+1

4. Synthesis: fix Agy1 = 1 and Vi : £ 0.

5. There is a unique H mapping baS|s {e:}:fl,..,d to basis
{Aifiti=1,..d

Application: given n+ 2 palrs (xi,x;) € P", there is a unique
homography mapping x; to x:.
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Panorama construction

> We stitch together images by correcting homographies. This
assumes that the scene is flat or that we are rotating the
camera.

» Homography estimation:

M = Hx = x' x (Hx) =0,

which amounts to 2 independent linear equations per
correspondence (x,x’).

» 4 correspondences are enough to estimate H (but more can be
used to estimate through mean squares minimization).

Panorama from 14 photos



Algebraic error minimization

> x: x (Hx;) = 0 is a system of three linear equations in H.

» We gather the unkwown coefficients of H in a vector of 9 rows
T
h= (Hll Hir ... H33)
> \We write the equations as A;h = 0 with
Xi yi 1 0 0 0 —xxi —xlyj —x!
Ai= 0 0 0 x yvi 1 —yixi —yyi -y
—xiyl —yiyl =yl xIxi xly; x| 0 0 0

» We can discard the third line and stack the different A; in A.
» his a vector of the kernel of A (8 x 9 matrix)

» We can also suppose H3 3 = hyg = 1 and solve

A 1.8h1.s = —A.g



Geometric error

» When we have more than 4 correspondences, we minimize the
algebraic error
_ / 2
e= Y _IIxi x (Hx)|,
i

but it has no geometric meaning.
» A more significant error is geometric:

L Hx
Image 1 H e Image 2
X
/X’
-1
. H
-1 , \1—/
H x

> Either d'2 = d(x', Hx)? (transfer error) or

d? +d? = d(x, H'x')? + d(x, Hx)?(Symmetric transfer error)



Gold standard error/Maximum likelihood estimator

» Actually, we can consider x and x’ as noisy observations of

ground truth positions & and &' = HR.

AN
u Hx
Image 1 — | ~e
X
X
\
\
\
e
N
X

X

b

Image 2

e(H,R) = d(x,8)? + d(x, HR)?

» Problem: this has a lot of parameters: H, {%;}i=1..n




Sampson error

>

v

A method that linearizes the dependency on R in the gold
standard error so as to eliminate these unknowns.

0=¢(H,R) = €e(H,x) + J(& — x) with J = gi(H,x)
Find & minimizing ||x — &||? subject to J(x —&) = ¢
Solution: x —& = JT(JJT) e and thus:

Ix = &|[ =" (JIT) e (1)

Here, €, = Aih = xi x (Hx;) is a 3-vector.

For each i, there are 4 variables (xi,xf), so Jis 3 x 4.

This is almost the algebraic error €€ but with adapted scalar
product.

The resolution, through iterative method, must be initialized
with the algebraic minimization.



Applying homography to image

Two methods:

1. push pixels to transformed image and round to the nearest

2. pull pixels from original image by interpolation.

pixel center.

Image 1
| | |

_ | | |
- < - -
T T pull
- _l I I I T

1 1 1 1 _1

H

push

: 7/ \\

H(Image 1)
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Camera calibration by resection
[R.Y. Tsai,An efficient and accurate camera calibration technique
for 3D machine vision, CVPR'86] We estimate the camera internal
parameters from a known rig, composed of 3D points whose
coordinates are known.

» We have points X; and their projection x; in an image.

» In homogeneous coordinates: x; = PX; or the 3 equations (but
only 2 of them are independent)

X; X (PX;) =0

» Linear system in unknown P. There are 12 parameters in P,
we need 6 points in general (actually only 5.5).

» Decomposition of P allows finding K.

Restriction: The 6 points cannot be on a plane,
otherwise we have a degenerate situation; in that
case, 4 points define the homography and the two
extra points yield no additional constraint.



Calibration with planar rig
[Z. Zhang A flexible new technique for camera calibration 2000]

| 2
>
| 2

| 2

Problem: One picture is not enough to find K.

Solution: Several snapshots are used.

For each one, we determine the homography H between the
rig and the image.

The homography being computed with an arbitrary
multiplicative factor, we write

A=K (R1 R> T)
We rewrite:
AKTIH = MKIH, K 'H, K'H3)=(Rh R, T)
2 equations expressing orthonormality of Ry and R»:
HY (K- TK ™ YH = Hy (K- TK Y H,
HY (K" TK YH, =0

With 3 views, we have 6 equations for the 5 parameters of
K~ TK~1; then Cholesky decomposition.



The problem of geometric distortion

» At small or moderate focal length, we cannot ignore the
geometric distortion due to lens curvature, especially away
from image center.

» This is observable in the non-straightness of certain lines:

Photo: 5600 x 3700 pixels Deviation of 30 pixels
» The classical model of distortion is radial polynomial:

Xd dX 2 4 X—dx>
— =(1+a +a +...
(Yd) (dy) ( 1 ol )(y_dy



Estimation of geometric distortion

> If we integrate distortion coefficients as unknowns, there is no
more closed formula estimating K.

» We have a non-linear minimization problem, which can be
solved by an iterative method.

» To initialize the minimization, we assume no distortion
(a1 = a» = 0) and estimate K with the previous linear
procedure.
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Linear least squares problem

» For example, when we have more than 4 point
correspondences in homography estimation:

Amxgh=Bn m2>38
» In the case of an overdetermined linear system, we minimize
«(X) = | AX — B2 = | F(X)|]
» The gradient of ¢ can be easily computed:
Ve(X) =2(ATAX — ATB)
» The solution is obtained by equating the gradient to 0:
X=(ATA)1ATB
» Remark 1: this is correct only if AT A is invertible, that is A
has full rank.
» Remark 2: if A is square, it is the standard solution X = A~1B
> Remark 3: A(-1) = (ATA)"1AT is called the pseudo-inverse of
A, because ACDA = 1,.



Non-linear least squares problem

» We would like to solve as best we can f(X) = 0 with £
non-linear. We thus minimize

e(X) = [IF(X)]?
> Let us compute the gradient of e:
Ve(X) = 2J7 £(X) with J; = of;
0

» Gradient descent: we iterate until convergence
AX = —alTf(X), >0

» When we are close to the minimum, a faster convergence is
obtained by Newton's method:

€(Xp) ~ €(X) + Ve(X) T (AX) + (AX) T (V2e)(AX) /2

and minimum is for AX = —(V?¢)~1Ve



Levenberg-Marquardt algorithm

» This is a mix of gradient descent and quasi-Newton method
(quasi since we do not compute explictly the Hessian matrix,
but approximate it).

» The gradient of € is

Ve(X) = 247 F(X)

so the Hessian matrix of ¢ is composed of sums of two terms:
1. Product of first derivatives of f.
2. Product of f and second derivatives of f.

» The idea is to ignore the second terms, as they should be small
when we are close to the minimum (f ~ 0). The Hessian is
thus approximated by

H=2J"J
» Levenberg-Marquardt iteration:

AX=—JTJ+ANTTITF(X),A >0



Levenberg-Marquardt algorithm

» Principle: gradient descent when we are far from the solution
(X large) and Newton's step when we are close (A small).

1. Start from initial X and A = 1073,
2. Compute

AX =TT+ X)TTITF(X),A >0

3. Compare €(X + AX) and €(X):
3a If e(X + AX) ~ ¢(X), finish.
3b If e(X 4+ AX) < ¢(X),

X X+AX A« A/10

3¢ If ¢(X + AX) > ¢(X), A < 10X
4. Go to step 2.



Example of distortion correction

Results of Zhang:

l

Snapshot 2

Snapshot 1



Example of distortion correction

Results of Zhang:

Corrected image 1 Corrected image 2
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Conclusion

» Camera matrix K (3 x 3) depends only on internal parameters
of the camera.

» Projection matrix P (3 x 4) depends on K and
position /orientation.

» Homogeneous coordinates are convenient as they linearize the
equations.

» A homography between two images arises when the observed
scene is flat or the principal point is fixed.

» 4 or more correspondences are enough to estimate a
homography (in general)
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Practical session: panorama construction

Objective: the user clicks 4 or more corresponding points in left and
right images. After a right button click, the program computes the
homography and shows the resulting panorama in a new window.

» Install Imagine++
(http://imagine.enpc.fr/ monasse/Imagine++/) on your
machine.

Let the user click the matching points.
Build the linear system to solve Ax = b and find x.

Compute the bounding box of the panorama.

vvyyypy

Stitch the images: on overlapping area, take the average of
colors at corresponding pixels in both images.

Useful Imagine++ types/functions: Matrix, Vector, Image,
anyGetMouse, 1linSolve


http://imagine.enpc.fr/~monasse/Imagine++/
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