
Vision 3D arti�cielle
Session 2: Essential and fundamental matrices,

their computation, RANSAC algorithm

Pascal Monasse pascal.monasse@enpc.fr

IMAGINE, École des Ponts ParisTech

This work is licensed under the Creative Commons Attribution 4.0

International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

mailto:pascal.monasse@enpc.fr
http://creativecommons.org/licenses/by/4.0/


Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm



Contents

Some useful rules of vector calculus

Essential and fundamental matrices

Singular Value Decomposition

Computation of E and F

RANSAC algorithm



Compact matrix multiplication formulas

I Block matrix multiplication

A
(
B1 B2

)
=
(
AB1 AB2

)
A
(
B1 · · · Bn

)
=
(
AB1 · · · ABn

)
(
A1

A2

)
B =

(
A1B
A2B

) A>1
...

A>m

B =

A>1 B
...

A>mB


I Both matrices split into blocks(

A1 A2

)(B1

B2

)
= A1B1 + A2B2

(
A1 · · · Ak

)B>1
...

B>k

 = A1B
>
1 + · · ·+ AkB

>
k



Vector product
I De�nition

a× b = [a]×b =

x
y
z

×
x ′

y ′

z ′

 =

yz ′ − zy ′

zx ′ − xz ′

xy ′ − yx ′


[a]× =

 0 −z y
z 0 −x
−y x 0


I Properties: bilinear, antisymmetric.
I Link with determinant

a>(b× c) = |a b c|
I Composition

(a× b)× c = (a>c)b− (b>c)a

I Composition with isomorphism M

(Ma)× (Mb) = |M|M−>(a× b) [Ma]× = |M|M−>[a]×M
−1
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Triangulation

Fundamental principle of stereo vision
I �Recti�ed� setup: common image

plane, parallel camera motion

I In the coordinate frame linked to the
camera:

z =
fB

d

I f=focal length, B=baseline (distance
between optical centers), d=disparity

Goal
Given two recti�ed images, point correspondences and computation
of their apparent shift (disparity) yield relative depth of the scene.



Epipolar constraints

Rays from matching points must
intersect in space

I The vectors ~Cx, ~C ′x′ and T are coplanar. We write it in
camera 1 coordinate frame: x, Rx′ and T coplanar,∣∣x T Rx′

∣∣ = 0,

which we can write:

x>(T × Rx′) = 0.

I We note [T ]×x = T × x and we get the equation

x>Ex′ = 0 with E = [T ]×R

(Longuet-Higgins, Nature, 1981)



Epipolar constraints
I E is the essential matrix but deals with points expressed in

camera coordinate frame.
I Converting to pixel coordinates requires multiplying by the

inverse of camera calibration matrix K : xcam = K−1ximage

I We can rewrite the epipolar constraint as:

x>Fx′ = 0 with F = K−>EK ′−1 = K−>[T ]×RK
′−1

(Luong &Faugeras, IJCV, 1996)
I F is the fundamental matrix. The progress is important: we

can constrain the match without calibrating the cameras!
I It can be easily derived formally, by expressing everything in

camera 2 coordinate frame:

λx = K (RX + T ) λ′x′ = K ′X

We remove the 5 unknowns X, λ and λ′ from the system

λK−1x = λ′RK ′−1x′ + T ⇒ λT × (K−1x) = λ′[T ]×RK
′−1x′

followed by scalar product with K−1x



Anatomy of the fundamental matrix
Glossary:

I e = KT satis�es e>F = 0, that is
the left epipole

I e ′ = K ′R−1T satis�es Fe ′ = 0,
that is the right epipole

I Fx′ is the epipolar line (in left
image) associated to x′

I F>x is the epipolar line (in right
image) associated to x

I Observe that if T = 0 we get F = 0, that is, no constraints:
without displacement of optical center, no 3D information.

I The constraint is important: it is enough to look for the match
of point x along its associated epipolar line (1D search).

Theorem
A 3× 3 matrix is a fundamental matrix i� it has rank 2



Example

Image 1 Image 2
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Singular Value Decomposition

Theorem (SVD)

Let A be an m × n matrix. We can decompose A as:

A = UΣV> =

min(m,n)∑
i=1

σiUiV
>
i

with Σ diagonal m × n matrix and σi = Σii ,

σ1 ≥ · · · ≥ σmin(m,n) ≥ 0, U ∈ O(m) and V ∈ O(n).

I The rank of A is the number of non-zero σi
I An orthonormal basis of the kernel of A is composed of

{Vi : σi = 0} ∪ {Vi : i = m + 1 . . . n} (if m < n)

Theorem (Thin/compact SVD)
If m ≥ n, U m × n and

A = U

σ1 . . .

σn

V>

If m ≤ n, V n ×m and

A = U

σ1 . . .

σm

V>



Singular Value Decomposition

I Proof:

1. Orthonormal diagonalization of A>A = VΣ>ΣV> (spectral
theorem)

2. Write Ui = AVi/σi if σi 6= 0.
3. Check that U>

i Uj = δij .
4. Complement the Ui by orthonormal vectors.
5. Check A = UΣV> by comparison on the basis formed by {Vi}.

I Implementation: e�cient and numerically stable algorithm but
As much as we dislike the use of black-box routines, we need

to ask you to accept this one, since it would take us too far

a�eld to cover its necessary background material here.

Numerical Recipes

I Algorithm: (i) Apply Givens rotations to reduce A to
bidiagonal form. (ii) Implicit QR algorithm to A>A (see
Appendix). Complexity: O(mn2) (m ≥ n).
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Computation of F

I The 8 point method (actually 8+) is the simplest as it is linear.

I We write the epipolar constraint for the 8 correspondences

xi
>Fx′i = 0⇔ A>i f = 0 with f =

(
f11 f12 f13 f21 . . . f33

)>
I Each one is a linear equation in the unknown f .
I f has 8 independent parameters, since scale is indi�erent.

I We impose the constraint ‖f ‖ = 1:

min
f
‖Af ‖2 subject to ‖f ‖2 = 1 with A =

A>1
...

A>8


I Solution: f is an eigenvector of A>A associated to its smallest

eigenvalue (= V9 in SVD of A).
I Constraint: to enforce rank 2 of F , we compute its SVD, put
σ3 = 0 and recompose (orthogonal projection on rank-2
matrices wrt scalar product < A,B >= Tr(A>B))



Computation of F

I Enforcing constraint detF = 0 after minimization is not
optimal.

I The 7 point method imposes that from the start.

I We get a linear system Af = 0 with A of size 7× 9.

I Let f1, f2 be 2 free vectors of the kernel of A (from SVD).

I Look for a solution f1 + xf2 with detF = 0.

I det(F1 + xF2) = P(x) with P polynomial of degree 3, we get 1
or 3 solutions.

I The main interest is not computing F with fewer points (we
have many more in general, which is anyway better for
precision), but we have fewer chances of selecting false
correspondences.

I By the way, how to ensure we did not incorporate bad
correspondences in the equations?



Normalization

I The 8 point algorithm �as is� yields very imprecise results

I Hartley (PAMI, 1997): In Defense of the Eight-Point Algorithm

I Explanation: the scales of coe�cients of F are very di�erent.
F11, F12, F21 and F22 are multiplied by xix

′
i , xiy

′
i , yix

′
i and

yiy
′
i , that can reach 106. On the contrary, F13, F23, F31 and

F32 are multiplied by xi , yi , x
′
i and y ′i that are of order 10

3.
F33 is multiplied by 1.

I The scales being so di�erent, A is badly conditioned.

I Solution: normalize points so that coordinates are of order 1.

N =

10−3

10−3

1

 , x̃i = Nxi , x̃ ′i = Nx ′i

I We �nd F̃ for points (x̃i , x̃ ′i ) then F = N>F̃N



Computation of E

I E depends on 5 parameters (3 for R + 3 for T - 1 for scale)

I A 3× 3 matrix E is essential i� its singular values are 0 and
two equal positive values. It can be written:

2EE>E − tr(EE>)E = 0, detE = 0

I 5 point algorithm (Nistér, PAMI, 2004)

I We have Ae = 0, A of size 5× 9, we get a solution of the form

E = xX + yY + zZ + W

with X ,Y ,Z ,W a basis of the kernel of A (SVD)

I The contraints yield 10 polynomial equations of degree 3 in
x , y , z

I 1) Gauss pivot to eliminate terms of degree 2+ in x , y , then

B(z)
(
x y 1

)>
= 0, that is detB(z) = 0, degree 10.

2) Gröbner bases. 3) C (z)
(
1 x y x2 xy . . . y3

)>
= 0

and detC (z) = 0 (Li&Hartley, ICPR, 2006)
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RANSAC algorithm

I How to solve a problem of parameter estimation in presence of
outliers? This is the framework of robust estimation.

I Example: regression line of plane points (xi , yi ) with for
certain i bad data (not simply imprecise).

I Correct data are called inliers and incorrect outliers.
Hypothesis: inliers are coherent while outliers are random.

I RANdom SAmple Consensus (Fishler&Bolles, Com. of the
ACM 1981):

1. Select k samples out of n, k being the minimal number to
estimate uniquely a model.

2. Compute model and count samples among n explained by
model at precision σ.

3. If this number is larger than the most coherent one until now,
keep it.

4. Back to 1 if we have iterations left.

I Example: k = 2 for a plane regression line.



RANSAC for fundamental matrix

I Choose k = 7 or k = 8

I Classify (xi , x
′
i ) inlier/outlier as a function of the distance of x ′i

to epipolar line associated to xi (F
>xi ):

d(x ′i ,F
>xi ) =

|(F>xi )1u′i + (F>xi )2v
′
i + (F>xi )3|√

(F>xi )21 + (F>xi )22

.

I k = 7 is better, because we have fewer chances to select an
outlier. In that case, we can have 3 models by sample. We
test the 3 models.



RANSAC: number of iterations

I Suppose there are m inliers.

I The probability of having an uncontaminated sample of k
inliers is (m/n)k

I We require the probability that Niter samples are bad to be
lower than β = 1%:(

1− (m/n)k
)Niter

≤ β

I Therefore we need

Niter ≥
⌈

log β

log(1− (m/n)k)

⌉
.

I m is unknown, but a lower bound is the best number of inliers
found so far.

I ⇒ recompute Niter each time a better model is found.



Conclusion

I Epipolar constraint:

1. Essential matrix E (calibrated case)
2. Fundamental matrix F (non calibrated case)

I F can be computed with the 7- or 8-point algorithm.

I Computation of E is much more complicated (5-point
algorithm)

I Removing outliers through RANSAC algorithm.

Hartley & Zisserman (2004)

I Chapter 9: Epipolar Geometry and the
Fundamental Matrix

I Chapter 11: Computation of the Fundamental
Matrix F

David Nistér, PAMI 2004
An e�cient solution to the �ve-point relative pose problem
Li & Hartley, ICPR 2006
Five-point motion estimation made easy



Appendix: QR algorithm for eigenvalue decomposition

Not to be confused with QR decomposition, but based on it.
Let A a square matrix. Iterate until convergence:

1. Set A0 = A.

2. Decompose Ak = QkRk .

3. Set Ak+1 = RkQk .

(Ak)k converges to a triangular matrix A∞, eigenvalues of A are
read from the diagonal of A∞.
If A is symmetric, all Ak are also and so is A∞. Hence, it is
diagonal.
Proof that Ak and A are similar:

Ak+1 = Q>k QkRkQk = Q>k AkQk .



Rotation parameterization (Quaternions)

I Span(1, i, j, k) ⊂ C2×2 stable by multiplication as R-vector
space

1 = I2 i =

(
0 −1
1 0

)
j =

(
i 0
0 −i

)
k =

(
0 i
i 0

)
with i2 = j2 = k2 = i j k = −1, i j = k, j k = i, k i = j.

I H = R4 with, noting M(q) = q11 + qi i + qj j + qkk,

q3 = q1q2 ⇔ M(q3) = M(q1)M(q2).

I Noting q̄ = (q1,−qi ,−qj ,−qk),
q q̄ = (‖q‖2, 0, 0, 0)⇒ q−1 = q̄/‖q‖2.

I If ‖q‖ = 1, write c = cos(θ/2) = q1,
s = sin(θ/2) = ‖(qi , qj , qk)‖. The rotation R around unit axis
(x0, y0, z0) of angle θ is represented by q = (c , sx0, sy0, sz0).

I If p = (x , y , z) ∈ R3, (0,Rp) = q (0, x , y , z) q−1.



Practical session: RANSAC algorithm for F computation

Objective: Fundamental matrix computation with RANSAC
algorithm.

I Get initial program from the website.

I Write the core of function ComputeF. Use RANSAC algorithm
(update Niter dynamically, but be careful of numerical
problems with m/n small), based on 8-point algorithm. Solve
the linear system estimating F from 8 matches. Do not forget
normalization! Hint: it is easier to use SVD with a square
matrix. For that, add the 9th equation 0>f = 0.

I After RANSAC, re�ne resulting F with least square
minimization based on all inliers.

I Write the core of displayEpipolar: when user clicks, �nd in
which image (left or right). Display this point and show
associated epipolar line in other image.
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