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Triangulation

I Let us write again the binocular formulae (in P2):

x = PX x′ = P ′X

I We can write in homogoneous coordinates

[x]×PX = 03 [x′]×P
′X = 03

I We can then recover X through SVD:

X ∈ Ker

(
[x]×P
[x′]×P

′

)



Triangulation

I Let us write again the binocular formulae:

λx = K (RX + T ) λ′x′ = K ′X

I Write Y> =
(
X> 1 λ λ′

)
:(

KR KT −x 03
K ′ 03 03 −x′

)
Y = 06

(6 equations ↔ 5 unknowns + 1 epipolar constraint)

I We can then recover X.

I Special case: R = Id , T = Be1
I We get:

z(x− KK
′−1x′) =

(
fB 0 0

)>
I If also K = K ′,

z = fB/[(x− x′) · e1] = fB/d

I d is the disparity



Recovery of R and T
I Suppose we know K , K ′, and F or E . Recover R and T?
I From E = [T ]×R ,

E>E = −R>(TT>−‖T‖2I )R = −(R>T )(R>T )>+‖R>T‖2I
I If x = R>T , E>Ex = 0 and if y · x = 0, E>Ey = ‖T‖2y.
I Therefore σ1 = σ2 = ‖T‖ and σ3 = 0.
I Inversely, from E = U diag(σ, σ, 0)V>, we can write:

E = σU

0 −1 0
1 0 0
0 0 0

U>U

 0 1 0
−1 0 0
0 0 1

V> = σ[T ]×R

I Actually, there are up to 4 solutions:

{
T = ±σUe3
R = URz(±π

2 )V>

AB’A B
A

B’

A B



What is possible without calibration?

I We can recover F , but not E .

I Actually, from
x = PX x′ = P ′X

we see that we have also:

x = (PH−1)(HX) x′ = (P ′H−1)(HX)

I Interpretation: applying a space homography and transforming
the projection matrices (this changes K , K ′, R and T ), we get
exactly the same projections.

I Consequence: in the uncalibrated case, reconstruction can only
be done modulo a 3D space homography.
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Epipolar recti�cation

I It is convenient to get to a situation where epipolar lines are
parallel and at same ordinate in both images.

I As a consequence, epipoles are at horizontal in�nity:

e = e ′ =

1
0
0


I It is always possible to get to that situation by virtual rotation

of cameras (application of homography)

I Image planes coincide and are parallel to baseline.



Epipolar recti�cation

Image 1



Epipolar recti�cation

Image 2



Epipolar recti�cation

Image 1 Recti�ed image 1



Epipolar recti�cation

Image 2 Recti�ed image 2



Epipolar recti�cation

I Fundamental matrix can be written:

F =

1
0
0


×

=

0 0 0
0 0 −1
0 1 0

 thus x>Fx′ = 0⇔ y − y ′ = 0

I Writing matrices P = K
(
I 0

)
and P ′ = K ′

(
I Be1

)
:

K =

fx s cx
0 fy cy
0 0 1

 K ′ =

f ′x s ′ c ′x
0 f ′y c ′y
0 0 1



F = BK−>[e1]×K
′−1 =

B

fy f ′y

0 0 0
0 0 −fy
0 f ′y c ′y fy − cy f

′
y


I We must have fy = f ′y and cy = c ′y , that is identical second

rows of K and K ′



Epipolar recti�cation
I We are looking for homographies H and H ′ to apply to images

such that
F = H>[e1]×H

′

I That is 9 equations and 16 variables, 7 degrees of freedom
remain: the �rst rows of K and K ′ and the rotation angle
around baseline α

I Invariance through rotation around baseline:1 0 0
0 cosα − sinα
0 sinα cosα

>0 0 0
0 0 −1
0 1 0

1 0 0
0 cosα − sinα
0 sinα cosα

 = [e1]×

I Several methods exist,
they try to distort as
little as possible the
image

Rectif. of Gluckman-Nayar (2001)



Epipolar recti�cation of Fusiello-Irsara (2008)

I We are looking for H and H ′ as rotations, supposing K = K ′

known:
H = KnRK

−1 and H ′ = K ′nR
′K−1

with Kn and K ′n of identical second row, R and R ′ rotation
matrices parameterized by Euler angles and

K =

f 0 w/2
0 f h/2
0 0 1


I Writing R = Rx(θx)Ry (θy )Rz(θz) we must have:

F = (KnRK
−1)>[e1]×(K ′nR

′K−1) = K−>R>z R>y [e1]×R
′K−1

I We minimize the sum of squares of points to their epipolar line
according to the 6 parameters

(θy , θz , θ
′
x , θ
′
y , θ
′
z , f )
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‖E0‖ = 3.21 pixels. ‖E6‖ = 0.12 pixels.
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Cake

‖E0‖ = 17.9 pixels. ‖E13‖ = 0.65 pixels.



Cake

‖E0‖ = 17.9 pixels. ‖E13‖ = 0.65 pixels.



Cluny

‖E0‖ = 4.87 pixels. ‖E14‖ = 0.26 pixels.
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‖E0‖ = 15.6 pixels. ‖E4‖ = 0.24 pixels.
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Disparity map

z =
fB

d

Depth z is inversely proportional to disparity d
(apparent motion, in pixels).

I Disparity map: At each pixel, its apparent motion between left
and right images.

I We already know disparity at feature points, this gives an idea
about min and max motion, which makes the search for
matching points less ambiguous and faster.



Stereo Matching

I Principle: invariance of something between corresponding
pixels in left and right images (IL, IR)

I Example: color, x-derivative, census...

I Usage of a distance to capture this invariance, such as
AD(p, q) = ‖IL(p)− IR(q)‖1

Left image Ground truth Min AD
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Stereo Matching

I Post-processing helps a lot!

I Example: left-right consistency check, followed by simple
constant interpolation, and median weighted by original image
bilateral weights

Min CG Left-right test Post-processed

I Still, single pixel estimation not good enough

I Need to promote some regularity of the result



Stereo Matching

I Post-processing helps a lot!

I Example: left-right consistency check, followed by simple
constant interpolation, and median weighted by original image
bilateral weights

Min CG Left-right test Post-processed
I Still, single pixel estimation not good enough

I Need to promote some regularity of the result



Global vs. local methods

I Global method: explicit smoothness term

arg min
d

∑
p

Edata(p, p + d(p); IL, IR)

+
∑
p∼p′

Ereg(d(p), d(p′); p, p′, IL, IR)

I Examples: Ereg = |d(p)− d(p′)|2 (Horn-Schunk),
Ereg = δ(d(p) = d(p′)) (Potts),
Ereg = exp(−(IL(p)− IL(p′))2/σ2)|d(p)− d(p′)|...

I Problem: NP-hard for almost all regularity terms except

Ereg = λpp′ |d(p)− d(p′)| (Ishikawa 2003)

I Aternative: sub-optimal solution for submodular regularity
(graph-cuts: Boykov, Kolmogorov, Zabih), loopy-belief
propagation (no guarantee at all), semi-global matching
(Hirschmüller)
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Global vs. local methods

I Local method: Take a patch around p, aggregate costs Edata
(Lucas-Kanade) ⇒ No explicit regularity term

I Example: SAD(p, q) =
∑

r∈P |IL(p + r)− IR(q + r)|,
SSD(p, q) =

∑
r∈P |IL(p + r)− IR(q + r)|2,

SCG(p, q) =
∑

r∈P CG(p + r , q + r)...

I Can be interpreted as a cost-volume �ltering.
dmax

dmin

* 1
Px{0}

I Increasing patch size P promotes regularity.



Global vs. local methods

I Local method: Take a patch around p, aggregate costs Edata
(Lucas-Kanade) ⇒ No explicit regularity term

I Example: SAD(p, q) =
∑

r∈P |IL(p + r)− IR(q + r)|,
SSD(p, q) =

∑
r∈P |IL(p + r)− IR(q + r)|2,

SCG(p, q) =
∑

r∈P CG(p + r , q + r)...

I Can be interpreted as a cost-volume �ltering.

I Increasing patch size P promotes regularity.

p p’

Proportion of common pixels
between p + P and p′ + P :

1− 1

n

if P is n × n



Local search

I At each pixel, we consider a context window W and we look
for the motion of this window.

IL IR

W

p q

I Distance between windows:

d(p) = arg min
d

∑
r∈W

(IL(p + r)− IR(p + r + de1))2

I Variants to be more robust to illumination changes:
1. Translate intensities by the mean over the window.

I (p + r)→ I (p + r)−
∑
r∈W

I (p + r)/#W

2. Normalize by mean and variance over window.



Distance between patches
Several distances or similarity measures are popular:

I SAD: Sum of Absolute Di�erences

d(p) = arg min
d

∑
r∈W
|IL(p + r)− IR(p + r + de1)|

I SSD: Sum of Squared Di�erences

d(p) = arg min
d

∑
r∈W

(IL(p + r)− IR(p + r + de1))2

I CSSD: Centered Sum of Squared Di�erences

d(p) = arg min
d

∑
r∈W

(IL(p + r)− ĪWL − IR(p + r + de1) + ĪWR )2

I NCC: Normalized Cross-Correlation

d(p) = arg max
d

∑
r∈W (IL(p + r)− ĪWL )(IR(p + r + de1)− ĪWR )√∑
(IL(p + r)− ĪWL )2

√∑
(IR(p + r + de1)− ĪWR )2



Another distance

I The following distance is more and more popular in recent
articles:

ε(p, q) = (1− α) min (‖IL(p)− IR(q)‖1, τcol) +

αmin

(
|∂IL
∂x

(p)− ∂IR
∂x

(q)|, τgrad
)

with

‖IL(p)−IR(q)‖1 = |I rL(p)−I rR(q)|+|I gL (p)−I gR (q)|+|I bL (p)−I bR(q)|

I Usual parameters:
I α = 0.9
I τcol = 30 (not very sensitive if larger)
I τgrad = 2 (not very sensitive if larger)

I Note that α = 0 is similar to SAD.



Varying patch size

W = {(0, 0)}



Varying patch size

W = [−1, 1]2



Varying patch size

W = [−7, 7]2



Varying patch size

W = [−21, 21]2



Varying patch size

W = [−35, 35]2



Problems of local methods
I Implicit hypothesis: all points of window move with same

motion, that is they are in a fronto-parallel plane.
I aperture problem: the context can be too small in certain

regions, lack of information.
I adherence problem: intensity discontinuities in�uence strongly

the estimated disparity and if it corresponds with a depth
discontinuity, we have a tendency to dilate the front object.

I O: aperture problem

I A: adherence problem

patch

C C’

rooftop

ground



Example: seeds expansion

I We rely on best found distances and we put them in a priority
queue (seeds)

I We pop the best seed G from the queue, we compute for
neighbors the best disparity between d(G )− 1, d(G ), and
d(G ) + 1 and we push them in the queue.

Right image
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Adaptive neighborhoods

I To reduce adherence (aka fattening e�ect), an image patch
should be on the same object, or even better at constant depth

I Heuristic inspired by bilateral �lter [Yoon&Kweon 2006]:

ωI (p, p
′) = exp

(
−‖p − p′‖2

γpos

)
·

exp

(
−‖I (p)− I (p′)‖1

γcol

)
I Selected disparity:

d(p) = arg min
d=q−p

E (p, q) with

E (p, q) =

∑
r∈W ωIL(p, p + r)ωIR(q, q + r) ε(p + r , q + r)∑

r∈W ωIL(p, p + r)ωIR(q, q + r)

I We can take a large window W (e.g., 35× 35)



Bilateral weights

(a)

(c)

(b)

(d)



Results

Tsukuba

Venus

Teddy

Cones

Left image Ground truth Results



What is the limit of adaptive neighborhoods?

I The best patch is Pp(r) = 1(d(p + r) = d(p))

I Suppose we have an oracle giving Pp

I Use ground-truth image to compute Pp

I Since GT is subpixel, use Pp(r) = 1(|d(p + r)− d(p)| ≤ 1/2)



Test with oracle

image ground truth oracle patches



Test with oracle

image ground truth oracle patches



Conclusion

I We can get back to the canonical situation by epipolar
recti�cation. Limit: when epipoles are in the image, standard
methods are not adapted.

I For disparity map computation, there are many choices:

1. Size and shape of window?
2. Which distance?
3. Filtering of disparity map to reject uncertain disparities?

I You will see next session a global method for disparity
computation

I Very active domain of research, >150 methods tested at
http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/


Practical session: Disparity map computation by
propagation of seeds

Objective: Compute the disparity map associated to a pair of
images. We start from high con�dence points (seeds), then expand
by supposing that the disparity map is regular.

I Get initial program from the website.

I Compute disparity map from image 1 to 2 of all points by
highest NCC score.

I Keep only disparity where NCC is su�ciently high (0.95), put
them as seeds in a std::priority_queue.

I While queue is not empty:

1. Pop P, the top of the queue.
2. For each 4-neighbor Q of P having no valid disparity, set dQ

by highest NCC score among dP − 1, dP , and dP + 1.
3. Push Q in queue.

Hint: the program may be too slow in Debug mode for the full images.
Use cropped images to find your bugs, then build in Release mode for
original images.
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