Vision 3D artificielle Disparity maps, correlation

Pascal Monasse pascal.monasse@enpc.fr

IMAGINE, École des Ponts ParisTech
http://imagine.enpc.fr/~monasse/Stereo/

Contents

Triangulation and Rectification

Epipolar rectification

Disparity map

Contents

Triangulation and Rectification

Epipolar rectification

Disparity map

Triangulation

- Let us write again the binocular formulae (in \mathbb{P}^{2}):

$$
\mathbf{x}=P \mathbf{X} \quad \mathbf{x}^{\prime}=P^{\prime} \mathbf{X}
$$

- We can write in homogoneous coordinates

$$
[\mathrm{x}]_{\times} P \mathbf{X}=0_{3} \quad\left[\mathrm{x}^{\prime}\right]_{\times} P^{\prime} \mathbf{X}=0_{3}
$$

- We can then recover X through SVD:

$$
\mathbf{X} \in \operatorname{Ker}\binom{[\mathbf{x}]_{\times} P}{\left[\mathbf{x}^{\prime}\right]_{\times} P^{\prime}}
$$

Triangulation

- Let us write again the binocular formulae:

$$
\lambda \mathbf{x}=K(R \mathbf{X}+T) \quad \lambda^{\prime} \mathbf{x}^{\prime}=K^{\prime} \mathbf{X}
$$

- Write $Y^{\top}=\left(\begin{array}{llll}\mathbf{X}^{\top} & 1 & \lambda & \lambda^{\prime}\end{array}\right):$

$$
\left(\begin{array}{cccc}
K R & K T & -\mathrm{x} & 0_{3} \\
K^{\prime} & 0_{3} & 0_{3} & -\mathrm{x}^{\prime}
\end{array}\right) Y=0_{6}
$$

(6 equations $\leftrightarrow 5$ unknowns +1 epipolar constraint)

- We can then recover X.
- Special case: $R=I d, T=B e_{1}$
- We get:

$$
z\left(\mathbf{x}-K K^{\prime-1} \mathbf{x}^{\prime}\right)=\left(\begin{array}{lll}
f B & 0 & 0
\end{array}\right)^{\top}
$$

- If also $K=K^{\prime}$,

$$
z=f B /\left[\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \cdot e_{1}\right]=f B / d
$$

- d is the disparity

Recovery of R and T

- Suppose we know K, K^{\prime}, and F or E. Recover R and T ?
- From $E=[T]_{\times} R$,

$$
E^{\top} E=-R^{\top}\left(T T^{\top}-\|T\|^{2} I\right) R=-\left(R^{\top} T\right)\left(R^{\top} T\right)^{\top}+\left\|R^{\top} T\right\|^{2} I
$$

- If $\mathbf{x}=R^{\top} T, E^{\top} E \mathbf{x}=0$ and if $\mathbf{y} \cdot \mathbf{x}=0, E^{\top} E \mathbf{y}=\|T\|^{2} \mathbf{y}$.
- Therefore $\sigma_{1}=\sigma_{2}=\|T\|$ and $\sigma_{3}=0$.
- Inversely, from $E=U \operatorname{diag}(\sigma, \sigma, 0) V^{\top}$, we can write:

$$
E=\sigma U\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) U^{\top} U\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) V^{\top}=\sigma[T]_{\times} R
$$

- Actually, there are up to 4 solutions: $\left\{\begin{array}{l}T= \pm \sigma U e_{3} \\ R=U R_{z}\left(\pm \frac{\pi}{2}\right) V^{\top}\end{array}\right.$

What is possible without calibration?

- We can recover F, but not E.
- Actually, from

$$
\mathbf{x}=P \mathbf{X} \quad \mathbf{x}^{\prime}=P^{\prime} \mathbf{X}
$$

we see that we have also:

$$
\mathbf{x}=\left(P H^{-1}\right)(H \mathbf{X}) \quad \mathbf{x}^{\prime}=\left(P^{\prime} H^{-1}\right)(H \mathbf{X})
$$

- Interpretation: applying a space homography and transforming the projection matrices (this changes K, K^{\prime}, R and T), we get exactly the same projections.
- Consequence: in the uncalibrated case, reconstruction can only be done modulo a 3D space homography.

Contents

Triangulation and Rectification

Epipolar rectification

Disparity map

Epipolar rectification

- It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- As a consequence, epipoles are at horizontal infinity:

$$
e=e^{\prime}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

- It is always possible to get to that situation by virtual rotation of cameras (application of homography)

- Image planes coincide and are parallel to baseline.

Epipolar rectification

Image 1

Epipolar rectification

Image 2

Epipolar rectification

Image 1

Rectified image 1

Epipolar rectification

Image 2

Rectified image 2

Epipolar rectification

- Fundamental matrix can be written:

$$
F=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)_{\times}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \text { thus } \mathbf{x}^{\top} F \mathbf{x}^{\prime}=0 \Leftrightarrow y-y^{\prime}=0
$$

- Writing matrices $P=K\left(\begin{array}{ll}I & 0\end{array}\right)$ and $P^{\prime}=K^{\prime}\left(\begin{array}{ll}I & B e_{1}\end{array}\right)$:

$$
\begin{gathered}
K=\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right) \quad K^{\prime}=\left(\begin{array}{ccc}
f_{x}^{\prime} & s^{\prime} & c_{x}^{\prime} \\
0 & f_{y}^{\prime} & c_{y}^{\prime} \\
0 & 0 & 1
\end{array}\right) \\
F=B K^{-\top}\left[e_{1}\right]_{\times} K^{\prime-1}=\frac{B}{f_{y} f_{y}^{\prime}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -f_{y} \\
0 & f_{y}^{\prime} & c_{y}^{\prime} f_{y}-c_{y} f_{y}^{\prime}
\end{array}\right)
\end{gathered}
$$

- We must have $f_{y}=f_{y}^{\prime}$ and $c_{y}=c_{y}^{\prime}$, that is identical second rows of K and K^{\prime}

Epipolar rectification

- We are looking for homographies H and H^{\prime} to apply to images such that

$$
F=H^{\top}\left[e_{1}\right]_{\times} H^{\prime}
$$

- That is 9 equations and 16 variables, 7 degrees of freedom remain: the first rows of K and K^{\prime} and the rotation angle around baseline α
- Invariance through rotation around baseline:
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right)^{\top}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right)=\left[e_{1}\right]_{\times}$
- Several methods exist, they try to distort as little as possible the image

Rectif. of Gluckman-Nayar (2001)

Epipolar rectification of Fusiello-Irsara (2008)

- We are looking for H and H^{\prime} as rotations, supposing $K=K^{\prime}$ known:

$$
H=K_{n} R K^{-1} \text { and } H^{\prime}=K_{n}^{\prime} R^{\prime} K^{-1}
$$

with K_{n} and K_{n}^{\prime} of identical second row, R and R^{\prime} rotation matrices parameterized by Euler angles and

$$
K=\left(\begin{array}{ccc}
f & 0 & w / 2 \\
0 & f & h / 2 \\
0 & 0 & 1
\end{array}\right)
$$

- Writing $R=R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right) R_{z}\left(\theta_{z}\right)$ we must have:

$$
F=\left(K_{n} R K^{-1}\right)^{\top}\left[e_{1}\right]_{\times}\left(K_{n}^{\prime} R^{\prime} K^{-1}\right)=K^{-\top} R_{z}^{\top} R_{y}^{\top}\left[e_{1}\right]_{\times} R^{\prime} K^{-1}
$$

- We minimize the sum of squares of points to their epipolar line according to the 6 parameters

$$
\left(\theta_{y}, \theta_{z}, \theta_{x}^{\prime}, \theta_{y}^{\prime}, \theta_{z}^{\prime}, f\right)
$$

Ruins

$\left\|E_{6}\right\|=0.12$ pixels.

Ruins

$\left\|E_{0}\right\|=3.21$ pixels.

$\left\|E_{6}\right\|=0.12$ pixels.

Cake

$\left\|E_{0}\right\|=17.9$ pixels.

$\left\|E_{13}\right\|=0.65$ pixels.

Cake

$\left\|E_{0}\right\|=17.9$ pixels.

Cluny

$\left\|E_{0}\right\|=4.87$ pixels.

$\left\|E_{14}\right\|=0.26$ pixels.

Cluny

$\left\|E_{0}\right\|=4.87$ pixels.

$\left\|E_{14}\right\|=0.26$ pixels.

Carcassonne

Carcassonne

$\left\|E_{0}\right\|=15.6$ pixels.

$\left\|E_{4}\right\|=0.24$ pixels.

Books

$\left\|E_{14}\right\|=0.27$ pixels.

Books

$\left\|E_{0}\right\|=3.22$ pixels.

$\left\|E_{14}\right\|=0.27$ pixels.

Contents

Triangulation and Rectification

Epipolar rectification

Disparity map

Disparity map

$$
z=\frac{f B}{d}
$$

Depth z is inversely proportional to disparity d (apparent motion, in pixels).

- Disparity map: At each pixel, its apparent motion between left and right images.
- We already know disparity at feature points, this gives an idea about min and max motion, which makes the search for matching points less ambiguous and faster.

Stereo Matching

- Principle: invariance of something between corresponding pixels in left and right images $\left(I_{L}, I_{R}\right)$
- Example: color, x-derivative, census...
- Usage of a distance to capture this invariance, such as $\mathrm{AD}(p, q)=\left\|I_{L}(p)-I_{R}(q)\right\|_{1}$

Stereo Matching

- Principle: invariance of something between corresponding pixels in left and right images $\left(I_{L}, I_{R}\right)$
- Example: color, x-derivative, census...
- Usage of a distance to capture this invariance, such as $\mathrm{AD}(p, q)=\left\|I_{L}(p)-I_{R}(q)\right\|_{1}$

Left image

Ground truth

Min AD

Stereo Matching

- Post-processing helps a lot!
- Example: left-right consistency check, followed by simple constant interpolation, and median weighted by original image bilateral weights

Min CG
Left-right test
Post-processed

Stereo Matching

- Post-processing helps a lot!
- Example: left-right consistency check, followed by simple constant interpolation, and median weighted by original image bilateral weights

Min CG Left-right test Post-processed

- Still, single pixel estimation not good enough
- Need to promote some regularity of the result

Global vs. local methods

- Global method: explicit smoothness term

$$
\begin{aligned}
& \arg \min _{d} \sum_{p} E_{\mathrm{data}}\left(p, p+d(p) ; I_{L}, I_{R}\right) \\
& \quad+\sum_{p \sim p^{\prime}} E_{\mathrm{reg}}\left(d(p), d\left(p^{\prime}\right) ; p, p^{\prime}, I_{L}, I_{R}\right)
\end{aligned}
$$

- Examples: $E_{\text {reg }}=\left|d(p)-d\left(p^{\prime}\right)\right|^{2}$ (Horn-Schunk), $E_{\text {reg }}=\delta\left(d(p)=d\left(p^{\prime}\right)\right)$ (Potts),
$E_{\text {reg }}=\exp \left(-\left(I_{L}(p)-I_{L}\left(p^{\prime}\right)\right)^{2} / \sigma^{2}\right)\left|d(p)-d\left(p^{\prime}\right)\right| \ldots$

Global vs. local methods

- Global method: explicit smoothness term

$$
\begin{aligned}
& \arg \min _{d} \sum_{p} E_{\mathrm{data}}\left(p, p+d(p) ; I_{L}, I_{R}\right) \\
& \quad+\sum_{p \sim p^{\prime}} E_{\mathrm{reg}}\left(d(p), d\left(p^{\prime}\right) ; p, p^{\prime}, I_{L}, I_{R}\right)
\end{aligned}
$$

- Examples: $E_{\text {reg }}=\left|d(p)-d\left(p^{\prime}\right)\right|^{2}$ (Horn-Schunk), $E_{\text {reg }}=\delta\left(d(p)=d\left(p^{\prime}\right)\right)$ (Potts),
$E_{\text {reg }}=\exp \left(-\left(I_{L}(p)-I_{L}\left(p^{\prime}\right)\right)^{2} / \sigma^{2}\right)\left|d(p)-d\left(p^{\prime}\right)\right| \ldots$
- Problem: NP-hard for almost all regularity terms except

$$
E_{\text {reg }}=\lambda_{p p^{\prime}}\left|d(p)-d\left(p^{\prime}\right)\right| \quad \text { (Ishikawa 2003) }
$$

- Aternative: sub-optimal solution for submodular regularity (graph-cuts: Boykov, Kolmogorov, Zabih), loopy-belief propagation (no guarantee at all), semi-global matching (Hirschmüller)

Global vs. local methods

- Local method: Take a patch around p, aggregate costs $E_{\text {data }}$ (Lucas-Kanade) \Rightarrow No explicit regularity term
- Example: $\operatorname{SAD}(p, q)=\sum_{r \in P}\left|I_{L}(p+r)-I_{R}(q+r)\right|$, $\operatorname{SSD}(p, q)=\sum_{r \in P}\left|I_{L}(p+r)-I_{R}(q+r)\right|^{2}$, $\operatorname{SCG}(p, q)=\sum_{r \in P} \operatorname{CG}(p+r, q+r) \ldots$
- Can be interpreted as a cost-volume filtering.

- Increasing patch size P promotes regularity.

Global vs. local methods

- Local method: Take a patch around p, aggregate costs $E_{\text {data }}$ (Lucas-Kanade) \Rightarrow No explicit regularity term
- Example: $\operatorname{SAD}(p, q)=\sum_{r \in P}\left|I_{L}(p+r)-I_{R}(q+r)\right|$, $\operatorname{SSD}(p, q)=\sum_{r \in P}\left|I_{L}(p+r)-I_{R}(q+r)\right|^{2}$, $\operatorname{SCG}(p, q)=\sum_{r \in P} \operatorname{CG}(p+r, q+r) \ldots$
- Can be interpreted as a cost-volume filtering.
- Increasing patch size P promotes regularity.

Proportion of common pixels between $p+P$ and $p^{\prime}+P$:

$$
1-\frac{1}{n}
$$

if P is $n \times n$

Local search

- At each pixel, we consider a context window W and we look for the motion of this window.

- Distance between windows:

$$
d(p)=\arg \min _{d} \sum_{r \in W}\left(I_{L}(p+r)-I_{R}\left(p+r+d e_{1}\right)\right)^{2}
$$

- Variants to be more robust to illumination changes:

1. Translate intensities by the mean over the window.

$$
I(p+r) \rightarrow I(p+r)-\sum_{r \in W} I(p+r) / \# W
$$

2. Normalize by mean and variance over window.

Distance between patches

Several distances or similarity measures are popular:

- SAD: Sum of Absolute Differences

$$
d(p)=\arg \min _{d} \sum_{r \in W}\left|I_{L}(p+r)-I_{R}\left(p+r+d e_{1}\right)\right|
$$

- SSD: Sum of Squared Differences

$$
d(p)=\arg \min _{d} \sum_{r \in W}\left(I_{L}(p+r)-I_{R}\left(p+r+d e_{1}\right)\right)^{2}
$$

- CSSD: Centered Sum of Squared Differences

$$
d(p)=\arg \min _{d} \sum_{r \in W}\left(I_{L}(p+r)-\bar{I}_{L}^{W}-I_{R}\left(p+r+d e_{1}\right)+\bar{I}_{R}^{W}\right)^{2}
$$

- NCC: Normalized Cross-Correlation

$$
d(p)=\arg \max _{d} \frac{\sum_{r \in W}\left(I_{L}(p+r)-\bar{I}_{L}^{W}\right)\left(I_{R}\left(p+r+d e_{1}\right)-\bar{I}_{R}^{W}\right)}{\sqrt{\sum\left(I_{L}(p+r)-\bar{I}_{L}^{W}\right)^{2}} \sqrt{\sum\left(I_{R}\left(p+r+d e_{1}\right)-\bar{I}_{R}^{W}\right)^{2}}}
$$

Another distance

- The following distance is more and more popular in recent articles:

$$
\begin{aligned}
& \epsilon(p, q)=(1-\alpha) \min \left(\left\|I_{L}(p)-I_{R}(q)\right\|_{1}, \tau_{\mathrm{col}}\right)+ \\
& \alpha \min \left(\left|\frac{\partial I_{L}}{\partial x}(p)-\frac{\partial I_{R}}{\partial x}(q)\right|, \tau_{\mathrm{grad}}\right)
\end{aligned}
$$

with

$$
\left\|I_{L}(p)-I_{R}(q)\right\|_{1}=\left|I_{L}^{r}(p)-I_{R}^{r}(q)\right|+\left|I_{L}^{g}(p)-I_{R}^{g}(q)\right|+\left|I_{L}^{b}(p)-I_{R}^{b}(q)\right|
$$

- Usual parameters:
- $\alpha=0.9$
- $\tau_{\text {col }}=30$ (not very sensitive if larger)
- $\tau_{\text {grad }}=2$ (not very sensitive if larger)
- Note that $\alpha=0$ is similar to SAD.

Varying patch size

$$
W=\{(0,0)\}
$$

Varying patch size

$$
W=[-1,1]^{2}
$$

Varying patch size

$$
W=[-7,7]^{2}
$$

Varying patch size

$$
W=[-21,21]^{2}
$$

Varying patch size

$$
W=[-35,35]^{2}
$$

Problems of local methods

- Implicit hypothesis: all points of window move with same motion, that is they are in a fronto-parallel plane.
- aperture problem: the context can be too small in certain regions, lack of information.
- adherence problem: intensity discontinuities influence strongly the estimated disparity and if it corresponds with a depth discontinuity, we have a tendency to dilate the front object.

- O: aperture problem
- A: adherence problem

Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G)-1, d(G)$, and $d(G)+1$ and we push them in the queue.

Right image

Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G)-1, d(G)$, and $d(G)+1$ and we push them in the queue.

Left image

Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G)-1, d(G)$, and $d(G)+1$ and we push them in the queue.

Seeds

Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G)-1, d(G)$, and $d(G)+1$ and we push them in the queue.

Seeds expansion

Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G)-1, d(G)$, and $d(G)+1$ and we push them in the queue.

Left image

Adaptive neighborhoods

- To reduce adherence (aka fattening effect), an image patch should be on the same object, or even better at constant depth
- Heuristic inspired by bilateral filter [Yoon\&Kweon 2006]:

$$
\begin{aligned}
\omega_{I}\left(p, p^{\prime}\right)= & \exp \left(-\frac{\left\|p-p^{\prime}\right\|_{2}}{\gamma_{\text {pos }}}\right) \\
& \exp \left(-\frac{\left\|I(p)-I\left(p^{\prime}\right)\right\|_{1}}{\gamma_{\mathrm{col}}}\right)
\end{aligned}
$$

- Selected disparity:

$$
\begin{aligned}
d(p) & =\arg \min _{d=q-p} E(p, q) \text { with } \\
E(p, q) & =\frac{\sum_{r \in W} \omega_{I L}(p, p+r) \omega_{I R}(q, q+r) \epsilon(p+r, q+r)}{\sum_{r \in W} \omega_{I L}(p, p+r) \omega_{I R}(q, q+r)}
\end{aligned}
$$

- We can take a large window W (e.g., 35×35)

Bilateral weights

(a)

(c)
(b)

(d)

Results

Tsukuba
Venus

Teddy

Cones

Left image
Ground truth
Results

What is the limit of adaptive neighborhoods?

- The best patch is $P_{p}(r)=1(d(p+r)=d(p))$
- Suppose we have an oracle giving P_{p}
- Use ground-truth image to compute P_{p}
- Since GT is subpixel, use $P_{p}(r)=1(|d(p+r)-d(p)| \leq 1 / 2)$

Test with oracle

image

ground truth

oracle patches

Test with oracle

Conclusion

- We can get back to the canonical situation by epipolar rectification. Limit: when epipoles are in the image, standard methods are not adapted.
- For disparity map computation, there are many choices:

1. Size and shape of window?
2. Which distance?
3. Filtering of disparity map to reject uncertain disparities?

- You will see next session a global method for disparity computation
- Very active domain of research, >150 methods tested at http://vision.middlebury.edu/stereo/

Practical session: Disparity map computation by

 propagation of seedsObjective: Compute the disparity map associated to a pair of images. We start from high confidence points (seeds), then expand by supposing that the disparity map is regular.

- Get initial program from the website.
- Compute disparity map from image 1 to 2 of all points by highest NCC score.
- Keep only disparity where NCC is sufficiently high (0.95), put them as seeds in a std:: priority_queue.
- While queue is not empty:

1. Pop P, the top of the queue.
2. For each 4-neighbor Q of P having no valid disparity, set d_{Q} by highest NCC score among $d_{P}-1, d_{P}$, and $d_{P}+1$.
3. Push Q in queue.

Hint: the program may be too slow in Debug mode for the full images. Use cropped images to find your bugs, then build in Release mode for original images.

