MVA/IMA – 3D Vision

1

Graph Cuts and Application to Disparity Map Estimation

Renaud Marlet

LIGM/École nationale des ponts et chaussées (IMAGINE) & Valeo.ai

Pascal Monasse LIGM/École nationale des ponts et chaussées (IMAGINE)

(with many borrowings from Boykov & Veksler 2006)

Introduction

3D reconstruction

- capturing reality
 - for diagnosis, simulation, movies, video games, interaction in virtual/augmented reality, ...

This course:

- camera calibration
 - relevance of accuracy: 1° error, at 10m 17cm error
- low-level 3D (disparity/depth map, mesh)
 - as opposed to high-level geometric primitives, semantics...

Mathematical tools for 3D reconstruction

- Deep learning:
 - very good for matching image regions
 - → subcomponent of 3D reconstruction algorithm
 - a few methods for <u>direct</u> disparity/depth map estimation
 - fair results on 3D reconstruction from single view

- Graph cuts (this lecture):
 - practical, well-founded, general (→ maps, meshes...)

Motivating graph cuts

- Powerful multidimensional energy minimization tool
 - wide class of binary and non binary energies
 - in some cases, globally optimal solutions -
 - some provably good approximations (and good in practice)
 - allowing regularizers with contrast preservation
 - enforcement of piecewise smoothness while preserving relevant sharp discontinuities
- Geometric interpretation
 - hypersurface in *n*-D space

Many links to other domains

(cf. Boykov & Veksler 2006)

- Combinatorial algorithms (e.g., dynamic programming)
- Simulated annealing
- Markov random fields (MRFs)
- Random walks and electric circuit theory
- Bayesian networks and belief propagation
- Level sets and other variational methods
- Anisotropic diffusion
- Statistical physics
- Submodular functions
- Integral/differential geometry, etc.

dynamic programming = programmation dynamique simulated annealing = recuit simulé Markov random field = champ (aléatoire) de Markov random walk = marche aléatoire Bayesian network = réseaux bayésien level set = ligne de niveau submodular function = fonction sous-modulaire

Overview of the course

- Notions
 - graph cut, minimum cut
 - flow network, maximum flow
 - optimization: exact (global), approximate (local)
- Illustration with emblematic applications

segmentation

disparity map estimation

Overview of the course

• Notions

- graph cut, minimum cut
- flow network, maximum flow
- optimization: exact (global), approximate (local)
- Illustration with emblematic applications

No time to go deep			
into every topic \rightarrow			
general ideas,			
read the references	1		
	į.,		

segmentation

(a) Left image of ${\it Head}$ pair

(b) Potts model stereo (c

disparity map estimation

Part 1

Graph cuts basics

Max-flow min-cut theorem

Application to image restoration and image segmentation

Graph cut basics

node = nœudvertex (vertices) = sommet(s) $edge = ar\hat{e}te$ directed = orienté digraph (directed graph) = graphe orienté sink = puits

- Graph $G = \langle V, E \rangle$ (digraph)
 - set of nodes (vertices) V
 - set of directed edges E -

 $\blacksquare p \to q$

- $V = \{s, t\} \cup P$
 - terminal nodes: $\{s, t\}$
 - s: source node
 - *t*: target node (= sink)
 - non-terminal nodes: P
 - ex. P = set of pixels, voxels, etc. (can be very different from an image)

Example of connectivity

Graph cut basics

- Edge labels, for $p \rightarrow q \in E$
 - $c(p,q) \ge 0$: **nonnegative** costs

also called weights w(p,q)

- c(p,q) and c(q,p), <u>if any</u>, may differ
- Links
 - t-link: term. \leftrightarrow non-term.

$$\blacksquare \{s \to p \mid p \neq t\}, \{q \to t \mid q \neq s\}$$

- n-link: non-term. \rightarrow non-term.

$$\blacksquare \mathsf{N} = \{ p \to q \mid p, q \neq s, t \}$$

label = étiquette weight = poids

link = lien

Cut and minimum cut

cut = coupe severed = coupé, sectionné

• *s-t* cut (or just "cut"): $C = \{S,T\}$

node partition such that $s \in S$, $t \in T$

- Cost of a cut $\{S,T\}$:
 - $c(\mathsf{S},\mathsf{T}) = \sum_{p \in \mathsf{S}, q \in \mathsf{T}} c(p,q)$
 - N.B. cost of severed edges:
 <u>only from S to T</u>
- Minimum cut:
 - i.e., with min cost: $\min_{S,T} c(S,T)$
 - intuition: cuts only "weak" links

Different view: flow network

(or transportation network)

flow = flot network = réseau transportation = transport vertex = sommet node = nœud edge = arête

source S f(p,q)p q sink

- Different vocabulary and features
 - **graph** \leftrightarrow network

vertex	= node	<i>p</i> , <i>q</i> ,
edge	= arc	$p \rightarrow q \text{ or } (p,q)$
cost	= capacity	c(p,q)

- possibly many sources & sinks
- Flow $f: \mathsf{V} \times \mathsf{V} \to \mathsf{IR}$
 - f(p,q): amount of flow $p \rightarrow q$
 - $(p,q) \notin E \Leftrightarrow c(p,q) = 0, f(p,q) = 0$
 - e.g. road traffic, fluid in pipes, current in electrical circuit,
 ...

Flow network constraints

skew symmetry = antisymétrie

- Capacity constraint
 - $f(p,q) \le c(p,q)$
- Skew symmetry
 - f(p,q) = -f(q,p)
- Flow conservation
 - $\forall p$, net flow $\sum_{q \in V} f(p,q) = 0$ unless p = s (s produces flow) or p = t (t consumes flow)
 - i.e., incoming $\sum_{(q,p)\in E} f(q,p)$ = outgoing $\sum_{(p,q)\in E} f(p,q)$

Kirchhoff's law

Boykov & Veksler 2006 © Springer

Flow network constraints

- *s-t* flow (or just "flow) *f*
 - $f: V \times V \rightarrow \mathbb{R}$ satisfying flow constraints
- Value of *s*-*t* flow

$$|f| = \sum_{q \in \mathsf{V}} f(s,q) = \sum_{p \in \mathsf{V}} f(p,t)$$

- amount of flow from sourceamount of flow to sink
- Maximum flow:
 - i.e., with maximum value: $\max_{f} |f|$
 - intuition: arcs saturated as much as possible

• Theorem

- Example
 - |f| = c(S,T) = ?

- Theorem
 - The maximum value of an *s*-*t* flow is equal to the minimum capacity (i.e., min cost) of an *s*-*t* cut.
- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...

• Theorem

- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...
 - max: try increasing f(p,q)...

• Theorem

- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...
 - max: try increasing f(p,q)...

• Theorem

- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...
 - max: try increasing f(p,q)...

• Theorem

- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...
 - max: try increasing f(p,q)...

• Theorem

- Example
 - |f| = c(S,T) = 4
 - min: enumerate partitions...
 - max: try increasing f(p,q)...

- Intuition
 - pull *s* and *t* apart: the graph tears where it is weak
 - min cut: cut corresponding to a small number of weak links edge label: f(p,q)/c(p,q)
 - max flow: flow bounded by low-capacity links in a cut

linear programmaing = Programmation linéaire

• Theorem

- proved independently
 by Elias, Feinstein & Shannon,
 and Ford & Fulkerson (1956)
- special case of strong duality theorem in linear programming
- can be used to derive other theorems

Max flows and min cuts configurations are not unique

• Different configurations with same maximum flow

• Different configurations with same min-cut cost

Algorithms for computing max flow

- Polynomial time
- Push-relabel methods
 - better performance for general graphs
 - e.g. Goldberg and Tarjan 1988: $O(VE \log(V^2/E))$
 - where *V*: number of vertices, *E*: number of edges
- Augmenting paths methods
 - iteratively push flow from source to sink along some path
 - better performance on specific graphs
 - e.g. Ford-Fulkerson 1956: $O(E \max|f|)$ for integer capacity c

Residual network/graph

• Given flow network $G = \langle V, E, c, f \rangle$

Define residual network $G_f = \langle V, E, c_f, 0 \rangle$ with

- residual capacity $c_f(p,q) = c(p,q) f(p,q)$
- no flow, i.e., value 0 for all edges
- Example:

₹.....

Ford-Fulkerson algorithm (1956)

termination = terminaison semi-algorithm: termination not guaranteed for all inputs

 $\begin{array}{ll} f(p,q) \leftarrow 0 \text{ for all edges} & [P: \text{ augmenting path}] \\ \text{while } \exists \text{ path } P \text{ from } s \text{ to } t \text{ such that } \forall (p,q) \in P \ c_f(p,q) > 0 \\ c_f(P) \leftarrow \min\{c_f(p,q) \mid (p,q) \in P\} & [\text{min residual capacity}] \\ \text{ for each edge } (p,q) \in P \\ f(p,q) \leftarrow f(p,q) + c_f(P) & [\text{push flow along path}] \\ f(q,p) \leftarrow f(q,p) - c_f(P) & [\text{keep skew symmetry}] \end{array}$

- N.B. termination not guaranteed
 - maximum flow reached if (semi-)algorithm terminates (but may "converge" to less than maximum flow if it does not terminate)
 - always terminates for integer values (or rational values)

Ford-Fulkerson algorithm: an example

Ford-Fulkerson algorithm: an example

Taking edges backwards = OK (and sometimes needed)

Edmonds-Karp algorithm (1972)

breadth-first = en largeur d'abord sparse = épars, peu dense

- As Ford-Fulkerson but **shortest path** with >0 capacity
 - breadth-first search for augmenting path (cf. example above)
- Termination: now guaranteed
- Complexity: $O(VE^2)$
 - slower than push-relabel methods for general graphs
 - faster in practice for sparse graphs
- Other variant (Dinic 1970), complexity: $O(V^2 E)$
 - other flow selection (blocking flows)
 - $O(VE \log V)$ with dynamic trees (Sleator & Tarjan 1981)

Maximum flow for grid graphs

- Fast augmenting path algorithm (Boykov & Kolmogorov 2004)
 - often significantly outperforms push-relabel methods
 - observed running time is linear
 - many variants since then
- But push-relabel algorithm can be run in parallel
 - good setting for GPU acceleration

The "best" algorithm depends on the context

Variant: Multiway cut problem

- More than two terminals: $\{s_1, ..., s_k\}$
- Multiway cut:
 - set of edges leaving each terminal in a separate component
- Multiway cut problem
 - find cut with minimum weight
 - same as min cut when k = 2
 - NP-hard if $k \ge 3$ (in fact APX-hard, i.e., NP-hard to approx.)
 - but can be solved exactly for planar graphs

planar = planaire

Graph cuts for binary optimization

- Inherently a binary technique
 - splitting in two
- 1st use in image processing: binary image restoration (Greig et al. 1989)
 - black&white image with noise \rightarrow image with no noise
- Can be generalized to large classes of binary energy
 - regular functions

Binary image restoration

noise = bruit threshold = seuil

© Mark Schmidt 2007

Binary image restoration: The graph cut view

penalty = pénalité, coût reward = récompense

- Agreement with observed data
 - $D_p(l)$: penalty (= -reward) for assigning label $l \in \{0,1\}$ to pixel $p \in P$
 - if $I_p = l$ then $D_p(l) \le D_p(l')$ for $l' \ne l$
 - $w(s,p) = D_p(1), w(p,t) = D_p(0)$
- Example:
 - if $I_p = 0$, $D_p(0) = 0$, $D_p(1) = \kappa$ if $I_p = 1$, $D_p(0) = \kappa$, $D_p(1) = 0$
 - if $I_p = 0$ and $p \in S$, $cost = D_p(0) = 0$ if $I_p = 0$ and $p \in T$, $cost = D_p(1) = \kappa$

Binary image restoration: The graph cut view

penalty = pénalité, coût reward = récompense regularizing constraint = contrainte de régularisation smoothing = lissage

- Agreement with observed data
 - $D_p(l): penalty (= -reward) for assigning label$ *l* $∈ {0,1} to pixel$ *p*∈P
 - if $I_p = l$ then $D_p(l) \le D_p(l')$ for $l' \ne l$
 - $w(s,p) = D_p(1), w(p,t) = D_p(0)$
- Minimize discontinuities
 - penalty for (long) contours
 - $w(p,q) = w(q,p) = \lambda > 0$
 - spatial coherence, regularizing constraint, smoothing factor... (see below)

Binary image restoration: The graph cut view

- Binary labeling f [N.B. different from "flow f"]
 - assigns label $f_p \in \{0,1\}$ to pixel $p \in \mathsf{P}$
 - $\bullet f: P \to \{0,1\} \quad f(p) = f_p$
- Cut $C = \{S, T\} \leftrightarrow \mathsf{labeling} f$
 - 1-to-1 correspondence: $f = \mathbf{1}_{|T|}$
- Cost of a cut: |C| =

 $\sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{S} \times \mathsf{T}} w(p,q)$

= cost of flip + cost of local dissimilarity

• Restored image:

= labeling corresponding to a minimum cut

labeling = étiquetage
Binary image restoration: The energy view

- Energy of labeling f
 - $E(f) \stackrel{\text{\tiny def}}{=} |C| =$

$$\sum_{p \in \mathsf{P}} D_p(f_p) + \lambda \sum_{(p,q) \in \mathsf{N}} \mathbf{1}(f_p = 0 \land f_q = 1)$$

where

$$\mathbf{1}(\text{false}) = 0 \quad | \quad \mathbf{1}(\text{true}) = 1$$

[or:
$$\frac{1}{2} \lambda \sum_{(p,q) \in \mathbb{N}} \mathbf{1}(f_p \neq f_q)$$
]

- Restored image:
 - labeling corresponding to minimum energy (= minimum cut)

Binary image restoration: The smoothing factor

• Small λ (actually λ/κ):

pixels choose their label independently of their neighbors

Large λ :

- pixels choose the label with smaller average cost
- Balanced λ value:
 - pixels form compact, spatially coherent clusters with same label
 - noise/outliers conform to neighbors

cluster = amas

Graph cuts for energy minimization

- Given some energy E(f) such that
 - f: P → L = {0,1} binary labeling

$$E(f) = \sum_{p \in P} D_p(f_p) + \sum_{(p,q) \in N} V_{p,q}(f_p, f_q)$$

$$E_{data}(f) \qquad E_{regul}(f)$$

$$E_{regularity condition (see below)$$

•
$$V_{p,q}(0,0) + V_{p,q}(1,1) \le V_{p,q}(0,1) + V_{p,q}(1,0)$$

• Theorem: **then there is a graph** whose minimum cut defines a labeling *f* that reaches the minimum energy (Kolmogorov & Zabih 2004)

[N.B. Vladimir Kolmogorov, not Andrey Kolmogorov]

[structure of graph somehow similar to above form]

Graph construction

• Bidirectional edge vs monodirectional & back edges

3.....F

Graph cuts as hypersurfaces

(cf. Boykov & Veksler 2006)

• Cut on a 2D grid

• Cut on a 3D grid

seed = graine

Example of topological issue

seed = graine

Connected seeds

Disconnected seeds

Example of topological constraint: fold prevention

- Ex. in disparity map estimation: d = f(x,y)
- In 2D: y = f(x), only one value for y given one x

A "revolution" in optimization

simulated annealing = recuit simulé

- Previously (before Greig et al. 1989)
 - exact optimization like this was not possible
 - used approaches:
 - iterative algorithms such as simulated annealing
 - very far from global optimum, even in binary case like this
 - work of Greig et al. was (primarily) meant to show this fact
- Remained unnoticed for almost 10 years in the computer vision community...
 - maybe binary image restoration was viewed as too restrictive ?
 (Boulast & Value 2000)
 - (Boykov & Veksler 2006)

Graph cut techniques: now very popular in computer vision

- Extensive work since 1998
 - Boykov, Geiger, Ishikawa, Kolmogorov, Veksler, Zabih and others...
- Almost linear in practice (in nb nodes/edges)
 - but beware of the graph size:
 it can be exponential in the size of the problem
- Many applications
 - regularization, smoothing, restoration
 - segmentation
 - stereovision: disparity map estimation, ...

Warning: global optimum != best real-life solution

- Graph cuts provide exact, global optimum
 - to binary labeling problems (under regularity condition)
- But the problem remains a model
 - approximation of reality
 - limited number of factors
 - parameters (e.g., λ)
- Global optimum of abstracted problem, not necessarily best solution in real life

Not for free

- Many papers construct
 - their own graph
 - for their own specific energy function
- The construction can be fairly complex
- Powerful tool but does not exempt from thinking (contrary to some aspects of deep learning ^(C))

Graph cut vs deep learning

- Graph cut
 - works well, with proven optimality bounds
- Deep learning
 - works extremely well, but mainly empirical
- Somewhat complementary
 - graph cut sometimes used to regularize network output

Application to image segmentation

- Problem:
 - given an image with foreground objects and background
 - given sample areas of both kinds
 - separate objects from background

background = arrière-plan sample = échantillon area = zone

[Duchenne & al. 2008]

Application to image segmentation

- Problem:
 - given an image with foreground objects and background
 - given sample areas of both kinds (O, B)
 - separate objects from background

background = arrière-plan sample = échantillon area = zone

Intuition

What characterizes an object/background segmentation ?

Intuition

background = arrière-plan sample = échantillon area = zone

What characterizes an object/background segmentation ?

- pixels of segmented object and background look like corresponding sample pixels O and B
- segment contours have high gradient, and are not too long

General formulation

[Boykov & Jolly 2001]

- Pixel labeling with binary decision $f_p \in L = \{0,1\}$
 - 1 = object, 0 = background
- Energy formulation
 - minimize $E(f) = D(f) + \lambda R(f)$
 - D(f): data term (a.k.a. data fidelity term) = regional term
 - penalty for assigning labels f in image I given pixel sample assignments in L : O (object pixels), B (background pixels)
 - R(f): regularization term = boundary term
 - penalty for label discontinuity of neighboring pixels
 - λ : relative importance of regularization term vs data term

data term = terme d'attache aux données regularization term = terme de régularisation a.k.a. = also known as penalty = pénalité, coût to assign = affecter (une valeur à qq chose) sample = échantillon background = boundary = frontière neighboring pixel = pixel voisin To go further on this subject

ξαια τη παραγική τη προσφαιρια τη προσφαιρια τη προσφαιρια τη προσφαιρια τη προσφαιρια τη προσφαιρια τη προσφα

Probabilistic justification/framework

posterior probability = probabilité a posteriori likelihood = vraisemblance (log-)likelihood = (log-)vraisemblance

- Minimize $E(f) \leftrightarrow$ maximize posterior proba. $\Pr(f|I)$
- Bayes theorem:

 $E(f) = D(f) + \lambda R(f) \iff -\log \Pr(f|I) + c = -\log \Pr(I|f) - \log \Pr(f)$

Data term: linking estimated labels to observed pixels

penalty = pénalité, coût to assign = affecter sample = échantillon likelihood = vraisemblance random variable = variable aléatoire

- D(f) and likelihood
 - penalty for assigning labels f in I given sample assignments \leftrightarrow (log-)likelihood that f is consistent with image samples
 - $D(f) = -\log L(f|I) = -\log \Pr(I|f)$
- Pixel independence hypothesis (common approximation)
 - $\Pr(I|f) = \prod_{p \in P} \Pr(I_p|f_p)$ if pixels iid
 - $D(f) = \sum_{p \in P} D_p(f_p)$ where $D_p(f_p) = -\log \Pr(I_p | f_p)$
 - $D_p(f_p)$: penalty for observing I_p for a pixel of type f_p
- Find an estimate of $Pr(I_p | f_p)$

wrong strictly speaking, but "true enough" to be often assumed

......

empirical probability =

probabilité empirique (fréquence relative) Gaussian mixture =

mélange de gaussiennes

To go further on this subject

3......

Data term: likelihood/color model

• Approaches to find an estimate of $Pr(I_p | f_p)$

- histograms
 - build an empirical distribution of the color of object/background pixels, based on pixels marked as object/background
 - estimate $\Pr(I_p | f_p)$ based on histograms: $\Pr_{emp}(rgb|O), \Pr_{emp}(rgb|B)$
- Gaussian Mixture Model (GMM)
 - model the color of object (resp. background) pixels with a distribution defined as a mixture of Gaussians
- texon (or texton): texture patch (possibly abstracted)
 - compare with expected texture property: response to filters (spectral analysis), moments...

56

Blunsden 2006 @ U. of Edinburgh

Regularization term: locality hypotheses

- Markov random field (MRF), or Markov network
 - neighborhood system: $N = \{N_p \mid p \in P\}$
 - N_p : set neighbors of p such that $p \notin N_p$ and $p \in N_q \Leftrightarrow q \in N_p$
 - $X = (X_p)_{p \in P}$: field (set) of random variables such that each random variable X_p depends on other random variables only through its neighbors N_p
 - locality hypothesis: $\Pr(X_p = x | X_{P \setminus \{p\}}) = \Pr(X_p = x | X_{N_p})$
 - $N \approx$ undirected graph: (p,q) edge iff $p \in N_q$ ($\Leftrightarrow q \in N_p$) (MRF also called undirected graphical model)

Markov random field = champ de Markov random variable = variable aléatoire neighborhood = voisinage undirected graph = graph non orienté graphical model = modèle graphique 3.......

Regularization term: locality hypotheses

• Gibbs random field (GRF)

G undirected graph, $X = (X_p)_{p \in P}$ random variables such that

$$\Pr(X = x) \propto \exp(-\sum_{C \text{ clique of } G} V_C(x))$$

- clique = complete subgraph: $\forall p \neq q \in C \ (p,q) \in G$
- V_C : clique potential = prior probability of the given realization of the elements of the clique C (fully connected subgraph)
- Hammersley-Clifford theorem (1971)
 - If probability distribution has positive mass/density, i.e., if Pr(X = x) > 0 for all x, then:

X MRF w.r.t. graph N iff X GRF w.r.t. graph N

☞ provides a characterization of MRFs as GRFs

Gibbs random field = champ de Gibbs undirected graph = graph non orienté clique = clique (!) clique potential = potentiel de clique prior probability = probabilité a posteriori

Regularization term: locality hypotheses

[Boykov, Veksler & Zabih 1998]

• Hypothesis 1: only 2nd-order cliques (i.e., edges)

$$R(f) = -\log \Pr(f) = -\log \exp(-\sum_{(p,q) \text{ edge of } G} V_{(p,q)}(f)) \text{ [GRF]}$$
$$= \sum_{(p,q) \in \mathbb{N}} V_{p,q}(f_p, f_q) \text{ [MRF pairwise potentials]}$$

• Hypothesis 2: (generalized) Potts model

$$V_{p,q}(f_p, f_q) = B_{p,q} \mathbf{1}(f_p \neq f_q)$$

i.e., $V_{p,q}(f_p, f_q) = 0$ if $f_p = f_q$
 $V_{p,q}(f_p, f_q) = B_{p,q}$ if $f_p \neq f_q$

pairwise = par paire pairwise potential = potentiel d'ordre 2 Potts model = modèle de Potts statistical mechanics = physique statistique

(Origin: statistical mechanics

- spin interaction in crystalline lattice
- link with "energy" terminology)

Examples of boundary penalties (ad hoc)

- Penalize label discontinuity at intensity continuity
 - $B_{p,q} = \exp(-(I_p I_q)^2 / 2\sigma^2) / \operatorname{dist}(p,q)$
 - large between pixels of similar intensities, i.e., when $|I_p I_q| < \sigma$
 - small between pixels of dissimilar intensities, i.e., when $|I_p I_a| > \sigma$
 - decrease with pixel distance dist(p,q) [here: 1 or $\sqrt{2}$]
 - ≈ distribution of noise among neighboring pixels
- Penalize label discontinuity at low gradient
 - $B_{p,q} = g(||\nabla I_p||)$ with g positive decreasing
 - e.g., $g(x) = 1/(1 + c x^2)$
 - penalization for label discontinuity at low gradient

.....

Wrapping up

- Pixel labeling with binary decision $f_p \in \{0,1\}$
 - 0 = background, 1 = object
- Energy formulation
 - minimize $E(f) = D(f) + \lambda R(f)$
 - data term: $D(f) = \sum_{p \in P} D_p(f_p)$
 - $D_p(f_p)$: penalty for assigning label f_p to pixel p given its color/texture
 - regularization term: $R(f) = \sum_{(p,q) \in \mathbb{N}} B_{p,q} \mathbf{1}(f_p \neq f_q)$
 - $B_{p,q}$: penalty for label discontinuity between neighbor pixels p, q
 - λ : relative importance of regularization term vs data term

Graph-cut formulation (version 1)

- Direct expression as graph-cut problem:
 - $-\mathsf{V} = \{s,t\} \cup \mathsf{P}$
 - $E = \{(s,p) \mid p \in \mathsf{P}\} \cup \{(p,q) \mid p,q \in \mathsf{N}\} \cup \{(p,t) \mid p \in \mathsf{P}\}$

			Warning:	
Edge	Weight	Sites	the connexity N is specific to	source source ↔ (background)
(p,q)	$\lambda B_{p,q}$	$(p,q) \in N$		
(<i>s</i> , <i>p</i>)	$D_p(1)$	$p \in P$		
(<i>p</i> , <i>t</i>)	$D_p(0)$	$p \in P$		

- $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \lambda \sum_{(p,q) \in \mathsf{N}} B_{p,q} \mathbf{1}(f_p \neq f_q)$

sink \leftrightarrow 1 (foreground object)

• ex. $D_p(l) = -\log \Pr_{emp}(I_p | f_p = l)$ [empirical probability for O et B]

• ex.
$$B_{p,q} = \exp(-(I_p - I_q)^2 / 2\sigma^2) / \operatorname{dist}(p,q)$$

Graph-cut formulation (version 1)

- Direct expression as graph-cut problem:
 - $-\mathsf{V} = \{s,t\} \cup \mathsf{P}$
 - $E = \{(s,p) \mid p \in \mathsf{P}\} \cup \{(p,q) \mid p,q \in \mathsf{N}\} \cup \{(p,t) \mid p \in \mathsf{P}\}$

Edge	Weight	Sites
(<i>p</i> , <i>q</i>)	$\lambda B_{p,q}$	$(p,q) \in N$
(<i>s</i> , <i>p</i>)	$D_p(1)$	$p \in P$
(<i>p</i> , <i>t</i>)	$D_p(0)$	$p \in P$

-
$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \lambda \sum_{(p,q) \in \mathsf{N}} B_{p,q} \mathbf{1}(f_p \neq f_q)$$

• Any problem/risk with this formulation ?

Graph-cut formulation (version 1)

- Direct expression as graph-cut problem:
 - $-\mathsf{V} = \{s,t\} \cup \mathsf{P}$
 - $E = \{(s,p) \mid p \in \mathsf{P}\} \cup \{(p,q) \mid p,q \in \mathsf{N}\} \cup \{(p,t) \mid p \in \mathsf{P}\}$

Edge	Weight	Sites
(<i>p</i> , <i>q</i>)	$\lambda B_{p,q}$	$(p,q) \in N$
(<i>s</i> , <i>p</i>)	$D_p(1)$	$p \in P$
(<i>p</i> , <i>t</i>)	$D_p(0)$	$p \in P$

$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \lambda \sum_{(p,q) \in \mathsf{N}} B_{p,q} \mathbf{1}(f_p \neq f_q)$$

 Pb: pixels of object/background samples not <u>necessarily</u> assigned with good label !

Graph-cut formulation (version 2)

[Boykov & Jolly 2001]

• Obj/Bg samples now always labeled OK in minimal f^*

Edge	Weight	Sites	
(<i>p</i> , <i>q</i>)	$\lambda B_{p,q}$	$(p,q) \in N$	
	$D_p(1)$	$p \in P, \ p \notin (O \cup B)$	source source $\leftrightarrow 0$ (background)
(s,p)	K	$p \in B$	p q
	0	$p \in O$	
	$D_p(0)$	$p \in P, \ p \notin (O \cup B)$	
(<i>p</i> , <i>t</i>)	0	$p \in B$	$sink \leftrightarrow 1$
	K	$p \in O$	(IOTeground Object)

- where $K = 1 + \max_{p \in P} \lambda \sum_{(p,q) \in N} B_{p,q}$ $K \approx +\infty$, i.e., too expensive to pay \Rightarrow label never assigned To go further on this subject

Some limitations (here with simple color model)

• Is the segmentation OK ?

Some limitations (here with simple color model)

.....

Part 2

Multi-label problems

Exact vs approximate solutions

Application to stereovision (disparity/depth map estimation): disparity/depth ↔ label

Two-label (binary) problem

- P : set of sites (pixels, voxels...)
- N : set of neighboring site pairs
- $L = \{0,1\}$: binary labels
- $f: P \rightarrow L$ binary labeling [notation: $f_p = f(p) = l$]
- $E: (P \rightarrow L) \rightarrow \mathbb{R}$: energy

$$\blacksquare E(f) = \underbrace{\sum_{p \in \mathsf{P}} D_p(f_p)}_{E_{\text{data}}(f)} + \underbrace{\sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)}_{E_{\text{regul}}(f)}$$

- $D_p(l)$: label penalty for site p

- $V_{p,q}(l,l')$: prior knowledge about optimal pairwise labeling

• Pb: find f^* that reaches the minimum energy $E(f^*)$

Two-label problem assumptions

- $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$
- $D_p(l)$: label penalty for site p
 - small/null for preferred label, large for undesired label
 - assumption $D_p(l) \ge 0$ (else add constant \rightarrow same optimum)
- $V_{p,q}(l,l')$: prior knowledge on optimal pairwise labeling
 - in general, smoothness: non-decreasing function of $\mathbf{1}(l \neq l')$

• e.g., $V_{p,q}(l,l') = u_{p,q} \mathbf{1}(l \neq l')$ [Potts model]

- Regularity condition, required for min-cut ($\Rightarrow c(p,q) \ge 0$)
 - $= V_{p,q}(0,0) + V_{p,q}(1,1) \le V_{p,q}(0,1) + V_{p,q}(1,0)$ [see below]

Multi-label problem

- P : set of sites (pixels, voxels...)
- N : set of neighboring site pairs
- L : finite set of labels $(\rightarrow \text{ can model scalar or even vector})$
 - e.g., **discretization** of intensity, **stereo disparity**, motion vector...
- $f: P \rightarrow L$ labeling
- $E: (P \rightarrow L) \rightarrow \mathbb{R}$: energy
 - $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q) = E_{\text{data}}(f) + E_{\text{regul}}(f)$
 - $D_p(l)$: label penalty for site p
 - $V_{p,q}(l_p, l_q)$: prior knowledge about optimal pairwise labeling
- Pb: find f^* that reaches the minimum energy $E(f^*)$

disparity = disparité

Multi-label problem assumptions

•
$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$$

- $D_p(l)$: label penalty for site p
 - small for preferred label, large for undesired label
 - assumption $D_p(l) \ge 0$ (else add constant \rightarrow same optimum)
- $V_{p,q}(l_p, l_q)$: prior knowledge on optimal pairwise labeling
 - in general, smoothness prior: non-decreasing function of $||l_p - l_q||$ [norm used if vector]

• e.g.,
$$V_{p,q}(l_p, l_q) = \lambda_{p,q} \parallel l_p - l_q \parallel$$

■ smaller penalty for closer labels

smoothness = lissage
Graph cuts for "general" energy minimization

• Problem: find labeling $f^*: P \rightarrow L$ minimizing energy

$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$$

- Question: can a **globally optimal** labeling f^* be found using some graph-cut construction?
- Answer:
 - binary labeling: yes $\underline{\text{iff}} V_{p,q}$ is regular (Kolmogorov & Zabih 2004) $V_{p,q}(0,0) + V_{p,q}(1,1) \le V_{p,q}(0,1) + V_{p,q}(1,0)$ [otherwise NP-hard]
 - multi-labeling: yes if $V_{p,q}$ convex (Ishikawa 2003) and if L linearly ordered (\Rightarrow 1D only \Rightarrow not 2D motion vector)
 - otherwise: approximate solutions (but some very good)

Piecewise-smooth vs everywhere-smooth

piecewise = par morceaux

- Observation: object properties often smooth everywhere except on boundaries
- Consequence: <u>piecewise-smooth</u> models more appropriate than <u>everywhere-smooth</u> models

original

uniform smoothing

piecewise smoothing

Piecewise-smooth models vs everywhere-smooth models

Piecewise-smooth potentials vs everywhere-smooth potentials

- General graph construction for any convex $V_{p,q}$ (Ishikawa 2003)
 - convex \Rightarrow large penalty for sharp jump
 - a few small jumps cheaper than one large jump
 - discontinuities smoothed with "ramp" ⇒ oversmoothing

Discontinuity-preserving energy

- At edges, very different labels for adjacent pixels are OK
- To not overpenalize in *E* adjacent but very different labels:
 - $V_{p,q}$ non-convex function of $\parallel l_p l_q \parallel$
 - for instance (cap max):
 - $V_{p,q} = \min(K, || l_p l_q ||^2)$

 - $V_{p,q} = u_{p,q} \mathbf{1}(l_p \neq l_q)$ (Potts model)

 $V_{p,q}(l_p, l_q)$

 l_q

Difficulty of minimization

(Potts model) with |L| > 2

simulated annealing = recuit simulé

- $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$ with
 - $f: \mathsf{P} \to \mathsf{L}$
 - $V_{p,q}(f_p, f_q)$ non convex
- min_f E(f) : minimization
 of non-convex function in
 large-dimension space (dimension = |P|)
 - NP-hard even in simple cases
 - e.g. $V_{pq}(f_p, f_q) = \mathbf{1}(f_p \neq f_q)$
 - general case: simulated annealing...

Exact binary optimization (reminder)

• Pb: find labeling $f^* : P \to L = \{0,1\}$ minimizing energy

$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$$

- Question:
 - can a **globally optimal** labeling f^* be found using some graph-cut construction?
- Answer (Kolmogorov & Zabih 2004):
 - yes $\underline{iff} V_{pq}$ is regular

$$V_{p,q}(0,0) + V_{p,q}(1,1) \le V_{p,q}(0,1) + V_{p,q}(1,0)$$

- otherwise it's NP-hard
- But what about **general energies** on **binary** variables ?

Exact binary optimization

[Kolmogorov & Zabih 2004]

m-th order potentials

- Question:
 - what functions can be minimized using graph cuts?
- Classes of functions on binary variables:
 - $F^2: E(x_1, ..., x_n) = \sum_i E^i(x_i) + \sum_{i < j} E^{i,j}(x_i, x_j)$
 - $F^3: E(x_1, \dots, x_n) = \sum_i E^i(x_i) + \sum_{i < j} E^{i,j}(x_i, x_j) + \sum_{i < j < k} E^{i,j,k}(x_i, x_j, x_k)$
 - $\mathsf{F}^{m}: E(x_{1},...,x_{n}) = \sum_{i} E^{i}(x_{i}) + ... + \sum_{u_{1} < ... < u_{m}} E^{u_{1},...,u_{m}}(x_{u_{1}},...,x_{u_{m}})$

• "Using graph cuts": *E* graph-representable iff

 \exists graph G = $\langle V, E \rangle$ with V = { $v_1, ..., v_n$, *s*, *t*} such that \forall configuration **x**= $x_1, ..., x_n$,

 $E(x_1,...,x_n) = \operatorname{cost}(\min s - t - \operatorname{cut} in \text{ which } v_i \in S \text{ if } x_i = 0 \text{ and } v_i \in T \text{ if } x_i = 1) + k \text{ constant} \in \mathbb{R}$

₹....Ē

[Kolmogorov & Zabih 2004]

- *E* regular iff
 - F^2 : $\forall i,j \; E^{i,j}(0,0) + E^{i,j}(1,1) \le E^{i,j}(0,1) + E^{i,j}(1,0)$
 - F^{*m*}: for all terms $E^{u_1,...,u_m}$ in *E*, all projections (specializations) of $E^{u_1,...,u_m}$ to a two-variable function (i.e., all variables fixed but two) are regular
- Question:
 - what functions can be minimized using graph cuts?
- Answer (Kolmogorov & Zabih 2004):
 - F^2 , F^3 : *E* graph-representable \Leftrightarrow *E* regular
 - any binary E: E not regular \Rightarrow E not graph-representable

Link with submodularity

submodular = sous-modulaire

- $g: 2^{\mathsf{P}} \to \mathbb{R}$ submodular
 - $\text{ iff } g(X) + g(Y) \ge g(X \cup Y) + g(X \cap Y)$

for any $X, Y \subset \mathsf{P}$

 $\text{ iff } g(X \cup \{j\}) - g(X) \ge g(X \cup \{i,j\}) - g(X \cup \{i\})$

for any $X \subset \mathsf{P}$ and $i, j \in \mathsf{P} \setminus X$

- g submodular \Leftrightarrow E regular, with $E(\mathbf{x}) = g(\{ p \in \mathsf{P} \mid x_p = 1\})$
 - $E^{i,j}(0,1) + E^{i,j}(1,0) \ge E^{i,j}(0,0) + E^{i,j}(1,1)$
- ∃ independent results on submodular functions
 - minimization in polynomial time but slow, best known $O(n^6)$

Exact multi-label optimization (for 2nd-order potentials)

• Problem: find labeling $f^*: P \to L$ minimizing energy

$$E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} V_{p,q}(f_p, f_q)$$

• Assumption: L linearly ordered — w.l.o.g. $L = \{1, ..., k\}$

(1D only \Rightarrow not suited, e.g., for 2D motion vector estimation)

- Solution: reduction/encoding to binary label case
 - for $V_{p,q}(l_p, l_q) = \lambda_{p,q} |l_p l_q|$ (Boykov et al. 1998, Ishikawa & Geiger 1998)
 - for any convex $V_{p,q}$ (Ishikawa 2003)
 - See also
 - MinSum pbs (Schlesinger & Flach 2006)
 - submodular $V_{p,q}$ (Darbon 2009)

(cf. Boykov et al. 1998)

- Given $L = \{1, ..., k\}$
- General idea:
 - construct one layer per label value
 - read label value from cut location

e.g., k = 4 cut: $f_p = 3, f_q = 1$ $t_1^p \cdot p_1 \cdot t_2^p \cdot p_2 \cdot t_3^p \cdot p_3 \cdot t_4^p$ s $t_1^q \cdot q_1 \cdot t_2^q \cdot q_2 \cdot t_3^q \cdot q_3 \cdot t_4^q$

layer 1 layer 2 layer 3

(cf. Boykov et al. 1998)

 $\operatorname{cut}: f_n = 3, f_q = 1$

• $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} \lambda_{p,q} |f_p - f_q|$ with $f_p \in \mathsf{L} = \{1, \dots, k\}$

Attempt 1:

- For each site *p*
 - create nodes p_1, \dots, p_{k-1}
 - create edges $t_1^{p} = (s, p_1), t_j^{p} = (p_{j-1}, p_j), t_k^{p} = (p_{k-1}, t)$
 - assign weights $w_j^p = w(t_j^p) = D_p(j)$
- For each pair of neighboring sites p and q
 - create edges $(p_j, q_j)_{j \in \{1, \dots, k-1\}}$ with weight $\lambda_{p,q}$
- Read label value from cut location, e.g., $p_2 \in S$, $p_3 \in T \Rightarrow f_p = 3$

(cf. Boykov et al. 1998)

- Given $L = \{1, ..., k\}$
- General idea:
 - construct one layer per label value
 - read label value from cut location
- Any problem ?

(cf. Boykov et al. 1998)

- Given $L = \{1, ..., k\}$
- General idea:
 - construct one layer per label value
 - read label value from cut location
- Any problem ?
 - there could be several cut locations on the same line

e.g., k = 4 cut: $f_p = 3, f_q = 1$

(cf. Boykov et al. 1998)

 $\operatorname{cut}: f_n = 3, f_q = 1$

• $E(f) = \sum_{p \in \mathsf{P}} D_p(f_p) + \sum_{(p,q) \in \mathsf{N}} \lambda_{p,q} |f_p - f_q|$ with $f_p \in \mathsf{L} = \{1, \dots, k\}$

Attempt 2:

- For each site *p*
 - create nodes p_1, \dots, p_{k-1}
 - create edges $t_1^{p} = (s, p_1), t_j^{p} = (p_{j-1}, p_j), t_k^{p} = (p_{k-1}, t)$
 - assign weights $w_j^p = w(t_j^p) = D_p(j) + K_p$ [penalize more cutting t_j^p] with $K_p = 1 + (k-1) \sum_{q \in N_p} \lambda_{p,q}$ (where N_p set of neighbors of p)
- For each pair of neighboring sites p and q

- create edges
$$(p_j,q_j)_{j\in\{1,...,k-1\}}$$
 with weight $\lambda_{p,q}$

 $w_{1}^{p} \qquad p_{1} \qquad w_{2}^{p} \qquad p_{2} \qquad w_{3}^{p} \qquad p_{3} \qquad w_{4}^{p} \qquad \lambda_{p,q} \qquad \lambda_{p,q} \qquad \lambda_{p,q} \qquad t$

Linear multi-label graph properties

(cf. Boykov et al. 1998)

- Lemma: for each site p, a minimum cut severs exactly one t_i^p
 - [≥ 1] Any cut severs at least one t_i^p

severed = coupé, sectionné

- [\leq 1] Suppose t_a^{p} , t_b^{p} are cut (same line p), then build new cut with t_b^{p} restored and links $(p_j,q_j)_{j \in \{1,\dots,k-1\}}$ broken for $q \in N_p$

• <u>Theorem</u> (Boykov et al. 1998): a minimum cut minimizes E(f)

Problem

- given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u, v)
- Graph-cut setting
 - discrete disparities: $d_p \in L = \{d_{\min}, \dots, d_{\max}\}$
 - data term: $D_p(d_p)$
 - small when pixel p in I similar to pixel $p' = p + (d_p, 0)$ in I'
 - smoothness term: $V_{p,a}(d_p, d_q)$
 - **•** small when disparities d_p and d_q are similar

rectified images ↔ aligned cameras

• Problem

- given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Graph-cut setting
 - discrete disparities: $d_p \in L = \{d_{\min}, \dots, d_{\max}\}$
- e.g., what definition?
- data term: $D_p(d_p)$
 - small when pixel p in I similar to pixel $p' = p + (d_p, 0)$ in I'
- smoothness term: $V_{p,q}(d_p, d_q)$
- e.g., what definition?
- **•** small when disparities d_p and d_q are similar

- Problem
 - given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Graph-cut setting
 - discrete disparities: $d_p \in L = \{d_{\min}, ..., d_{\max}\}$
- e.g., what definition?
- data term: $D_p(d_p)$

• e.g., $D_p(d_p) = E_{ZNSSD}(P_p; (d_p, 0))$ where P_p patch around pixel p

smoothness term: $V_{p,q}(d_p, d_q)$

e.g., what definition?

■ e.g., $V_{p,q}(d_p, d_q) = \lambda |d_p - d_q|$ [Boykov et al. → optimal disparities]

 $p' = p + (d_p, 0)$

 $\bar{I}_P = 1/|P| \sum_{q \in P} I_q$ $\sigma = [1/|P| \sum_{q \in P} (I_q - \bar{I}_P)^2]^{1/2}$

 $E_{ZNSSD}(P; \boldsymbol{u}) = 1/|P| \sum_{q \in P} \left[(I'_{q+\boldsymbol{u}} - \overline{I'}_P) / \sigma' - (I_q - \overline{I}_P) / \sigma \right]^2$

SSD = sum of square differences NSSD = normalized ... ZNSSD = zero-normalized ...

• Problem

- given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Graph-cut setting
 - discrete disparities: $d_p \in L = \{d_{\min}, ..., d_{\max}\}$
 - data term: $D_p(d_p)$

• e.g.,
$$D_p(d_p) = E_{ZNSSD}(P_p; (d_p, 0))$$

- smoothness term: $V_{p,q}(d_p, d_q)$

■ e.g., $V_{p,q}(d_p, d_q) = \lambda |d_p - d_q|$ [Boykov et al. → optimal disparities]

Is it the "optimal" solution
to the disparity map
estimation problem ?

• Problem

- given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Graph-cut setting
 - discrete disparities: $d_p \in L = \{d_{\min}, ..., d_{\max}\}$
 - data term: $D_p(d_p)$

• e.g.,
$$D_p(d_p) = E_{ZNSSD}(P_p; (d_p, 0))$$

- smoothness term: $V_{p,q}(d_p, d_q)$

• e.g.,
$$V_{p,q}(d_p, d_q) = \lambda | d_p - d_q$$

CC = cross-correlation NCC = normalized ... ZNCC = zero-normalized ...

- Problem
 - given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Graph-cut setting (alternative)
 - discrete disparities: $d_p \in L = \{d_{\min}, \dots, d_{\max}\}$

-
$$D_p(d_p) = w_{cc} \rho(E_{ZNCC}(P; (d_p, 0)) \text{ with } \rho(c) \in [0, 1]$$

• e.g.
$$\rho(c) = \begin{cases} 1 & \text{if } c < 0\\ \sqrt{1-c} & \text{if } c \ge 0 \end{cases}$$
$$V_{p,q}(d_p, d_q) = \lambda |d_p - d_q|$$

 $E_{ZNCC}(P; \boldsymbol{u}) = 1/|P| \sum_{q \in P} \left[(I'_{q+\boldsymbol{u}} - \overline{I'_P}) / \sigma' \cdot (I_q - \overline{I_P}) / \sigma \right] = E_{ZNSSD}(P; \boldsymbol{u}) = 2 - 2E_{ZNCC}(P; \boldsymbol{u})$

 $\bar{I}_{P} = 1/|P| \sum_{q \in P} I_{q}$ $\sigma = [1/|P| \sum_{q \in P} (I_{q} - \bar{I}_{P})^{2}]^{1/2}$

Approximate optimization

- Exact multi-label optimization:
 - only limited cases
 - in practice, may require large number of nodes
- How to go beyond exact optimization constraints?
- ☞ Iterate exact optimizations on subproblems (Boykov et al. 2001)
 - → local minimum Θ
 - but within known bounds of global minimum 🙂

Notion of move — Examples

at once = à la fois move = déplacement (≈ modification) de la solution

Move: maps a labeling $f : P \to L$ to a labeling $f' : P \to L$ Idea: iteratively apply moves to get closer to optimum f^*

Moves

Given a labeling $f : P \rightarrow L$ and labels α , β

- f' is a **standard move** from f iff f and f' differ at most on one site p
- f' is an **expansion move** (or α -expansion) from f iff

 $\forall p \in \mathsf{P}, f'_p = f_p \text{ or } \alpha$

 \rightarrow in *f*', compared to *f*, extra sites *p* can now be labeled α

• f' is a **swap move** (or α - β -swap) from f iff

 $\forall p \in \mathsf{P}, \ f_p \neq \alpha, \beta \Rightarrow f_p = f'_p$

 \rightarrow some sites that were labeled α are now β and vice versa

N.B. Other kinds of moves can be defined...

move = déplacement (\approx modification) de la solution α-β-swap = permutation α-β

Optimization w.r.t. moves

(cf. Boykov et. al 2001)

- simulated annealing = recuit simulé sampling = échantionnage
 - Iterative optimization over moves
 - random cycle over all labels until convergence \rightarrow local min
 - Iterating standard moves
 - = usual discrete optimization method
 - iterated conditional modes (ICM) = iterative maximization of the probability of each variable conditioned on the rest
 - local minimum w.r.t. standard move,
 i.e., energy cannot decrease with a single pixel label difference
 ⇒ weak condition, low quality
 - simulated annealing, ...
 - slow convergence (optimal properties "at infinity"), modest quality, some sampling strategies but mostly random

Optimization w.r.t. moves

(cf. Boykov et. al 2001)

- Iterative optimization over moves
 - random cycle over all labels until convergence \rightarrow local min
- Iterating expansion/swap moves (strong moves)
 - number of possible moves exponential in number of sites
 - compute optimal move using graph cut = binary problem!
 - see Boykov et. al 2001 for graph construction and details
 - significantly fewer local minima than with standard moves
 - sometimes within constant factor of global minimum
 - e.g., expansion moves & Potts model → optimum within factor 2

Image restoration with moves

Restoration with standard moves vs α -expansions

noisy image

restoration with standard moves

original image

Constraints on interaction potential

(see details in Boykov et. al 2001)

- Expansion move: V metric, \rightarrow expansion inequality:
 - $V_{p,q}(\alpha, \alpha) + V_{p,q}(\beta, \gamma) \le V_{p,q}(\beta, \alpha) + V_{p,q}(\alpha, \gamma)$ for all $\alpha, \beta, \gamma \in L$
- Swap move: *V* semi-metric, → swap inequality:

$$V_{p,q}(\alpha, \alpha) + V_{p,q}(\beta, \beta) \le V_{p,q}(\alpha, \beta) + V_{p,q}(\beta, \alpha) \text{ for all } \alpha, \beta \in \mathsf{L}$$

[= as metric but triangle inequality not required: $V_{p,q}(\alpha,\gamma) \le V_{p,q}(\alpha,\beta) + V_{p,q}(\beta,\gamma)$] [weaker condition than for expansion move]

- Examples
 - Potts model: $V_{p,q}(\alpha,\beta) = \lambda_{p,q} \mathbf{1}(\alpha \neq \beta)$
 - truncated L₂ distance: $V_{p,q}(\alpha,\beta) = \min(K, ||\alpha \beta||)$

metric = métrique(= fonct distance) $d(x,y) = 0 \Leftrightarrow x = y$ $d(x,y) = d(y,x) \ge 0$ $d(x,z) \le d(x,y)+d(y,z)$ semi-metric = semimétrique $d(x,y) = 0 \Leftrightarrow x = y$ $d(x,y) = 0 \Leftrightarrow x = y$ $d(x,y) = d(y,x) \ge 0$ $u, \gamma) \le V_{p,q}(\alpha,\beta) + V_{p,q}(\beta,\gamma)]$ /
discontinuity-preserving!

Ş.....

Disparity map estimation with moves

(a) Left image: 384x288, 15 labels

(c) Swap algorithm

(e) Normalized correlation

(b) Ground truth

(d) Expansion algorithm

(f) Simulated annealing

5......

To go further on this subject

Disparity map estimation: alternative data term

(cf. Boykov et al. 1999, Boykov et al. 2001)

- Idea: direct intensity comparison, but sensitive to sampling
 - $D_p(d_p) = \min(K, |I_p I'_{p+d_p}|^2)$
- With image sampling insensitivity:
 - disparity range discretized to 1 pixel accuracy
 → sensitivity to high gradients
 - (sub)pixel dissimilarity measure for greater accuracy,
 e.g., by linear interpolation (Birchfield & Tomasi 1998)

-
$$C_{\text{fwd}}(p,d) = \min_{d-1/2 \le u \le d+1/2} |I_p - I'_{p+u}|$$

- $C_{\text{rev}}(p,d) = \min_{p-1/2 \le x \le p+1/2} |I_x - I'_{p+d}|$

[for symmetry]

- $D_p(d_p) = C(p,d_p) = \min(K, C_{\text{fwd}}(p,d_p), C_{\text{rev}}(p,d_p))^2$

No patch similarity here: the local consistency is given by the smoothness term

Disparity map estimation: smoothness term

- Scene with fronto-parallel objects
 - piecewise-constant model = OK
 - e.g., Potts model:

 $V_{p,q}(d_p, d_q) = u_{p,q} \mathbf{1}(d_p \neq d_q)$

- Scene with slanted surfaces (e.g., ground)
 - piecewise-smooth model = better
 - e.g., smooth cap max value:

 $V_{p,q} = \lambda \min(K, |d_p - d_q|)$

• Metric \Rightarrow both swap and expansion algorithms usable

Potts model vs smooth cap max value

- Potts model : piecewise-constant
 - suited for uniform areas (\Rightarrow fewer disparities on large areas)
- Smooth cap max value: **piecewise-smooth** model
 - suited for slowly-varying areas (e.g., slope)

(b) Piecewise constant model (c) Piecewise smooth model

106

To go further on this subject

Disparity map estimation: smoothness term

(cf. Boykov et al. 1998, Boykov et al. 2001)

- Contextual information
 - neighbors *p*,*q* more likely to have same disparity if $I_p \approx I_q$ → make $V_{p,q}(d_p, d_q)$ also depend on $|I_p - I_q|$
 - meaningful in low texture areas (where $|I_p I_q|$ meaningful)
- E.g., with Potts model: $V_{p,q}(d_p, d_q) = u_{p,q} \mathbf{1}(d_p \neq d_q)$
 - $u_{p,q}$: penalty for assigning different disparities to p and q
 - textured regions: $u_{p,q} = K$
 - textureless regions: $u_{p,q} = U(|I_p I_q|)$
 - $u_{p,q}$ smaller for pixels p,q with large intensity difference $|I_p I_q|$

∎ e.g.,

$$U(|I_{p}-I_{q}|) = \begin{cases} 2K & \text{if } |I_{p}-I_{q}| \le 5\\ K & \text{if } |I_{p}-I_{q}| > 5 \end{cases}$$

Many extensions to more complex energies

(cf. Pansari & Kumar 2017)

- Truncated Convex Models (TCM)
 - several other approximate algorithms to minimize

$$E(\mathbf{x}) = \sum_{a \in \mathcal{V}} \theta_a(x_a) + \sum_{(a,b) \in \mathcal{E}} \omega_{ab} \min\{d(x_a - x_b), M\}$$

- Truncated Max of Convex Models (TMCM)
 - no clique size restriction (high-order > pairwise)

$$\theta_{\mathbf{c}}(\mathbf{x}_{\mathbf{c}}) = \omega_{\mathbf{c}} \sum_{i=1}^{m} \min\{d(p_i(\mathbf{x}_{\mathbf{c}}) - p_{c-i+1}(\mathbf{x}_{\mathbf{c}})), M\}$$

 (a) Ground truth
 (b) Cooccurrence

 (Energy, Time (s))
 (2098800, 101)

(c) Parsimonious (1364200, 225)

(d) m = 1, h' = 4

(1257249, 256)

(e) m = 3, h' = 4(1267449*, 335)


```
c : clique

\mathbf{x}_{c} : labeling of a clique

\omega_{c} : clique weight

d : convex function

M : truncation factor

p_{i}(\mathbf{x}_{c}) : i-th largest label in \mathbf{x}_{c}

c = |\mathbf{c}|
```

© Battiti & Brunato 2009
Disparity map estimation

- Problem
 - given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Are the preceding formulations OK?
 - anything not modeled?
 - any bias?

Disparity map estimation

(Boykov et. al 2001)

occlusion = occultation

• Problem

- given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Are the preceding formulations OK?
 - no treatment of occlusion
 - no symmetry: one center image, one auxiliary image $\ ^p$
 - treatment of second image relative to the first (main) one
 - difficulty to incorporate occlusion naturally

Ι

I′

 $p' = p + (d_p, 0)$

Cross-checking

(Bolles & Woodfill, 1993)

- Problem
 - given 2 rectified images I, I', estimate optimal disparity $d(p) = d_p$ for each pixel p = (u,v)
- Cross-checking method:
 - compute left-to-right disparity
 - compute right-to-left disparity
 - mark as occlusion pixels in one image mapping to pixels in the other image but which do not map back to them
- Common and easy to implement

Stereovision with occlusion handling

(cf. Kolmogorov & Zabih 2001)

occluded = occulté

- Occlusion
 - pixel visible in one image only
 - occurs usually at discontinuities
- Uniqueness model hypothesis
 - pixel in one image → at most one pixel in other image
 [sometimes too restrictive]
 - pixel with no correspondence: labeled as occluded
- Main idea:
 - use labels representing corresponding pixels (= pixel <u>pairs</u>), not pixel disparity

- A: correspondence candidates (pixel pairs in $I \times I'$) = pixel <u>a</u>ssignments
 - $A = \{ (p,p') | p_y = p'_y \text{ and } 0 \le p'_x p_x \le k \}$ (same line, different position)
 - disparity: for $a = (p, p') \in A$, $d(a) = p'_x p_x$
 - hypothesis: disparities lie in limited range [0,k]
 - goal: find subset of A containing only corresponding pixels
 - use: subsets defined as labelings $f: A \to L = \{0,1\}$ such that $\forall a = (p,p') \in A$, $f_a = 1$ if p and p' correspond, otherwise $f_a = 0$
 - symmetric treatment of images (& applicable to non-aligned cameras)
- A(f): active assignments, i.e., pixel pairs considered as corresponding
 - $A(f) = \{a \in \mathsf{A} \mid f_a = 1\}$

- $N_p(f)$: set of correspondences for pixel p
 - $N_p(f) = \{a \in A(f) \mid \exists p' \in \mathsf{P}, a = (p,p')\}$
 - configuration f unique iff $\forall p \in \mathsf{P} |N_p(f)| \le 1$
 - occluded pixels defined as pixels such that $|N_p(f)| = 0$
- *N* : a neighborhood system on assignments (used for smoothness term)
 - $N \subset \{ \{a_1, a_2\} \subset \mathsf{A} \}$
 - for efficient energy minimization via graph cuts:
 - neighbors having the same disparity
 - $N = \{\{(p,p'), (q,q')\} \subset A \mid p,p' \text{ are neighbors and } d(p,p') = d(q,q')\}$ (> then q,q' are also neighbors)

- $E(f) = E_{\text{data}}(f) + E_{\text{smooth}}(f) + E_{\text{occ}}(f)$
 - $E_{\text{data}}(f) = \sum_{a=(p,p') \in A(f)} (I_p I'_p)^2$
 - single pixel similarity
 - $E_{\text{smooth}}(f) = \sum_{\{a_1, a_2\} \in \mathbb{N}} V_{a_1, a_2} \mathbf{1}(f_{a_1} \neq f_{a_2})$
 - $N = \{\{(p,p'), (q,q')\} \subset A \mid p,p' \text{ are neighbors and } d(p,p') = d(q,q')\}$
 - → penalty if: $f_{a_1}=1$, a_2 close to a_1 , $d(a_2)=d(a_1)$, but $f_{a_2}=0$
 - Potts model on assignments (pixel pairs), not on pixel disparity
 - $E_{\text{occ}}(f) = \sum_{p \in P} C_p$. $\mathbf{1}(|N_p(f)| = 0)$ [occlusion penalty]
 - penalty C_p if p occluded

- $E(f) = E_{\text{data}}(f) + E_{\text{smooth}}(f) + E_{\text{occ}}(f)$
- Optimizable by graph cuts as multi-label problem (cf. paper)
 - graph construction on assignments (pixel pairs), not pixels
 - A^{α} : set of all assignments with disparity α
 - expansion move:
 - f' within single α -expansion move of f iff $A(f') \subset A(f) \cup A^{\alpha}$
 - currently active assignments can be deleted
 - new assignments with disparity α can be added
 - swap move:
 - f' within single swap move of f iff $A(f') \cup A^{\alpha,\beta} = A(f) \cup A^{\alpha,\beta}$
 - only changes: adding or deleting assignments having disparities α or β

(cf. Kolmogorov & Zabih 2001)

- Expansion-move algorithm:
 - **1**. start with arbitrary, unique configuration f_0
 - 2. set success ← false
 - 3. for each disparity $\boldsymbol{\alpha}$

3.1. find $f^{\alpha} = \operatorname{argmin}_{f} E(f)$ subject to f unique and within single α -move of f_{0}

3.2. if $E(f^{\alpha}) \le E(f_0)$, then set $f_0 \leftarrow f^{\alpha}$, success \leftarrow true

- 4. if success go to 2
- **5**. return f_0
- Critical step: efficient computation of α -move with smallest energy

f unique \Leftrightarrow	
$\forall p \in P$	$ N_p(f) \le 1$

(cf. Kolmogorov & Zabih 2001)

f unique \Leftrightarrow

 $\forall p \in \mathsf{P} \ |N_p(f)| \le 1$

- Swap-move algorithm:
 - **1**. start with arbitrary, unique configuration f_0
 - 2. set success ← false
 - **3.** for each pair of disparities α , β ($\alpha \neq \beta$)

3.1. find $f^{\alpha\beta} = \operatorname{argmin}_{f} E(f)$ subject to f unique and within single $\alpha\beta$ -swap of f_0

3.2. if $E(f^{\alpha\beta}) \le E(f_0)$, then set $f_0 \leftarrow f^{\alpha\beta}$, success \leftarrow true

- 4. if success go to 2
- **5**. return f_0
- Critical step: efficient computation of $\alpha\beta$ -swap with smallest energy

(cf. Kolmogorov & Zabih 2001)

(b) Potts model stereo (c) Stereo with occlusions Disparity maps obtained for the Head pair

- (d) Left image of *Tree* pair
- (e) Potts model stereo (f) Stereo with occlusions Disparity maps obtained for the Tree pair

(cf. Kolmogorov & Zabih 2001)

• Expansion moves vs swap moves

with α -expansions

with lphaeta-swaps

• Swap moves not powerful enough to escape local minima for <u>this</u> class of energy function

Multi-view reconstruction

- Given *n* calibrated images on the "same side" of scene
- Global model
 - L = discretized set of depths (not disparities)
 - image *i*, pixel *p*, depth *l*
- Difficulty = point interaction
 - pb: def (*i*,*p*,*l*), (*j*,*q*,*l*) "close" in 3D
 → too many interactions → ☺
 - sol.: def q closest pixel of projection of (i, p, l) on $j \rightarrow \bigcirc$
- Photo-consistency constraints (visibility)
 - red point, at depth l=2, blocks C2's view of green point, at depth l=3

Multi-view reconstruction

(cf. Kolmogorov & Zabih 2002)

- Terms in the energy: data, smoothness, visibility
- Optimization by α -expansion

(a) Middle image of *Head* dataset

(c) Middle image of *Garden* sequence

(b) Scene reconstruction for *Head* dataset

(d) Scene reconstruction for *Garden* sequence

See paper

point cloud = nuage de points sweep = balayage outliers = donnée (ici points) aberrantes tetrahedralization = tétraédrisation

Beyond disparity maps: 3D mesh reconstruction

(cf. Vu et al. 2012)

- Merging of depth maps into single point cloud
 - possibly sparse depth maps, e.g., obtained by plane sweep
- Problems:
 - multi-view visibility (to be taken into account globally)
 - outliers
- Solution:
 - Delaunay tetrahedralization of point cloud
 - binary labelling of tetrahedra: inside/full or outside/empty
 - 3D surface = interface inside/outside

Visibility consistency via graph cut

(cf. Vu et al. 2012)

● Lines of sight from cameras to visible points ⇒ outside

Beyond disparity maps: 3D mesh reconstruction

Input images

Point cloud

Visibility-consistent mesh

Refined mesh

- Best reconstruction results on international benchmarks
- Startup company with IMAGINE members (2011)
 - 15 employees, 90% revenue = international
 - bought by Bentley Systems (2015), still success

Exercise: simple disparity map estimation (without moves nor occlusion)

- Given 2 rectified images *I*, *I'*, estimate optimal disparity $d(p) = d_p$ for pixels p = (u,v)
- Setting: linear multi-label graph construction (cf. pp. 85-96)
 - discrete disparities: $d_p \in L = \{d_{\min}, ..., d_{\max}\}$
 - N_p : 4 neighbors of pixel p
 - $D_p(d_p) = w_{cc} \rho(E_{ZNCC}(P; (d_p, 0)))$ with
 - $V_{p,q}(d_p, d_q) = \lambda |d_p d_q|$
- See material provided for the exercise on web site (template code and detailed exercise description)

 $\rho(c) = \begin{cases} 1 & \text{if } c < 0 \\ \sqrt{1-c} & \text{if } c \ge 0 \end{cases}$

Advertisement

Internship/PhD positions related to 3D in IMAGINE research group (École des Ponts) and in Valeo.ai

Bibliography

- Birchfield, S., and Tomasi, C. (1998). A Pixel Dissimilarity Measure that Is Insensitive to Image Sampling. In IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), vol. 20, no. 4, pp. 401-406, Apr. 1998.
- Bolles, R. and Woodfill, J. (1993). Spatiotemporal consistency checking of passive range data. In International Symposium on Robotics Research.
- Boykov, Y., and Veksler, O., and Zabih, R. (1998). Markov random fields with efficient approximations. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 648–655, 1998.
- Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23:1222–1239, 2001. (Also ICCV 1999.)
- Boykov, Y. and Jolly, M.-P. (2001). Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images. In International Conference on Computer Vision (ICCV), vol. I, pp. 105-112.
- Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(9):1124–1137, September 2004.
- Boykov, Y. and Veksler, O. (2006). Graph Cuts in Vision and Graphics: Theories and Applications. In Handbook of Mathematical Models in Computer Vision, edited by Nikos Paragios, Yunmei Chen and Olivier Faugeras. Springer.
- Darbon, J. (2009). Global optimization for first order Markov Random Fields with submodular priors. Discrete Applied Mathematics, vol. 157, no. 16, pp. 3412-3423, August 2009.
- Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Doklady (Doklady) 11: 1277–1280.
- Edmonds, J., and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19 (2): 248–264.
- Ford, L. R., Jr. and Fulkerson, D. R. (1956). Maximal Flow through a Network. Canadian Journal of Mathematics, 1956, pp.399-404.

Bibliography

- Ford, L. R., Jr. and Fulkerson, D. R. (1962). Flows in Networks, Princeton University Press.
- Goldberg, A., and Tarjan, R. (1988). A new approach to the maximum-flow problem. Journal of the Association for Computing Machinery, 35(4):921–940, October 1988. (Also proc. ACM STOC 1986.)
- Greig, D., Porteous, B., and Seheult, A. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society, Series B, 51(2):271–279.
- Ishikawa, H. (2003). Exact optimization for Markov Random Fields with convex priors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(10):1333–1336, 2003.
- Ishikawa, H., and Geiger, D. (1998). Occlusions, discontinuities, and epipolar lines in stereo. In 5th European Conference on Computer Vision (ECCV), pages 232–248, 1998.
- Kolmogorov, V., and Zabih, R. (2001). Computing visual correspondence with occlusions via graph cuts. In International Conference on Computer Vision (ICCV), July 2001.
- Kolmogorov, V., and Zabih, R. (2002). Multi-camera scene reconstruction via graph cuts. In 7th European Conference on Computer Vision (ECCV), volume III of LNCS 2352, pages 82–96, Copenhagen, Denmark, May 2002. Springer-Verlag.
- Kolmogorov, V., and Zabih, R. (2004). What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(2):147–159, February 2004.
- Pansari, P. and Kumar, P. (2017). Truncated Max-of-Convex Models. International Conference on Computer Vision and Pattern Recognition (CVPR).
- Schlesinger, D., and Flach, B., Transforming an arbitrary MinSum problem into a binary one, Technical report TUD-FI06-01, Dresden University of Technology, April 2006.
- Sleator, D. D., and Tarjan, R. E. (1981). A Data Structure for Dynamic Trees. Proceedings of the thirteenth annual ACM symposium on Theory of computing (STOC), pp. 114-122. (Also Journal of Computer and System Sciences, 26(3), 1983.)
- Vu, H., Labatut, P., Pons, J.Ph., and Keriven, R. (2012). High Accuracy and Visibility-Consistent Dense Multi-view Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.