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Introduction

N
3D reconstruction

e capturing reality

for diagnosis, simulation, movies, video games,
interaction in virtual/augmented reality, ...

This course:
e camera calibration

relevance of accuracy: 1° error, at 10m | 17cm error
e low-level 3D (disparity/depth map, mesh)

as opposed to high-level geometric primitives, semantics...
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Mathematical tools for 3D reconstruction

e Deep learning:
very good for matching image regions
-> subcomponent of 3D reconstruction algorithm

a few methods for direct disparity/depth map estimation
fair results on 3D reconstruction from single view
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e Graph cuts (this lecture):

practical, well-founded, general (® maps, meshes...)
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Motivating graph cuts

e Powerful multidimensional energy minimization tool
wide class of binary and non binary energies
in some cases, globally optimal solutions
some provably good approximations (and good in practice)
allowing regularizers with contrast preservation

m enforcement of
piecewise smoothness
while preserving relevant
sharp discontinuities

e Geometric interpretation
hypersurface in n-D space

E(f)=X,,D(f)
+ Z(M)GN V;lq(];’ fq)

Yang, Wang & Ahuja 2010 © IEEE

Boykov & Veksler 2006 © Springer
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Many links to other domains

(cf. Boykov & Veksler 2006)

Combinatorial algorithms (e.g., dynamic programming)
Simulated annealing

Markov random fields (MRFs)

Random walks and electric circuit theory

Bayesian networks and belief propagation

Level sets and other variational methods

Anisotropic diffusion

Statistical physics

Submodular functions

Integral/differential geometry, etc.

dynamic programming = programmation dynamique
simulated annealing = recuit simulé

Markov random field = champ (aléatoire) de Markov
random walk = marche aléatoire

Bayesian network = réseaux bayésien

level set = ligne de niveau

submodular function = fonction sous-modulaire
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Overview of the course

N
e Notions

graph cut, minimum cut

flow network, maximum flow

optimization: exact (global), approximate (local)

e lllustration with emblematic applications

segmentation disparity map estimation
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Overview of the course

N
e Notions

graph cut, minimum cut
flow network, maximum flow

optimization: exact (global), approximate (local)

e lllustration with emblematic applications

segmentation

disparity map estimation

No time to go deep
into every topic =
general ideas,
read the references

(a) Left image of Head pair

(b) Potts model stereo

(c
NHarna»d +ar

mana ~htadinad



Part 1

Graph cuts basics
Max-flow min-cut theorem

Application to image restoration
and image segmentation
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node = nceud
vertex (vertices) = sommet(s)

[
edge = aréte
directed = orienté
digraph (directed graph) =
graphe orienté

sink = puits

e GraphG=(V,E) (digraph)
SOUrce

set of nodes (vertices) V
set of directed edges E
mp—q
o V={s5¢tjUP

terminal nodes: {s, ¢}

B 5:source node
m ¢ target node (= sink)

non-terminal nodes: P

m ex. P = set of pixels, voxels, etc.
(can be very different from an image)

Boykov & Veksler 2006 © Springer

Example of connectivity
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Graph cut basics

weight = poids

label = étiquette
link = lien

I
® Edge labels, for p—¢g €E

c(p,q) = 0: nonnegative costs SOurce
also called weights w(p,q)

c(p,q) and c(g,p), if any, may differ
e Links

t-link: term. <> non-term.

mis—op|pAt),{g—t|g#s)

n-link: non-term. — non-term.

#aN={p—gq|pg #st

Boykov & Veksler 2006 © Springer
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Cut and minimum cut

cut = coupe
severed = coupé, sectionné

B
® s-tcut(orjust “cut”): C ={S,T]

SOUrce

node partition suchthats €S, reT

® Costofacut{ST]:
¢cST)=2 s o1 €9

N.B. cost of severed edges:
only fromSto T

e Minimum cut:

i.e., with min cost: ming; ¢(S,T)

intuition: cuts only “weak” links

Boykov & Veksler 2006 © Springer
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Different view: flow network

flow = flot
network = réseau
. t tati =
(or transportation network) rahsport
tex = t
PTMLMMIIIINNNNNSSSS————————-— node < neaud
edge = aréte

SOuUrce

e Different vocabulary and features
m graph < network

vertex =node D q, ..
edge = arc p—qor(pq)
cost = capacity c(p.q)

possibly many sources & sinks

® Flowf:VXV—-IR
f(p,q): amount of flow p—¢
" (pqg €E=clpqg)=0/1pg =0

e.g. road traffic, fluid in pipes, current in electrical circuit,

Boykov & Veksler 2006 © Springer
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Flow network constraints

’ skew symmetry = antisymétritj

I
e Capacity constraint

fip,.q) < c(p,q) source

e Skew symmetry

fp.q) = —flq.p)

e Flow conservation

Vp, netflow 2., fip.q) =0
unless p = s (s produces flow)
orp =t (¢t consumes flow)

e, incoming 2 . flg.p)
=outgoing 2., . f(P.9)

Kirchhoff's law

Boykov & Veksler 2006 © Springer



Renaud Marlet/Pascal Monasse 14

Flow network constraints

’ skew symmetry = antisymétrieJ
e s-tflow (orjust “flow) f source

VX V>R
satisfying flow constraints

e Value of s-7 flow
f1=%, fis9) =X, fip.0)

m amount of flow from source
= amount of flow to sink

e Maximum flow:

i.e., with maximum value: maxf|f|

intuition: arcs saturated as much as possible

Boykov & Veksler 2006 © Springer
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

[fl=c(5,T) =7

15
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

[fl=c(5,T)=4

min: enumerate partitions...

16
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

|f1=c(5,T)=4
min: enumerate partitions...
max: try increasing f(p,q)...

17
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

|f1=c(5,T)=4
min: enumerate partitions...
max: try increasing f(p,q)...

18
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

|f1=c(5,T)=4
min: enumerate partitions...
max: try increasing f(p,q)...

19
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

|f1=c(5,T)=4
min: enumerate partitions...
max: try increasing f(p,q)...

20
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Max-flow min-cut theorem

e Theorem

The maximum value of an s-f flow is equal to the
minimum capacity (i.e., min cost) of an s-f cut.

e Example

e Intuition

|f1=c(5,T)=4
min: enumerate partitions...
max: try increasing f(p,q)...

pull s and ¢ apart: the graph tears where it is weak

to pull = tirer
to tear = (se) déchirer
weak = faible

min cut: cut corresponding to a small number of weak links | edge label: f(p,q)/c(p.q)

max flow: flow bounded by low-capacity links in a cut

21
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Max-flow min-cut theorem

linear programmaing =
Programmation linéaire

e Theorem

The maximum value of an s-¢ flow is equal to the minimum capacity (i.e., min cost) of an
s-1 cut.

proved independently
by Elias, Feinstein & Shannon,
and Ford & Fulkerson (1956)

special case of strong duality theorem
in linear programming

can be used to derive other theorems
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Max flows and min cuts configurations
are not unique

e Different configurations with same maximum flow

e Different configurations with same min-cut cost

23
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Algorithms for computing max flow

I
e Polynomial time

e Push-relabel methods
better performance for general graphs

e.g. Goldberg and Tarjan 1988: O(V Elog(V*/E))
m where V: number of vertices, E: number of edges

e Augmenting paths methods
iteratively push flow from source to sink along some path

better performance on specific graphs

e.g. Ford-Fulkerson 1956: O(E max|f |) for integer capacity ¢

24
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Re5|dual network/graph

N
e Given flow network G = (V,E, ¢, f)

Define residual network G, = (V,E, c » 0) with

residual capacity ¢ (p q) =c(p,q) —f(p.q)

no flow, i.e., value O for all edges

e Example:

“edge label: fip.q)/c(p.q)

25



To go further on this subject :

Ford-Fulkerson algorlthm (1956)

termination = terminaison
semi-algorithm: termination

I not guaranteed for allnputs

Renaud Marlet/Pascal Monasse
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fip,q) < 0O for all edges [P: augmenting path]
while 3 path P from s to ¢ such that V(p,q) € P ¢(p.q)>0

f(P) «— min{c (p q) | (p.q) € P} [min residual capacity]

for each edge (p q) €EP
f.q) = fp.q) + ¢, (P) [push flow along path]
Ag.p) = Ag.p)—c,(P) [keep skew symmetry]

e N.B. termination not guaranteed

maximum flow reached if (semi-)algorithm terminates
(but may “converge” to less than maximum flow if it does not terminate)

always terminates for integer values (or rational values)
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2 To go further on this subject

S T T L L L LT LT

Ford-Fulkerson algorithm: an example

| f|=1+2+1 =4 =¢(S,T)
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2 To go further on this subject

S T T L L L LT LT r

Ford-Fulkerson algorithm: an example

Taking edges backwards = OK (and sometimes needed)

| f| =1+1+1+1 =4 = ¢(S,T)



To go further on this subject :

Fdmonds- Karp algorlthm (1972)
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breadth-first = en largeur d'abord

I R
e As Ford-Fulkerson but shortest path with >0 capacity

breadth-first search for augmenting path (cf. example above)
e Termination: now guaranteed

e Complexity: O(VE?)
slower than push-relabel methods for general graphs

faster in practice for sparse graphs

e Other variant (Dinic 1970), complexity: O(V? E)
other flow selection (blocking flows)

O(V Elog V) with dynamic trees (Sleator & Tarjan 1981)



Renaud Marlet/Pascal Monasse

Maximum flow for grid graphs

e Fast augmenting path algorithm
(Boykov & Kolmogorov 2004)

often significantly outperforms push-relabel methods
observed running time is linear
many variants since then

e But push-relabel algorithm can be run in parallel

good setting for GPU acceleration

The “best” algorithm depends on the context

30
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: : To go further on this subject

Variant: I\/Iultlway cut problem

e More than two terminals: {s ,...,s }
e Multiway cut:

set of edges leaving each terminal in a separate component

e Multiway cut problem
find cut with minimum weight
same as min cut when k=2

NP-hard if £ >3 (in fact APX-hard, i.e., NP-hard to approx.)

but can be solved exactly for planar graphs

planar = planaire

31
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Graph cuts for binary optimization

I
e Inherently a binary technique

splitting in two

e 1useinimage processing:
binary image restoration (Greig et al. 1989)

black&white image with noise — image with no noise

e Can be generalized to large classes of binary energy

regular functions

32
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Binary image restoration

noise = bruit
threshold = seuil

Original X

. graph cut >

© Mark Schmidt 2007
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Binary image restoration:
The graph cut view

e
e Agreement with observed data Ip : intensity of image 7 at pixel p

penalty = pénalité, colt
reward = récompense

Dp(l): penalty (= -reward) for assigning
label [ € {0,1} to pixel peP

if I =Ithen D (/) <D (') for I'£]

w(s,p)=D (1), w(p,0)=D (0)
e Example:
if/ =0,D(0)=0,D(1)=x
ifI =1,D(0)=x D (1)=0
if/ =0 and PES, cost =D (0)=0
if/ =0and pET, cost =D ()=«

Boykov & Veksler 2006 © Springer
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Binary image restoration:
The graph cut view e J

regularizing constraint =
contrainte de régularisation

N smoothing = lissage
e Agreement with observed data

Dp(l): penalty (= —reward) for assigning
label [ € {0,1} to pixel peP

if I =Ithen D (/) <D (') for I'£]

w(s,p)=D (1), w(p,)=D (0)

e Minimize discontinuities

source <> 0 (black)

penalty for (long) contours

" wp,g)=w(gp)=r>0

spatial coherence,
regularizing constraint,
smoothing factor... (see below)

Boykov & Veksler 2006 © Springer
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Binary image restoration:
The graph cut view

N =1
® Binary labeling / [N.B. different from “flow 1]
assigns label f € {0,1} to pixel peP
m [P {01} fip)=Ff,
® CutC=|{S5T | < labelingf

source <> 0 (black)

1-to-1 correspondence: f= 1|T

e Costofacut: |C|=

pEP p(f) Z(pc])ESXT wp.q)

= cost of flip + cost of local dissimilarity

e Restored image:
= l[abeling corresponding to a minimum cut

Boykov & Veksler 2006 © Springer
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Binary image restoration:
The energy view

N
e Energy of labeling f

E(f) = |C|=
ZPEPDP(];)—F
A2y peN 1(7;:0/\]:1: D

where

source <> 0 (black)

1(false)=0 | l(true)=1

[or: 72h 2., N 1(7; # 1))

e Restored image:

labeling corresponding to minimum energy (=
minimum cut)

Boykov & Veksler 2006 © Springer
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Binary image restoration:
The smoothing factor

cluster = amas
outlier = point aberrant

e Small A (actually Mk):

pixels choose their label independently

<> 0 (black
of their neighbors POUree (black)

gkt Large A:

pixels choose the label
with smaller average cost

~ ~ | @ Balanced A value:

pixels form compact, spatially
coherent clusters with same label

~~~~~~~~~ - noise/outliers conform to neighbors

Boykov & Veksler 2006 © Springer
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Graph cuts for energy minimization

I
e Given some energy E( /') such that

f:P—L={0,1} binarylabeling
E(f) - ZPEP Dp(};) + Z(p,q)GN VM(];’fq)

-~ N ~ J
Edata(f ) Ere ul(f )
regularity condition (see belowg)

-V 00)+V (1,1) <V (O0,D)+V (1,0)

e Theorem: then there is a graph whose minimum cut defines a labeling f that reaches the

minimum energy (Kolmogorov & Zabih 2004)
[N.B. Vladimir Kolmogorov, not Andrey Kolmogorov]

[structure of graph somehow similar to above form]

39
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Graph construction

e Preventing a t-link cut: “infinite” weight

el moel e

e Favoring a t-link cut: null weight (= no edge)

o o ®

40
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. To go further on this subject : "
Graph cuts as hypersurfaces
(cf. Boykov & Veksler 2006)
N
e Cutona 2D grid e Cutona3Dgrid seed=graine

Lo

Boykov & Veksler 2006 © Springer
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To go further on this subject

Renaud Marlet/Pascal Monasse
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Example of topologicai issue

I
e Connected seeds e Disconnected seeds

Boykov & Veksler 2006 © Springer
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Example of topological constralnt:
fold prevention

N
® Ex.in disparity map estimation: d = f(x,))

® In 2D:y=f(x), only one value for y given one x

Y
SRS ¢
SRTREES

IR CEe

¥ O3 ¥ ¥ ¥
SENAREQ»

ANBEN®
366660

=V

Boykov & Veksler 2006 © Springer
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A “revolution” in optimization

simulated annealing = recuit simulé

B
e Previously (before Greig et al. 1989)

exact optimization like this was not possible

used approaches:
m iterative algorithms such as simulated annealing
m very far from global optimum, even in binary case like this
m work of Greig et al. was (primarily) meant to show this fact

e Remained unnoticed for almost 10 years in the computer vision community...
m maybe binary image restoration was viewed as too restrictive ?
(Boykov & Veksler 2006)
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Graph cut techniques:
now very popular in computer vision

e
e Extensive work since 1998

Boykov, Geiger, Ishikawa, Kolmogorov, Veksler, Zabih
and others...

e Almost linear in practice (in nb nodes/edges)

but beware of the graph size:
it can be exponential in the size of the problem

e Many applications
regularization, smoothing, restoration
segmentation

stereovision: disparity map estimation, ...

45
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Warning:
global optimum != best real-life solution

I
e Graph cuts provide exact, global optimum

to binary labeling problems (under regularity condition)
e But the problem remains a model
approximation of reality

limited number of factors

parameters (e.g., A)

@ Global optimum of abstracted problem,
not necessarily best solution in real life

46
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Not for free

B
e Many papers construct

their own graph
for their own specific energy function

e The construction can be fairly complex

« Powerful tool but does not exempt from thinking
(contrary to some aspects of deep learning ©)

47
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Graph cut vs deep learning

I
e Graph cut

works well, with proven optimality bounds
e Deep learning

works extremely well, but mainly empirical
e Somewhat complementary

graph cut sometimes used to regularize network output

48
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Application to image segmentation

I
e Problem:

background = arriere-plan
sample = échantillon
area = zone

given an image with foreground objects and background

given sample areas of both kinds

separate objects from background

[Duchenne & al. 2008]
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Application to image segmentation

e Problem: background = arriére-plan

sample = échantillon

area = zone

given an image with foreground objects and background

given sample areas of both kinds (O, B)

separate objects from background
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Intuition

N
What characterizes an object/background segmentation ?

51
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Intuition

background = arriere-plan
sample = échantillon
area = zone

I
What characterizes an object/background segmentation ?

pixels of segmented object and background
look like corresponding sample pixels O and B

segment contours have high gradient, and are not too long
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General formulation

[Boykov & Jolly 2001]

I
® Pixel labeling with binary decision]; cl = {0,1 }

1 = Object’ 0 = backg rou nd data term = terme d'attache aux données

regularization term = terme de régularisation
a.k.a. = also known as

o Energy form u |a'[_'ion penalty = pénalité, colt
to assign = affecter (une valeur a qq chose)
sample = échantillon

minimize E(f)=D(f) + L R(f) background =

boundary = frontiere
neighboring pixel = pixel voisin

- D(f) data term (a.k.a. data fidelity term) = regional term

B penalty for assigning labels f in image I given pixel sample assignmentsin L : O (object
pixels), B (background pixels)

R( f): regularization term = boundary term

m penalty for label discontinuity of neighboring pixels

A : relative importance of regularization term vs data term
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: To go further on this subject

T T T T T T L T LA r

54

PrOba biIiStIC posterior probability =
justification/framework iheload 2 2 Postertor
vraisemblance
(log-)likelihood =

(log-)vraisemblance

e Minimize E( ) <> maximize posterior proba. Pr( f|/)
e Bayestheorem:

l - - - _| | - - mml am= - l j

The term we want ;

to maximize ”
w.rt. f

<> data term, <> regularization term,
probability to depending on type of labeling
A constant observe image / and with various hypotheses
d f - : '
° Con5|der(Illnkefef['?gcr)]gs(,e (?‘|f5 Pr(/kpgwing labeling / (e.g., locality, cf. MRF below)

e Actually consider log-likelihoods (= sums)
E(f)=D(f)+AR(f) < —log Pr(f|I)+c=—log Pr(/|f) —log Pr(f)
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To go further on this subject

Renaud Marlet/Pascal Monasse
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Data term:
linking estimated labels to observed pixels

penalty = pénalité, colt
to assign = affecter

sample = échantillon
— likelihood = vraisemblance
random variable = variable aléatoire
e D(f)and likelihood

penalty for assigning labels f in I given sample assignments <> (log-)likelihood that fis
consistent with image samples

D(f)=—log L(f|I)=—log Pr(/[ f)

LU L LR LR R R LR LR R LR R R L] =

® Pixel independence hypothesis (common approximation) . wrong strictly
: speaking, but

Pr(I|f)= Pr(/ if pixels iid i “true enough”  :

d1f) Hpep (p|];) P 2 to be often

— _ 2 assumed

D(f)= Zpep Dp(];) where Dp(];) = —log Pr(]p |];)

m Dp(fp) : penalty for observing Ip for a pixel of typefp

« Find an estimate of Pr(/ | /)
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To go further on this subject >0
empirical_prc’)babili_ty= ] ) Data te rm:
probabilité empirique likelihood/color model

Gaussian mixture =
mélange de gaussiennes

® Approaches to find an estimate of Pr(/|f)
histograms

m build an empirical distribution of the
color of object/background pixels, based
on pixels marked as object/background

© Canon 2012

m estimate Pr(]p | ]; ) based on histograms: Premp(rgb|O),Premp(rgb|B)
Gaussian Mixture Model (GMM)

m model the color of object (resp. background) pixels
with a distribution defined as a mixture of Gaussians
texon (or texton): texture patch (possibly abstracted)

m compare with expected texture property:
response to filters (spectral analysis), moments...

Ui
il
s

Blunsden 2006 @ U. of Edinburgh
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To go further on this subject

S L LT LTI r

Regularization term: locality hypotheses

N
e Markov random field (MRF), or Markov network

neighborhood system: N = {N |p € P}
m N :setneighborsofpsuchthat pgN and peN < qgeN,

X=(X) ., field (set) of random variables

such that each random variable Xp depends
on other random variables only through

its neighbors Np

w |ocality hypothesis: Pr(Xp= x| X, )= Pr(sz X |XNp)

\p}
N = undirected graph: (p,q) edge iff p € Nq (g€ Np)

(MRF also called undirected graphical model)

A
: 4

Markov random field =
champ de Markov
random variable =
variable aléatoire
neighborhood = voisinage
undirected graph =
graph non orienté
graphical model =
modele graphique

57
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2 To go further on this subject
Regularization term: locality hypotheses

Gibbs random field = champ de Gibbs
undirected graph = graph non orienté

B clique = clique (1)
clique potential = potentiel de clique

PY Glbbs random ﬁe|d (G RF) prior probability = probabilité a posteriori

e Ham

G undirected graph, X = (Xp)pep random variables such that
PI'(X: )C) x eXp(_ Z“Cclique of G VC (X))

m clique = complete subgraph: Vp #¢eC (p,q)€G
m V. clique potential = prior probability of the given realization of the elements
of the clique C (fully connected subgraph)

© Battiti & Brunato 2009

mersley-Clifford theorem (1971)

If probability distribution has positive mass/density, i.e.,
if Pr(X=x)>0 for all x, then:

X MRF w.rt. graph N iff X GRF w.r.t. graph N

= provides a characterization of MRFs as GRFs



: To go further on this subject :
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Regularization term: locality hypotheses

N
® Hypothesis 1: only 2"-order cliques (i.e., edges)

R(f)=—1log Pr(f)=—log exp(=2, ' secorc Vipy (/) [GRFI
=2 0en Vol S) [MRF pairwise potentials]

e Hypothesis 2: (generalized) Potts model
Vol )= 8,107, #1)

e, V(£)=0  iff=f
Voldp ) =B,y 1,7,

(Origin: statistical mechanics
spin interaction in crystalline lattice
link with “energy” terminology)

59

[Boykov, Veksler & Zabih 1998]

pairwise = par paire
pairwise potential =
potentiel d'ordre 2
Potts model =
modele de Potts
statistical mechanics =
physique statistique




: To go further on this subject :
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Examples of boundary penalties (ad hoc)

I
e Penalize label discontinuity at intensity continuity

Bp’q = eXp(_([p_]q)z/Q’Gz) / dlSt(p’ q) [Boykov & Jolly 2001]
large between pixels of similar intensities, i.e., when | -1 | <o

u
m small between pixels of dissimilar intensities, i.e., when | -1 |>0
m

decrease with pixel distance dist(p,q) [here: 1 or v2]
m = distribution of noise among neighboring pixels

e Penalize label discontinuity at low gradient

A
Y

B =g(| VI |)) with g positive decreasing

moeg,gx)=1/(1+cx?
m penalization for label discontinuity at low gradient

60



To go further on this subject '

....................................................................................... r

Wrappmg up

Renaud Marlet/Pascal Monasse

e Pixel labeling with binary decision];) e {0,1}

0 = background, 1 = object

e Energy formulation
minimize E(f)=D(f) + A R(f)
data term: D(f)=2 ., D (f)
m Dp(];): penalty for assigning IabeI]; to pixel p given its color/texture
regularization term: R(f) = Z(p,q)eN B 1(f,#f)
m Bp}q : penalty for label discontinuity between neighbor pixels p, g

A : relative importance of regularization term vs data term
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Graph-cut formulation (version 1)

e Direct expression as graph-cut problem:
V = {st} UP
E ={(p)|peP} U i{P9g)

p.qeEN } U {(p.1) | peP }

|||||||||||||||||||||||||||||||||||||||||||||||

: Warning:
. . th itv N source source &< 0
Edge Weight Sites ii 2823%’2 t\(/) (bagkground)
the problem!
».9) LB PpgoeN ¢
(S’p) Dp(l) P = P
X)) DP(O) peP
ink <> 1
E(f) Z D (f) A Z(p q)eN pq (]; ?5]:1) (foregrounsclinobject)

m ex. Dp(l) =—log Premp(1p|]; =[) [empirical probability for O et B]
m ex.B = exp(—(]p—]q)2/202) / dist(p,q)
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Graph-cut formulation (version 1)

e Direct expression as graph-cut problem:
V = {st} UP
E ={(sp)|peP} Ulpq) |pgeN} U {p0)|peP}

Edge Weight Sites
P.q) }LBp,q (.9 €N
(S’p) Dp(l) P = P
) D (0) peEP

E(f) - ZPEP Dp(];) A Z(1!7,(17)€N Bp,q 1(}; ;éfq)

e Any problem/risk with this formulation ?

source source €<= 0
(background)

sink <> 1
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Graph-cut formulation (version 1)

e Direct expression as graph-cut problem:

V = {st} UP

E={sp|reP} U ipg

p.qeEN } U {(p.1) | peP }

Edge Weight Sites
P.q) }\'Bp,q (.9 €N
(S’p) Dp(l) P = P
) D (0) peEP

E(f) - ZPEP Dp(];) A Z(1!7,(17)€N prq 1(}; ;éfq)

e Pb: pixels of object/background samples

not necessarily assigned with good label !

sink <> 1
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Graph-cut formulation (version 2)

e Obj/Bg samples now always labeled OK in minimal f~

Edge Weight Sites
®.9) LB (.q) €N
Dp(l) p€eP, p&(OUB)
(s.p) K pEB
0 peO
Dp(O) p€eP, pg(OUB)
(p,l‘) 0 pE B
K peO

=1+
where K =1 max A Z(p,q)eN Bp’q

K=+, i.e., too expensive to pay = label never assigned

[Boykov & Jolly 2001]

source source <> 0
(background)

sink<> 1
(foreground object)
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: To go further on this subject :

S L LT LTI r

Some limitations

(here with simple color model)

N
e Isthe segmentation OK ?
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2 To go further on this subject

Some limitations

Renaud Marlet/Pascal Monasse

(here with simple color model)

color model
not complex
enough

sensitivity to
regularization
parameter

neighboring
model

not complex
enough

67
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Part 2

Multi-label problems
Exact vs approximate solutions

Application to stereovision

(disparity/depth map estimation):

disparity/depth < label

68
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Two-label (binary) problem

P : set of sites (pixels, voxels...)

N : set of neighboring site pairs

L={0,1} : binary labels

f: P — L binary labeling [notation: f = f(p) =]
E:(P—L)—R:energy

u E(f) Z D (f) + Z(M)EN pq(]; fq)
Eolf) E (/)

- D (I): label penalty for site p

-V, (LI): prior knowledge about optimal pairwise labeling

e Pb:find 7 that reaches the minimum energy E( /)
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Two-label problem assumptions

I
¢ E(f) - ZPEP Dp(];) * Z(M)EN Vp,q(ij7 ’fq)

e D (/) :label penalty for site p

small/null for preferred label, large for undesired label
assumption Dp(l) > (0 (else add constant = same optimum)
° Vp,q(l,l’): prior knowledge on optimal pairwise labeling
in general, smoothness: non-decreasing function of 1(/ # /')
m eg, Vp}q(l,l’) =u, 1(/#1") [Potts model]

® Regularity condition, required for min-cut (= c(p,q) > 0)
m V (0,0)+V (11) <V (0,1)+V (1,0) [see below]
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Multi-label problem

P : set of sites (pixels, voxels...)
N : set of neighboring site pairs

L : finite set of labels (— can model scalar or even vector)

m e.g., discretization of intensity, stereo disparity, motion vector...
f: P — L labeling
E:(P—L)—R:energy
8 E()=%,0 D)+ T Vool ) = By ) E ()
. Dp(D: label penalty for site p
Vp’q(lp,lq): prior knowledge about optimal pairwise labeling

e Pb:find /7 that reaches the minimum energy E( /)

71

disparity = disparité



Renaud Marlet/Pascal Monasse

Multi-label problem assumptions

o EN=%0D,0)* %,V S)
° Dp(l) : label penalty for site p

small for preferred label, large for undesired label
assumption Dp(l) > 0 (else add constant = same optimum)
° Vp}q(lp,lq): prior knowledge on optimal pairwise labeling

in general, smoothness prior:
non-decreasing function of [[/ —/ || [norm used if vector]

meg, V (LD)=A (1-1]

m smaller penalty for closer labels

72

smoothness = lissage
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Graph cuts for

“general” energy minimization

® Problem: find labeling f*: P — L minimizing energy
E(f)= ZpEP DP(J;) i Z(M)EN prq(];’ fq)
e Question: can a globally optimal labeling /™ be found using some graph-cut construction?
e Answer:
binary labeling: yes iff VM is regular (Kolmogorov & Zabih 2004)
Vp’q(0,0) + Vp’q(l,l) < VM(O,I) + Vp,q(l,O) [otherwise NP-hard]

multi-labeling: yes if VM convex (Ishikawa 2003)

and if L linearly ordered (= 1D only = not 2D motion vector)
otherwise: approximate solutions (but some very good)
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Piecewise-smooth vs everywhere-smooth

piecewise = par morceaux

e Observation: object properties
often smooth everywhere
except on boundaries

« Consequence: piecewise-smooth models more
appropriate than everywhere-smooth models

Yang, Wang & Ahuja 2010 © IEEE

original uniform smoothing piecewise smoothing
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Piecewise-smooth models
vs everywhere-smooth models

steep = raide, tres pentu

® Local variation of potentials V;) g
depending on label variation

[’ I
v
iq Vp,q(lp’ lq)
4 J / >l
p p p p [ [
p q
locally smooth from /to /' locally steep from /to /' piecewise-smooth potential

when going from p to p’ when going from p to p’
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Piecewise-smooth potentials
vs everywhere-smooth potentials

I
e General graph construction for

any convex Vp . (Ishikawa 2003)

convex = large penalty for sharp jump
a few small jumps cheaper than one large jump

& discontinuities smoothed with “ramp” = oversmoothing

In practice,
A vV (1,1) best results with A V. (,l)
Paty “least convex” pap

function, e.g.,
Vp,q(lp’ lq) - xp,q H lp N lq ”
» »
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Discontinuity-preserving energy

I
e At edges, very different labels for adjacent pixels are OK

e To not overpenalize in E adjacent but very different labels:

V,,non-convex function of | lp -1, | Vo)

for instance (cap max): \ /

a 7 =minK, |1 —1|?)

S
~~

a 7 =minK, ||~ |)

m V =u, l(lp * lq) (Potts model) \

h
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Difficulty of minimization

o E(N=2,D()+2, oV, [) with
f:P—>L
Vp’q(}; ,fq) non convex

° minfE(f) : minimization
of non-convex function in

large-dimension space (dimension =|P |)

78

simulated annealing = recuit simulé

Vm(lp’ lq)

NP-hard even in simple cases lp

megV (fS)=1#/) (Potts model) with |[L | >2

general case: simulated annealing...
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Exact binary optimization (reminder)

Pb: find labeling f*: P — L= {0,1} minimizing energy
E(f)= ZPEP Dp(fp) * Z(p,q)EN Vm(fp’ fq)
Question:

can a globally optimal labeling f~ be found using
some graph-cut construction?

Answer (Kolmogorov & Zabih 2004):
yes iff v is regular
= V004V, L)<V, (01)+V, (1,0
otherwise it's NP-hard

But what about general energies on binary variables ?
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Exact binary optimization

[Kolmogorov & Zabih 2004]

e Question:
what functions can be minimized using graph cuts?

e Classes of functions on binary variables:
F2 E(x,...x,) =2, E(x)+ 2, E¥(x,x)

Fo: E(x,,.x) = 2, E(x) + 2, EV(x,x )+ 2, EVNx,x,x)) T
- . m-th tential
Fre B(Xpex)) = X, EG) + oo+ 2, Bl ., ) | [1th order porentials .

e “Using graph cuts”: £ graph-representable iff
dgraph G =(V,E)withV={v,..,v s, t} such that
Vconfiguration x=x,,...,x ,
E(x,,....x ) = cost(min s-t-cut in which v. €S ifx =0 and v, €T if x =1) + k constant € R



To go further on this subject '

Exact bmary optlmlzatlon

Renaud Marlet/Pascal Monasse

I
e Fregulariff

F2 Vij E¥(0,0)+ E¥(1,1) < E¥(0,1) + E¥(1,0)

functlon (i.e., all variables ﬁxed but two) are regular

e Question:
what functions can be minimized using graph cuts?

e Answer (Kolmogorov & Zabih 2004):

F2, F3: E graph-representable < E regular
any binary E: E not regular = E not graph-representable

81

[Kolmogorov & Zabih 2004]
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Link W|th submodularlty

® o:2" > IR submodular

iff g X)+g(Y)= gl XuY)+gXnNY)
forany X, Y c P

iff gXU{j})—gX)= g(XU{ij})—gXU{i})
forany X< P and i,j €P\X

e g submodular < E regular, with E(x)=g({p € P | x=1})
E¥(0,1)+ E¥(1,0) = E¥(0,0) + E¥(1,1)

e dindependent results on submodular functions

minimization in polynomial time but slow, best known O(n°)

82

submodular = sous-modulaire
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Exact multi-label optimization
(for 2"-order potentials)

B
® Problem: find labeling f*: P — L minimizing energy

E(f) B ZPEP Dp(fp) i Z(p,q)EN Vm(fp’ fq)

® Assumption: L linearly ordered — w.l.o.g. L = {1,...,k}
(1D only = not suited, e.g., for 2D motion vector estimation)

e Solution: reduction/encoding to binary label case

m forV (I,])=\ |l —1] (Boykov et al. 1998, Ishikawa & Geiger 1998)
pq~p q pq’ p q
m for any convex Vpﬂ (Ishikawa 2003)
See also

- MinSum pbs (Schlesinger & Flach 2006)
- submodular Vp’q (Darbon 2009)

linearly ordered = linéairement ordonné
w.l.o.g. = without loss of generality
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Linear multi-label graph construction

(cf. Boykov et al. 1998)

I
® GivenL ={1,.. ik}
e Generalidea:

construct one layer
per label value

read label value
from cut location

T >
SRS

NS i

= g
S

H T
SN I

T

layer 1

!

layer 2

layer 3

84

layer = coucheJ
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Linear multi-label graph construction

(cf. Boykov et al. 1998)
B

* E(f)= ZPEP Dp(];)—i_ Z(M)EN xp,q |]; _fq| CUt:f:3,f:1
withf el = {1...k} p q

Attempt 1:
® Foreachsitep

A A
create nodesp,,...p, . @ @
w4 w.e

create edges 17 = (s,p)), ¥ = (p,.p), 1/ = (P, 1) ! I
assign weights wr = w(tjp) = Dp(j)

® For each pair of neighboring sites p and ¢

create edges (pj,qj)j with weight Xp,q

e{l,...k-1}

e Read label value from cut location, e.g.,p, €5, p, € T =f,=3
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Linear multi-label graph construction

(cf. Boykov et al. 1998)
B

® GivenL = {1,.. .k}
e Generalidea:

construct one layer
per label value

read label value
from cut location

e Any problem?

o1
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Linear multi-label graph construction

N
® GivenL = {1,.. .k}
e Generalidea:

construct one layer
per label value

read label value
from cut location

e Any problem?

there could be several
cut locations on the same line

(cf. Boykov et al. 1998)
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Linear multi-label graph construction

(cf. Boykov et al. 1998)
B
i E(f) - ZPEP Dp(];) + Z(zmz)EN xp,q |]; _fq| Cut:f :3,f — 1
withf el = {1,...k} P 1

Attempt 2:
® Foreachsitep

create nodesp,,...p, . @ @
w4 w1

create edges 17 = (s,p)), ¥ = (p,.p), 1/ = (P, 1) ? I
assign weights wh = w(tjp) = Dp(j) +K [penalize more cutting t/.P]
withK =1+(k-1) 2 _ A (where N set of neighbors of p)

p q€N, " pg p

® For each pair of neighboring sites p and ¢

create edges (p,,q)), with weight 4,

el k-1}
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Linear multi-label graph properties

(cf. Boykov et al. 1998)
I
e Lemma: for each site p, a minimum cut severs exactly one tr
[>1] Any cut severs at least one tr

severed = coupé, sectionné

[<1] Suppose ¢ 7, 7 are cut (same line p), then build new cut with 7,” restored ana Iinks

., broken for g € Np

.....

4
Impact dgf (minimurhy cost: — w(z?) + (k-1) quNp "
= —Dp(j)— 1 <0 = strictly smaller cost = contradiction

e Theorem (Boykov et al. 1998): a minimum cut minimizes E(f)
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Application to stereovision:
disparity map estimation

o Problem ’ rectified images < aligned cameraﬂ

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting

discrete disparities: d € L=1{d_...d_}
data term: Dp(dp)
m small when pixel p in I similar to pixel p'=p +(dp,0) in/'

smoothnessterm: V (d ,d)
pq> p q

m small when disparities dp and a’q are similar



Renaud Marlet/Pascal Monasse

Application to stereovision:
disparity map estimation

I
e Problem

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting

discrete disparities: d € L={d d

min’ """’ max}
e.g., what dataterm: Dp(dp)

definition? o small when pixel p in I similar to pixel p' = p +(d ), 0)in [’

smoothnessterm: V (d ,d)
pq> p q

e.g., what m small when disparities dp and a’q are similar

definition?

91
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Application to stereovision:
disparity map estimation

N
e Problem

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting

discrete disparities: d € L=4{d ,..d_ }

min’ max

e.g., what dataterm:D (d)
definition? a eg, D (d)

(Pp;(dp,O)) where P patch around pixel p

ZNSSD

smoothnessterm: V (d ,d)
pq- p q SSD = sum of square diﬁerencej

eg,what g eg V (d,d)=n|d —d | [Boykov etal. - optimal disparities]  Nss=normalzed .
deﬁniﬁon? g p,q( P q) | P q| Y Y P ZNSSD—zero-normallzed.t.r7
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Application to stereovision:
disparity map estimation

I
e Problem

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting

discrete disparities:d € L ={d_....d .}
data term: Dp(dp)
meg,D(d)=E, (P ;(d,0)

smoothnessterm: V (d ,d)
pq> p q

m eg, Vm(dp, dq) =A |dp—dq| [Boykov et al. = optimal disparities]

E s it the “optimal” solution
+  to the disparity map
+  estimation problem ?
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Application to stereovision:
disparity map estimation

I
e Problem

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting

discrete disparities:d € L ={d_....d .}
data term: Dp(dp)
meg,D(d)=E, (P ;(d,0)

smoothnessterm: V (d ,d)
pq> p q

m eg, Vm(dp, dq) =A |dp—dq| [Boykov et al. = optimal disparities]

- Meaningful but arbitrary choices: :
patch size, similarity, smoothness... :
- Optimal solution for energy = i
optimal solution for problem / E
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Application to stereovision:
disparity map estimation

CC = cross-correlation
NCC = normalized ...
ZNCC = zero-normalized ...

e Problem EpedPrw) =1/P quP[(Iqﬂt_I')/U (4 IP)/U] ZNSSD(P u)=2- 2EZNCC(PJu)§

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Graph-cut setting (alternative)

discrete disparities: d € L={d

min’

i dmax}

D (d) w_p(E ZNCC(P, (dp,O)) with p(c) € [0,1] \
1 ife<0 —]
m €e.g. — p(c)
ple) J1—c¢ ife=0 \
an(dp’ dq):x|dp_dq| -1 : 0 1
dissimilar similar equal
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Approximate optimization

I
e Exact multi-label optimization:

only limited cases
in practice, may require large number of nodes

e How to go beyond exact optimization constraints?

& |terate exact optimizations on subproblems (Boykov et al. 2001)
- local minimum @

but within known bounds of global minimum ©
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Notion of move — Examples

(= modification)

at once = a la fois
move = déplacement
de la solution

Move: maps a labeling f : P — L toalabeling /' :P—L
Idea: iteratively apply moves to get closer to optimum f*°

oy ¥

I.h'-'h ?" h.l!l }’

(a) initial labeling  (b) standard move (c) a-B-swap (d) a-expansion
a—p o< f anyl— a
at one site at many sites at many sites
only at once at once

Boykov et al. 2001 © IEEE
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Moves

I
Given a labeling f : P — L and labels a, 3

e f'is astandard move from f iff
f and f' differ at most on one site p
e f'is an expansion move (or a-expansion) from f iff
VpeP, f' =f ora
= in /', compared to f, extra sites p can now be labeled o
e f'isaswap move (or a-B-swap) from f iff
Vp e P, fLFap = f =1
-> some sites that were labeled a are now 3 and vice versa
N.B. Other kinds of moves can be defined...

98

move = déplacement
(= modification)
de la solution

a-B-swap =
permutation a-p
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simulated annealing =

Optimization w.r.t. moves

ling =
e onage (cf. Boykov et. al 2001)
.
e Iterative optimization over moves
random cycle over all labels until convergence — local min

e Iterating standard moves
= usual discrete optimization method

iterated conditional modes (ICM) = iterative maximization of the probability of each variable
conditioned on the rest

m local minimum w.r.t. standard move,
i.e., energy cannot decrease with a single pixel label difference
= weak condition, low quality

simulated annealing, ...

m slow convergence (optimal properties “at infinity”),
modest quality, some sampling strategies but mostly random
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Optimization w.r.t. moves

(cf. Boykov et. al 2001)
I
e Iterative optimization over moves
random cycle over all labels until convergence — local min
e Iterating expansion/swap moves (strong moves)

number of possible moves exponential in number of sites
compute optimal move using graph cut = binary problem!

m see Boykov et. al 2001 for graph construction and details
significantly fewer local minima than with standard moves
sometimes within constant factor of global minimum

m e.g., expansion moves & Potts model » optimum within factor 2
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Image restoration with moves

e Restoration with standard moves vs a-expansions

original image noisy image

restoration with
o-expansions

restoration with
standard moves

Boykov et al. 2001 © IEEE
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Constraints on interaction potential

(see details in Boykov et. al 2001)

e Expansion move: V' metric, = expansion inequality:

metric = métrique

V(o +V By =V, B.a)+V, (ay) forallapyel fonet disnce)

d(x,y) =d(y,x) =0
d(x,z) < d(x,y)+d(y,z)

semi-metric =

e Swap move: V' semi-metric, = swap inequality: e
dxy)=0=x=y
Vo) +V B <V (ap)+V (B.a) forallape L

d(x,y) =d(y,x) >0
[= as metric but triangle inequality not required: V' (ay) <V (a.p)+ 7V (B,y)]
[weaker condition than for expansion move] /

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII [

e Examples discontinuity-preserving!
Potts model: V (a.f) =2 1(a#p) e E

truncated L, distance: Vp’q(a,ﬁ) =min(K,|| o — f]|)
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Disparity map estimation with moves

AR NN NN NN NN NN NN nnRnnnnnnnnnnnn [

Tsukuba images
from famous
Middlebury
benchmark
2 (also contains
: Moebius images)

(a) Left image: 384x288, 15 labels (b) Ground truth

(c) Swap algorithm (d) Expansion algorithm

(e) Normalized correlation (f) Simulated annealing

Boykov et al. 2001 © IEEE
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To go further on this subject

Dlsparlty map estimation:

alternative data term (cf. Boykov et al. 1999,

Boykov et al. 2001)

I
e Idea: direct intensity comparison, but sensitive to sampling

D(d)=min(K, [L=1" 1) e
+ No patch similarity here:
: ' the local consistency is given ;
disparity range discretized to 1 pixel accuracy : by the smoothness term

e With image sampling insensitivity:

-> sensitivity to high gradients

(sub)pixel dissimilarity measure for greater accuracy,
e.g., by linear interpolation (Birchfield & Tomasi 1998)

fwd(p d) mlnd 12<u<sd+1/2 |] p+u|
o

Crev(p’ d) - 1/nlnp—l/2 <x<ptl/2 |Ix_1p+d

D (d)=C(p.d)=min(K. C, (p.d). C_(p.d))

[for symmetry]



Disparity map estimation:
smoothness term

I
e Scene with fronto-parallel objects

piecewise-constant model = OK
e.g., Potts model:
Vp,q(dp’ dq) B up,q l(dp 7 dq)

e Scene with slanted surfaces (e.g., ground)

piecewise-smooth model = better

e.g., smooth cap max value:

V =Amin(K, |d—d )
p.q p q

e Metric = both swap and expansion algorithms usable
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Potts model vs smooth cap max value

e Potts model : piecewise-constant

suited for uniform areas (= fewer disparities on large areas)

e Smooth cap max value: piecewise-smooth model

suited for slowly-varying areas (e.g., slope)

o, ¥ - ik
-l' L ,n_r;

B L e A rel i
T e L

(a) Left image: 256x233, 29 labels  (b) Piecewise constant model

(¢) Piecewise smooth model

106

Boykov et al. 2001 © IEEE



: To go further on this subject : o

....................................................................................... r

Dlsparlty map estimation:
smoothness term (cf. Boykov et al. 1998,
Boykov et al. 2001)

Renaud Marlet/Pascal Monasse

e Contextual information
neighbors p,g more likely to have same disparity if ]p = Iq
- make Vp,q(dp,dq) also depend on |Ip—]q|

meaningful in low texture areas (where |1p—lq| meaningful)

e E.g., with Potts model: Vp}q(dp,dq) =u,, l(dp # dq)
u, penalty for assigning different disparities to p and ¢
textured regions: u,, = K

textureless regions: i, = U(|Ip—]q )
m U, smaller for pixels p,q with large intensity difference |Ip—]q|

m eg,

2K if |1,-1,|<5

VU1~ =17 4 1,~1,]>5
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Many extensions
to more complex energies

(cf. Pansari & Kumar 2017)

e Truncated Convex Models (TCM)

several other approximate algorithms to minimize

e Truncated Max of Convex Models (TMCM)

no clique size restriction (high-order > pairwise)

| gl g

(a) Ground truth

(Energy, Time (s))

E(x) = Z B:lx.) 4+ Z wWap min{d(xs, — xp), M }

acV (a,b)e&

i=1 . ¢ : clique
x_ . labeling of a clique

" 7 © Battiti & Brunato 2009

i : clique weight
id: convex function

: M : truncation factor
i p(x) : i-th largest label in x_

¢ = ¢

(b) Cooccurrence (c) Parsimonious dm=1h~h"=4 & m=3h" =4
(2098800, 101) (1364200, 225) (1257249, 256) (1267449%, 335)
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Disparity map estimation

e Problem

given 2 rectified images /, ', I/ I
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Are the preceding formulations OK?

anything not modeled?

any bias?
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Disparity map estimation

(Boykov et. al 2001)

N
e Problem

occlusion =
occultation

given 2 rectified images /, ', I/ I
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Are the preceding formulations OK?
no treatment of occlusion
no symmetry: one center image, one auxiliary image p

m treatment of second image relative to the first (main) one

m difficulty to incorporate occlusion naturally
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Cross-checking

(Bolles & Woodfill, 1993)

occlusion =
occultation

e Problem Ji

given 2 rectified images /, ',
estimate optimal disparity
d(p) = dp for each pixel p = (u,v)

e Cross-checking method:

compute left-to-right disparity

compute right-to-left disparity

mark as occlusion pixels in one image mapping to pixels in the other image but which do
not map back to them

e Common and easy to implement
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Stereovision with occlusion handling

(cf. Kolmogorov & Zabih 2001)

N
occludedl=
o OCCIUSion occulté

pixel visible in one image only
occurs usually at discontinuities

e Uniqueness model hypothesis

pixel in one image - at most one pixel in other image
[sometimes too restrictive]

pixel with no correspondence: labeled as occluded
e Mainidea:

use labels representing corresponding pixels (= pixel pairs), not pixel disparity
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To go further on this subject 113

Stereowsmn with occlusmn

(cf. Kolmogorov & Zabih 2001)
B

® A: correspondence candidates (pixel pairs in I X I') = pixel assignments
A={(pp") |py =p',and 0<p’'—p < k} (same line, different position)
disparity: fora=(p,p’) € A d(a)=p'—p,
hypothesis: disparities lie in limited range [0,4]
goal: find subset of A containing only corresponding pixels

use: subsets defined as labelings f: A — L= {0,1} such that
Va=(pp') €A f =1if pandp’correspond, otherwise f =0

symmetric treatment of images (& applicable to non-aligned cameras)

® A(f): active assignments, i.e., pixel pairs considered as corresponding

A(f)={a€A|f =1}



To go further on this subject :

Stereowsmn with occlusmn

(cf. Kolmogorov & Zabih 2001)
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I
o N (f): set of correspondences for pixel p

N(f)={a€A(f)|Ap'€P, a=(p")}
configuration f unique iff Vp P N (=1

occluded pixels defined as pixels such that |Np ()=

® N : aneighborhood system on assignments (used for smoothness term)

Nc{{a.a,}cAj}
for efficient energy minimization via graph cuts:

m neighbors having the same disparity

m N={{{pp')qq)}cA

p,p'are neighbors and d(p,p' )=d(q,q")}
(= then g,¢q" are also neighbors)
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To go further on this subject

Stereowsmn with occlusmn

(cf. Kolmogorov & Zabih 2001)

115

® E(f) - Edata(f) T Esmooth(f) T Eocc(f)
E (f)= Za=(p,p')eA( 1 (]p —1 'p)z
m single pixel similarity
Esmooth(f) - Z{al,az}GN I/arl,a2 l(f;zl if;zz)
m N={{(p.p')(q.4q")}<A|pp'areneighborsand d(p,p’')=d(q.q")}
> penalty if: f, =1, a,closetoa, d(a,)=d(a), but f, =

m Potts model on assignments (pixel pairs), not on pixel disparity
E (f)= Zpep C . 1(N, () =0) [occlusion penalty]
m penalty Cp if p occluded



To go further on this subject :

Stereowsmn with occlusmn

(cf. Kolmogorov & Zabih 2001)
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B
o E(f)=E, ()T E (/) FE(S)

e Optimizable by graph cuts as multi-label problem (cf. paper)
graph construction on assignments (pixel pairs), not pixels

m A®:set of all assighnments with disparity o
m A*P=A*UAP

expansion move:
m /' within single a-expansion move of /" iff A(f") € A(f) UA*
currently active assignments can be deleted
new assignments with disparity o can be added

swap move:
m /' within single swap move of f iff A(f') UA*=A(f)UA*P
only changes: adding or deleting assignments having disparities o or f3
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Stereovision with occlusion

(cf. Kolmogorov & Zabih 2001)
N e L L L L L L L :

e Expansion-move algorithm: 5 J unique < ;
VpeP [N (/)<

1. start with arbitrary, unique configuration f
2. set success € false
3. for each disparity a
3.1. find f® =argminfE(f)
subject to / unique and within single a-move of /|
3.2.if E(f*) <E(/,), thenset f € f* success ¢ true
4. if success go to 2

5. returnf0

e Critical step: efficient computation of a-move with smallest energy
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Stereovision with occlusion

(cf. Kolmogorov & Zabih 2001)
N e L L L L L L L :

e Swap-move algorithm: 5 J unique < :
VpeP [N (/)<

1. start with arbitrary, unique configuration f
2. set success €« false
3. for each pair of disparities o, § (o= 3)
3.1. ﬁndf‘*ﬁ:argminfE(f)
subject to / unique and within single af3-swap of
3.2.iFE(f*) <E(f, ) thenset f €« f*, success ¢ true
4. if success go to 2

5. returnf0

e Critical step: efficient computation of af3-swap with smallest energy
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Stereovision with occlusion

(cf. Kolmogorov & Zabih 2001)

(a) Left image of Head pair

(d) Left image of Tree pair

(b) Potts model stereo (¢) Stereo with occlusions
Disparity maps obtained for the Head pair

(e) Potts model stereo (f) Stereo with occlusions
Disparity maps obtained for the Tree pair

119

Kolmogorov & Zabih 2001 © IEEE



Renaud Marlet/Pascal Monasse 120

Stereovision with occlusion

(cf. Kolmogorov & Zabih 2001)
N

e Expansion moves vs swap moves

with a-expansions with af3-swaps
e Swap moves not powerful enough to escape local minima for this class of energy function
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Multi-view reconstruction

(cf. Kolmogorov & Zabih 2002)

e Given n calibrated images on the “same side” of scene
e Global model

L = discretized set of depths (not disparities)

image i, pixel p, depth / (=1p,1=2)
e Difficulty = point interaction . ‘

pb: def (i,p,0), (j,q,I) “close” in 3D
- too many interactions = ®

sol.: def g closest pixel of
projection of (i,p,[)onj > ©

e Photo-consistency constraints (visibility)
red point, at depth /=2, blocks C2's view of green point, at depth /=3

Kolmogorov & Zabih 2002 © Springer

Y
Depth labels
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Multi-view reconstruction

(cf. Kolmogorov & Zabih 2002)

e Termsin the energy: data, smoothness, visibility

e Optimization by a-expansion

: See paper
ffor details

(a) Middle image of Head dataset (b) Scene reconstruction for Head dataset

(c) Middle image of Garden sequence  (d) Scene reconstruction for Garden sequence

122

Kolmogorov & Zabih 2002 © Springer
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Beyond disparity maps:

nuage de points
sweep = balayage

3D mesh reconstruction

tétraédrisation (cf. Vu et al. 2012)
el

e Merging of depth maps into single point cloud
possibly sparse depth maps, e.g., obtained by plane sweep
e Problems:
multi-view visibility (to be taken into account globally)
outliers
e Solution:
Delaunay tetrahedralization of point cloud
binary labelling of tetrahedra: inside/full or outside/empty

3D surface = interface inside/outside

© Nu es
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Visibility consistency via graph cut

(cf. Vu et al. 2012)
B

e Lines of sight from cameras to visible points = outside

: O,P : points

T : tetrahedron

. S : surface

: P : point cloud

1V : line of sight
:[.=0:Toutside

' (empty space)

:/.=1:Tinside
(occupied space) Cvis
Ayis Ayis Qyis

"""" Dol i =1] L

D;,(I;)=0;1[1,=0]

Vis

Vg Uz 17 )=, 1[I, =0Al, =1]

Vis

EViS(S’P’V):ZPE[;(zQEV out TQ"P + Z allgn TQ"P’ITE{*IP>+ Din(lT]%"P))

[PO}+1




Beyond disparity maps:
3D mesh reconstruction

(cf. Vu et al. 2012)

»\ {E -{72:1? &! g‘ ﬁ{' f ‘”"\. S P
s W T ﬁ"
A i jimnﬁﬁl ' i ’“kliﬁ_wniﬁ“

|4 t 1",I
W["V" . - r‘”gfsl:luf ). ;
¢ : 2 -"

il

e

T,
Pl

Input images Point cloud Visibility-consistent mesh Refined mesh
e Best reconstruction results on international benchmarks
e Startup company with IMAGINE members (2011)

15 employees, 90% revenue = international
bought by Bentley Systems (2015), still success
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Exercise: simple disparity map estimation (without moves nor occlusion)

e Given 2 rectified images I, I,
estimate optimal disparity
d(p) = dp for pixels p = (u,v)

o)

e Setting: linear multi-label graph construction (cf. pp. 85-96)p
discrete disparities: d € L=1{d_...d_ }
N : 4 neighbors of pixel p
D (@) =, p(E e (P:(d, 00 with () = 1 ife< 0
V., d)=1d,~d PRO=VI=¢ ife=0

& See material provided for the exercise on web site
(template code and detailed exercise description)
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Advertisement

Internship/PhD positions
related to 3D
in IMAGINE research group
(Ecole des Ponts)
and in Valeo.ai
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