Vision 3D artificielle
Disparity maps, correlation

Pascal Monasse monasse@imagine.enpc.fr

IMAGINE, École des Ponts ParisTech
http://imagine.enpc.fr/~monasse/Stereo/
Contents

Triangulation

Epipolar rectification

Disparity map
Contents

Triangulation

Epipolar rectification

Disparity map
Triangulation

Let us write again the binocular formulae:

\[\lambda x = K(RX + T) \quad \lambda' x' = K'X \]

Write \(Y^T = (X^T \ 1 \ \lambda \ \lambda') : \)

\[
\begin{pmatrix}
KR & KT & -x & 0_3 \\
K' & 0_3 & 0_3 & -x'
\end{pmatrix} Y = 0_6
\]

(6 equations ↔ 5 unknowns + 1 epipolar constraint)

We can then recover \(X \).

Special case: \(R = Id, \ T = Be_1 \)

We get:

\[z(x - KK'^{-1}x') = (Bf \ 0 \ 0)^T \]

If also \(K = K' \),

\[z = fB / [(x - x') \cdot e_1] = fB / d \]

\(d \) is the disparity
Triangulation

Fundamental principle of stereo vision

\[h \propto \frac{z}{B/H}, \quad z = d'' \frac{H}{f}. \]

- \(f \) focal length.
- \(H \) distance optical center-ground.
- \(B \) distance between optical centers (baseline).

Goal

Given two rectified images, point correspondences and computation of their apparent shift (disparity) gives information about relative depth of the scene.
Recovery of R and T

- Suppose we know K, K', and F or E. Recover R and T?
- From $E = [T] \times R$,

$$E^T E = -R^T (TT^T - \|T\|^2 I)R = -(R^T T)(R^T T)^T + \|R^T T\|^2 I$$

- If $x = R^T T$, $E^T E x = 0$ and if $y \cdot x = 0$, $E^T E y = \|T\|^2 y$.
- Therefore $\sigma_1 = \sigma_2 = \|T\|$ and $\sigma_3 = 0$.
- Inversely, from $E = U \text{diag}(\sigma, \sigma, 0) V^T$, we can write:

$$E = \sigma U \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} U^T U \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V^T = \sigma [T] \times R$$

- Actually, there are up to 4 solutions:

$$\begin{cases}
\sigma T = \pm U[e_3] \times U^T \\
R = UR_z(\pm \frac{\pi}{2}) V^T
\end{cases}$$
What is possible without calibration?

- We can recover F, but not E.
- Actually, from
 \[x = PX \quad x' = P'X \]
 we see that we have also:
 \[x = (PH^{-1})(HX) \quad x' = (P'H^{-1})(HX) \]

- **Interpretation**: applying a space homography and transforming the projection matrices (this changes K, K', R and T), we get exactly the same projections.
- **Consequence**: in the uncalibrated case, reconstruction can only be done modulo a 3D space homography.
Contents

Triangulation

Epipolar rectification

Disparity map
Epipolar rectification

- It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- As a consequence, epipoles are at horizontal infinity:

\[e = e' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

- It is always possible to get to that situation by virtual rotation of cameras (application of homography)

- Image planes coincide and are parallel to baseline.
Epipolar rectification

Image 1
Epipolar rectification

Image 2
Epipolar rectification

Image 1

Rectified image 1
Epipolar rectification

Image 2

Rectified image 2
Epipolar rectification

- Fundamental matrix can be written:

\[
F = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
\]

thus \(x^T F x' = 0 \iff y - y' = 0\)

- Writing matrices \(P = K (I \ 0)\) and \(P' = K' (I \ Be_1)\):

\[
K = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \quad K' = \begin{pmatrix} f'_x & s' & c'_x \\ 0 & f'_y & c'_y \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
F = BK^{-T}[e_1]_x K'^{-1} = \frac{B}{f_y f'_y} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f_y \\ 0 & f'_y & c'_y f'_y - c_y f_y \end{pmatrix}
\]

- We must have \(f_y = f'_y\) and \(c_y = c'_y\), that is identical second rows of \(K\) and \(K'\)
Epipolar rectification

▶ We are looking for homographies H and H' to apply to images such that

$$F = H^T[e_1] \times H'$$

▶ That is 9 equations and 16 variables, 7 degrees of freedom remain: the first rows of K and K' and the rotation angle around baseline α

▶ Invariance through rotation around baseline:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}^T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} = [e_1]_x$$

▶ Several methods exist, they try to distort as little as possible the image

Rectif. of Gluckman-Nayar (2001)
We are looking for H and H' as rotations, supposing $K = K'$ known:

$$H = K_n R K^{-1} \text{ and } H' = K'_n R' K^{-1}$$

with K_n and K'_n of identical second row, R and R' rotation matrices parameterized by Euler angles and

$$K = \begin{pmatrix} f & 0 & w/2 \\ 0 & f & h/2 \\ 0 & 0 & 1 \end{pmatrix}$$

Writing $R = R_x(\theta_x) R_y(\theta_y) R_z(\theta_z)$ we must have:

$$F = (K_n R K^{-1})^T [e_1] \times (K'_n R' K^{-1}) = K^{-T} R_z^T R_y^T [e_1] \times R' K^{-1}$$

We minimize the sum of squares of points to their epipolar line according to the 6 parameters

$$(\theta_y, \theta_z, \theta'_x, \theta'_y, \theta'_z, f)$$
Ruins

\| E_0 \| = 3.21 \text{ pixels.} \\

\| E_6 \| = 0.12 \text{ pixels.}
Ruins

\[\| E_0 \| = 3.21 \text{ pixels.} \]

\[\| E_6 \| = 0.12 \text{ pixels.} \]
Cake

\[\| E_0 \| = 17.9 \text{ pixels.} \]

\[\| E_{13} \| = 0.65 \text{ pixels.} \]
Cake

\[\| E_0 \| = 17.9 \text{ pixels.} \]

\[\| E_{13} \| = 0.65 \text{ pixels.} \]
\[\| E_0 \| = 4.87 \text{ pixels.} \]

\[\| E_{14} \| = 0.26 \text{ pixels.} \]
Cluny

\[\| E_0 \| = 4.87 \text{ pixels.} \]

\[\| E_{14} \| = 0.26 \text{ pixels.} \]
Carcassonne

\[\| E_0 \| = 15.6 \text{ pixels.} \]

\[\| E_4 \| = 0.24 \text{ pixels.} \]
Carcassonne

\[\| E_0 \| = 15.6 \text{ pixels.} \]

\[\| E_4 \| = 0.24 \text{ pixels.} \]
Books

\[\| E_0 \| = 3.22 \text{ pixels.} \]

\[\| E_{14} \| = 0.27 \text{ pixels.} \]
Books

\[\| E_0 \| = 3.22 \text{ pixels.} \]

\[\| E_{14} \| = 0.27 \text{ pixels.} \]
Contents

Triangulation

Epipolar rectification

Disparity map
Disparity map

\[z = \frac{fB}{d} \]

Depth \(z \) is inversely proportional to disparity \(d \) (apparent motion, in pixels).

- **Disparity map**: At each pixel, its apparent motion between left and right images.

- We already know disparity at feature points, this gives an idea about min and max motion, which makes the search for matching points less ambiguous and faster.
Local search

- At each pixel, we consider a context window and we look for the motion of this window.

Distance between windows:

\[d(q) = \arg \min_d \sum_{p \in F} (I(q + p) - I'(q + de_1 + p))^2 \]

Variants to be more robust to illumination changes:

1. Translate intensities by the mean over the window.

\[I(q + p) \rightarrow I(q + p) - \sum_{r \in F} I(q + r)/\#F \]

2. Normalize by mean and variance over window.
Distance between patches

Several distances or similarity measures are popular:

- **SAD**: Sum of Absolute Differences
 \[
 d(q) = \text{arg min}_d \sum_{p \in F} |I(q + p) - I'(q + de_1 + p)|
 \]

- **SSD**: Sum of Squared Differences
 \[
 d(q) = \text{arg min}_d \sum_{p \in F} (I(q + p) - I'(q + de_1 + p))^2
 \]

- **CSSD**: Centered Sum of Squared Differences
 \[
 d(q) = \text{arg min}_d \sum_{p \in F} (I(q + p) - \bar{I}_F - I'(q + de_1 + p) + \bar{I}'_F)^2
 \]

- **NCC**: Normalized Cross-Correlation
 \[
 d(q) = \text{arg max}_d \frac{\sum_{p \in F}(I(q + p) - \bar{I}_F)(I'(q + de_1 + p) - \bar{I}'_F)}{\sqrt{\sum(I(q + p) - \bar{I}_F)^2 \sqrt{\sum(I'(q + de_1 + p) - \bar{I}'_F)^2}}}
 \]
Another distance

- The following distance is more and more popular in recent articles:

\[\epsilon(p, q) = (1 - \alpha) \min \left(\| I(p) - I'(q) \|_1, \tau_{\text{col}} \right) + \alpha \min \left(\left| \frac{\partial I}{\partial x}(p) - \frac{\partial I'}{\partial x}(q) \right|, \tau_{\text{grad}} \right) \]

with

\[\| I(p) - I'(q) \|_1 = |I_r(p) - I_r(q)| + |I_g(p) - I_g(q)| + |l_b(p) - l_b(q)| \]

- Usual parameters:
 - \(\alpha = 0.9 \)
 - \(\tau_{\text{col}} = 30 \) (not very sensitive if larger)
 - \(\tau_{\text{grad}} = 2 \) (not very sensitive if larger)

- Note that \(\alpha = 0 \) is similar to SAD.
Problems of local methods

- **Implicit hypothesis:** all points of window move with same motion, that is they are in a fronto-parallel plane.
- **Aperture problem:** the context can be too small in certain regions, lack of information.
- **Adherence problem:** intensity discontinuities influence strongly the estimated disparity and if it corresponds with a depth discontinuity, we have a tendency to dilate the front object.

- **O:** aperture problem
- **A:** adherence problem
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.

Right image
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds).
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.
We rely on best found distances and we put them in a priority queue (seeds).

We pop the best seed \(G \) from the queue, we compute for neighbors the best disparity between \(d(G) - 1 \), \(d(G) \), and \(d(G) + 1 \) and we push them in the queue.

Seeds expansion
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.
Adaptive neighborhoods

- To reduce adherence (aka fattening effect), an image patch should be on the same object, or even better at constant depth
- Heuristic inspired by bilateral filter [Yoon & Kweon 2006]:

\[
\omega_I(p, p') = \exp \left(-\frac{\|p - p'\|_2}{\gamma_{\text{pos}}} \right) \cdot \exp \left(-\frac{\|I(p) - I(p')\|_1}{\gamma_{\text{col}}} \right)
\]

- Selected disparity:

\[
d(p) = \arg \min_{d=q-p} E(p, q) \quad \text{with}
\]

\[
E(p, q) = \frac{\sum_{r \in F} \omega_I(p, p + r) \omega_{I'}(q, q + r) \epsilon(p + r, q + r)}{\sum_{r \in F} \omega_I(p, p + r) \omega_{I'}(q, q + r)}
\]

- We can take a large window \(F \) (e.g., 35 \(\times \) 35)
Bilateral weights
Results

Tsukuba

Venus

Teddy

Cones

Left image Ground truth Results
Conclusion

- We can get back to the canonical situation by epipolar rectification. Limit: when epipoles are in the image, standard methods are not adapted.

- For disparity map computation, there are many choices:
 1. Size and shape of window?
 2. Which distance?
 3. Filtering of disparity map to reject uncertain disparities?

- You will see next session a *global* method for disparity computation

- Very active domain of research, >150 methods tested at http://vision.middlebury.edu/stereo/
Practical session: Disparity map computation by propagation of seeds

Objective: Compute the disparity map associated to a pair of images. We start from high confidence points (seeds), then expand by supposing that the disparity map is regular.

- Get initial program from the website.
- Compute disparity map from image 1 to 2 of all points by highest NCC score.
- Keep only disparity where NCC is sufficiently high (0.95), put them as seeds in a std::priority_queue.
- While queue is not empty:
 1. Pop P, the top of the queue.
 2. For each 4-neighbor Q of P having no valid disparity, set d_Q by highest NCC score among $d_P - 1$, d_P, and $d_P + 1$.
 3. Push Q in queue.

Hint: the program may be too slow in Debug mode for the full images. Use cropped images to find your bugs, then build in Release mode for original images.