Vision 3D artificielle
Disparity maps, correlation

Pascal Monasse monasse@imagine.enpc.fr

IMAGINE, École des Ponts ParisTech
http://imagine.enpc.fr/~monasse/Stereo/
Contents

Triangulation

Epipolar rectification

Disparity map
Contents

Triangulation

Epipolar rectification

Disparity map
Triangulation

- Let us write again the binocular formulae:

\[\lambda x = K(RX + T) \quad \lambda'x' = K'X \]

- Write \(Y^T = \begin{pmatrix} X^T & 1 & \lambda & \lambda' \end{pmatrix} \):

\[
\begin{pmatrix}
KR & KT & -x & 0_3 \\
K' & 0_3 & 0_3 & -x'
\end{pmatrix}
\begin{pmatrix} Y \end{pmatrix} = 0_6
\]

(6 equations \(\leftrightarrow\) 5 unknowns + 1 epipolar constraint)

- We can then recover \(X \).

- **Special case:** \(R = Id, \ T = Be_1 \)

- We get:

\[z(x - KK'^{-1}x') = (Bf \ 0 \ 0)^T \]

- If also \(K = K' \),

\[z = fB / [(x - x') \cdot e_1] = fB / d \]

- \(d \) is the disparity
Triangulation

Fundamental principle of stereo vision

\[h \cong \frac{z}{B/H}, \quad z = d'' \frac{H}{f}. \]

- \(f \) focal length.
- \(H \) distance optical center-ground.
- \(B \) distance between optical centers (baseline).

Goal

Given two rectified images, point correspondences and computation of their apparent shift (disparity) gives information about relative depth of the scene.
Recovery of R and T

- Suppose we know K, K', and F or E. Recover R and T?
- From $E = [T]_\times \! R$,
 \[
 E^T E = -R^T (TT^T - \|T\|^2 I) R = -(R^T T)(R^T T)^T + \|R^T T\|^2 I
 \]
- If $x = R^T T$, $E^T E x = 0$ and if $y \cdot x = 0$, $E^T E y = \|T\|^2 y$.
- Therefore $\sigma_1 = \sigma_2 = \|T\|$ and $\sigma_3 = 0$.
- Inversely, from $E = Udiag(\sigma, \sigma, 0) V^T$, we can write:
 \[
 E = \sigma U \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} U^T U \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V^T = \sigma [T]_\times \! R
 \]
- Actually, there are up to 4 solutions:
 \[
 \begin{cases} \[T = \pm \sigma U[e_3]_\times \! U^T \] \\ \[R = URz(\pm \frac{\pi}{2}) V^T \] \end{cases}
 \]
What is possible without calibration?

- We can recover F, but not E.
- Actually, from
 \[x = PX \quad x' = P'X \]
 we see that we have also:
 \[x = (PH^{-1})(HX) \quad x' = (P'H^{-1})(HX) \]

- **Interpretation**: applying a space homography and transforming
 the projection matrices (this changes K, K', R and T), we get
 exactly the same projections.

- **Consequence**: in the uncalibrated case, reconstruction can only
 be done modulo a 3D space homography.
Contents

Triangulation

Epipolar rectification

Disparity map
Epipolar rectification

- It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- As a consequence, epipoles are at horizontal infinity:

\[e = e' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

- It is always possible to get to that situation by virtual rotation of cameras (application of homography)

- Image planes coincide and are parallel to baseline.
Epipolar rectification

Image 1
Epipolar rectification

Image 2
Epipolar rectification

Image 1

Rectified image 1
Epipolar rectification

Image 2

Rectified image 2
Epipolar rectification

- Fundamental matrix can be written:

\[
F = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}
\]

thus \(x^T F x' = 0 \iff y - y' = 0\)

- Writing matrices \(P = K (I \ 0)\) and \(P' = K' (I \ Be_1)\):

\[
K = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \quad K' = \begin{pmatrix} f'_x & s' & c'_x \\ 0 & f'_y & c'_y \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
F = BK^{-T} [e_1]_\times K'^{-1} = \frac{B}{f'_y f'_y} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f_y \\ 0 & f'_y & c'_y f' y - c_y f'_y \end{pmatrix}
\]

- We must have \(f_y = f'_y\) and \(c_y = c'_y\), that is identical second rows of \(K\) and \(K'\)
Epipolar rectification

- We are looking for homographies H and H' to apply to images such that
 \[F = H^T [e_1] \times H' \]

- That is 9 equations and 16 variables, 7 degrees of freedom remain: the first rows of K and K' and the rotation angle around baseline α

- Invariance through rotation around baseline:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos \alpha & -\sin \alpha \\
 0 & \sin \alpha & \cos \alpha
 \end{pmatrix}^T
 \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & -1 \\
 0 & 1 & 0
 \end{pmatrix}
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos \alpha & -\sin \alpha \\
 0 & \sin \alpha & \cos \alpha
 \end{pmatrix}
 = [e_1] \times
 \]

- Several methods exist, they try to distort as little as possible the image

Rectif. of Gluckman-Nayar (2001)
Epipolar rectification of Fusiezzo-Irsara (2008)

- We are looking for H and H' as rotations, supposing $K = K'$ known:
 \[H = K_nRK^{-1} \text{ and } H' = K'_nR'K^{-1} \]

 with K_n and K'_n of identical second row, R and R' rotation matrices parameterized by Euler angles and
 \[
 K = \begin{pmatrix}
 f & 0 & w/2 \\
 0 & f & h/2 \\
 0 & 0 & 1
 \end{pmatrix}
 \]

 - Writing $R = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z)$ we must have:
 \[
 F = (K_nRK^{-1})^T [e_1]_x (K'_nR'K^{-1}) = K^{-T} R_z^T R_y^T [e_1]_x R'K^{-1}
 \]

 - We minimize the sum of squares of points to their epipolar line according to the 6 parameters
 \[(\theta_y, \theta_z, \theta'_x, \theta'_y, \theta'_z, f)\]
Ruins

\[\| E_0 \| = 3.21 \text{ pixels.} \]

\[\| E_6 \| = 0.12 \text{ pixels.} \]
Ruins

\[\| E_0 \| = 3.21 \text{ pixels.} \]

\[\| E_6 \| = 0.12 \text{ pixels.} \]
Cake

$\|E_0\| = 17.9$ pixels.

$\|E_{13}\| = 0.65$ pixels.
\[\| E_0 \| = 17.9 \text{ pixels.} \]

\[\| E_{13} \| = 0.65 \text{ pixels.} \]
Cluny

$\|E_0\| = 4.87$ pixels.

$\|E_{14}\| = 0.26$ pixels.
$\| E_0 \| = 4.87$ pixels.

$\| E_{14} \| = 0.26$ pixels.
Carcassonne

\[\| E_0 \| = 15.6 \text{ pixels.} \]

\[\| E_4 \| = 0.24 \text{ pixels.} \]
Carcassonne

\[\|E_0\| = 15.6 \text{ pixels.} \]

\[\|E_4\| = 0.24 \text{ pixels.} \]
Books

$\|E_0\| = 3.22$ pixels.

$\|E_{14}\| = 0.27$ pixels.
\|E_0\| = 3.22 \text{ pixels.} \quad \|E_{14}\| = 0.27 \text{ pixels.}
Contents

- Triangulation
- Epipolar rectification
- Disparity map
Disparity map

Depth z is inversely proportional to disparity d (apparent motion, in pixels).

- **Disparity map**: At each pixel, its apparent motion between left and right images.
- **We already know disparity at feature points, this gives an idea about min and max motion, which makes the search for matching points less ambiguous and faster.**
Stereo Matching

- Principle: invariance of something between corresponding pixels in left and right images (I_L, I_R)
- Example: color, x-derivative, census...
- Usage of a distance to capture this invariance, such as $AD(p, q) = \| I_L(p) - I_R(q) \|_1$
Stereo Matching

- Principle: invariance of something between corresponding pixels in left and right images (I_L, I_R)
- Example: color, x-derivative, census...
- Usage of a distance to capture this invariance, such as $AD(p, q) = \| I_L(p) - I_R(q) \|_1$
Stereo Matching

- Post-processing helps a lot!
- Example: left-right consistency check, followed by simple constant interpolation, and median weighted by original image bilateral weights

Min CG | Left-right test | Post-processed
Stereo Matching

▶ Post-processing helps a lot!
▶ Example: left-right consistency check, followed by simple constant interpolation, and median weighted by original image bilateral weights

Min CG | Left-right test | Post-processed
▶ Still, single pixel estimation not good enough
▶ Need to promote some regularity of the result
Global vs. local methods

- **Global** method: explicit smoothness term

\[
\arg\min_d \sum_p E_{\text{data}}(p, p + d(p); l_L, l_R) \\
+ \sum_{p \sim p'} E_{\text{reg}}(d(p), d(p'); p, p', l_L, l_R)
\]

- **Examples:**
 \[E_{\text{reg}} = |d(p) - d(p')|^2\] (Horn-Schunk),
 \[E_{\text{reg}} = \delta(d(p) = d(p'))\] (Potts),
 \[E_{\text{reg}} = \exp\left(-\frac{(l_L(p) - l_L(p'))^2}{\sigma^2}\right) |d(p) - d(p')|\ldots\]
Global vs. local methods

- **Global** method: explicit smoothness term

\[
\arg \min_d \sum_p E_{data}(p, p + d(p); l_L, l_R) + \sum_{p \sim p'} E_{reg}(d(p), d(p'); p, p', l_L, l_R)
\]

- **Examples:**
 \(E_{reg} = |d(p) - d(p')|^2 \) (Horn-Schunk),
 \(E_{reg} = \delta(d(p) = d(p')) \) (Potts),
 \(E_{reg} = \exp\left(-\frac{(l_L(p) - l_L(p'))^2}{\sigma^2}\right)|d(p) - d(p')|\ldots \)

- **Problem:** NP-hard for almost all regularity terms except

\(E_{reg} = \lambda_{pp'}|d(p) - d(p')| \) (Ishikawa 2003)

- **Alternative:** sub-optimal solution for submodular regularity
 (graph-cuts: Boykov, Kolmogorov, Zabih), loopy-belief propagation (no guarantee at all), semi-global matching (Hirschmüller)
Global vs. local methods

- **Local method:** Take a patch around \(p \), aggregate costs \(E_{data} \) (Lucas-Kanade) \(\Rightarrow \) No explicit regularity term

- Example: \(\text{SAD}(p, q) = \sum_{r \in P} |l_L(p + r) - l_R(q + r)| \),
 \(\text{SSD}(p, q) = \sum_{r \in P} |l_L(p + r) - l_R(q + r)|^2 \),
 \(\text{SCG}(p, q) = \sum_{r \in P} \text{CG}(p + r, q + r) \)...

- Can be interpreted as a cost-volume filtering.

- Increasing patch size \(P \) promotes regularity.
Global vs. local methods

- **Local** method: Take a patch around p, aggregate costs E_{data} (Lucas-Kanade) \Rightarrow No explicit regularity term

- Example: $\text{SAD}(p, q) = \sum_{r \in P} |l_L(p + r) - l_R(q + r)|,$
 $\text{SSD}(p, q) = \sum_{r \in P} |l_L(p + r) - l_R(q + r)|^2,$
 $\text{SCG}(p, q) = \sum_{r \in P} CG(p + r, q + r)$...

- Can be interpreted as a cost-volume filtering.

- Increasing patch size P promotes regularity.

Proportion of common pixels between $p + P$ and $p' + P$:

$$1 - \frac{1}{n}$$

if P is $n \times n$
Local search

- At each pixel, we consider a context window and we look for the motion of this window.

 - Distance between windows:

 \[d(q) = \arg \min_d \sum_{p \in F} (I(q + p) - I'(q + de_1 + p))^2 \]

- Variants to be more robust to illumination changes:
 1. Translate intensities by the mean over the window.

 \[I(q + p) \rightarrow I(q + p) - \sum_{r \in F} l(q + r) / \#F \]
 2. Normalize by mean and variance over the window.
Distance between patches

Several distances or similarity measures are popular:

- **SAD**: Sum of Absolute Differences
 \[
 d(q) = \arg \min_d \sum_{p \in F} |I(q + p) - I'(q + de_1 + p)|
 \]

- **SSD**: Sum of Squared Differences
 \[
 d(q) = \arg \min_d \sum_{p \in F} (I(q + p) - I'(q + de_1 + p))^2
 \]

- **CSSD**: Centered Sum of Squared Differences
 \[
 d(q) = \arg \min_d \sum_{p \in F} (I(q + p) - \bar{I}_F - I'(q + de_1 + p) + \bar{I}'_F)^2
 \]

- **NCC**: Normalized Cross-Correlation
 \[
 d(q) = \arg \max_d \frac{\sum_{p \in F} (I(q + p) - \bar{I}_F)(I'(q + de_1 + p) - \bar{I}'_F)}{\sqrt{\sum (I(q + p) - \bar{I}_F)^2} \sqrt{\sum (I'(q + de_1 + p) - \bar{I}'_F)^2}}
 \]
Another distance

- The following distance is more and more popular in recent articles:

\[
\epsilon(p, q) = (1 - \alpha) \min \left(\| I(p) - I'(q) \|_1, \tau_{\text{col}} \right) + \\
\alpha \min \left(\| \frac{\partial I}{\partial x}(p) - \frac{\partial I'}{\partial x}(q) \|, \tau_{\text{grad}} \right)
\]

with

\[
\| I(p) - I'(q) \|_1 = |I_r(p) - I_r(q)| + |I_g(p) - I_g(q)| + |I_b(p) - I_b(q)|
\]

- Usual parameters:
 - \(\alpha = 0.9 \)
 - \(\tau_{\text{col}} = 30 \) (not very sensitive if larger)
 - \(\tau_{\text{grad}} = 2 \) (not very sensitive if larger)

- Note that \(\alpha = 0 \) is similar to SAD.
Varying patch size

\[P = \{(0, 0)\} \]
Varying patch size

\[P = [-1, 1]^2 \]
Varying patch size

\[P = [-7, 7]^2 \]
Varying patch size

\[P = [-21, 21]^2 \]
Varying patch size

\[P = [-35, 35]^2 \]
Problems of local methods

- Implicit hypothesis: all points of window move with same motion, that is they are in a fronto-parallel plane.
- **aperture** problem: the context can be too small in certain regions, lack of information.
- **adherence** problem: intensity discontinuities influence strongly the estimated disparity and if it corresponds with a depth discontinuity, we have a tendency to dilate the front object.

- **O**: aperture problem
- **A**: adherence problem
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds).
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.

Left image
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed \(G \) from the queue, we compute for neighbors the best disparity between \(d(G) - 1 \), \(d(G) \), and \(d(G) + 1 \) and we push them in the queue.
Example: seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between $d(G) - 1$, $d(G)$, and $d(G) + 1$ and we push them in the queue.

Left image
Adaptive neighborhoods

- To reduce adherence (aka fattening effect), an image patch should be on the same object, or even better at constant depth

- Heuristic inspired by *bilateral filter* [Yoon&Kweon 2006]:

 \[
 \omega_I(p, p') = \exp\left(-\frac{\|p - p'\|_2}{\gamma_{\text{pos}}}\right) \cdot \exp\left(-\frac{\|I(p) - I(p')\|_1}{\gamma_{\text{col}}}\right)
 \]

- Selected disparity:

 \[
 d(p) = \arg \min_{d=q-p} E(p, q) \quad \text{with}
 \]

 \[
 E(p, q) = \frac{\sum_{r \in F} \omega_I(p, p + r) \omega_I'(q, q + r) \epsilon(p + r, q + r)}{\sum_{r \in F} \omega_I(p, p + r) \omega_I'(q, q + r)}
 \]

- We can take a large window \(F \) (e.g., \(35 \times 35 \))
Bilateral weights

(a) (b)

(c) (d)
Results

Tsuikuba

Venus

Teddy

Cones

Left image Ground truth Results
What is the limit of adaptive neighborhoods?

- The best patch is $P_p(r) = 1(d(p + r) = d(p))$
- Suppose we have an oracle giving P_p
- Use ground-truth image to compute P_p
- Since GT is subpixel, use $P_p(r) = 1(|d(p + r) - d(p)| \leq 1/2)$
Test with oracle
Test with oracle
Conclusion

- We can get back to the canonical situation by epipolar rectification. Limit: when epipoles are in the image, standard methods are not adapted.
- For disparity map computation, there are many choices:
 1. Size and shape of window?
 2. Which distance?
 3. Filtering of disparity map to reject uncertain disparities?
- You will see next session a *global* method for disparity computation
- Very active domain of research, >150 methods tested at http://vision.middlebury.edu/stereo/
Practical session: Disparity map computation by propagation of seeds

Objective: Compute the disparity map associated to a pair of images. We start from high confidence points (seeds), then expand by supposing that the disparity map is regular.

- Get initial program from the website.
- Compute disparity map from image 1 to 2 of all points by highest NCC score.
- Keep only disparity where NCC is sufficiently high (0.95), put them as seeds in a std::priority_queue.
- While queue is not empty:
 1. Pop P, the top of the queue.
 2. For each 4-neighbor Q of P having no valid disparity, set d_Q by highest NCC score among $d_P - 1$, d_P, and $d_P + 1$.
 3. Push Q in queue.

Hint: the program may be too slow in Debug mode for the full images. Use cropped images to find your bugs, then build in Release mode for original images.