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Reminder: Triangulation

» Let us write again the binocular formulae:
M=KRX+T) NxX =KX

> Write YT:(XT 1 =\ —X):

KR KT x 03\, _
<K’ 03 03 X’>Y_06

(6 equations<+5 unknowns+1 epipolar constraint)

» \We can then recover X.



Multi-linear constraints

» Bilinear constraints: fundamental matrix x ' Fx’ = 0.

» There are trilinear constraints: x/ = x T T:x', which are not
combinations of bilinear contraints

» All constraints involving more than 3 views are combinations
of 2- and/or 3-view constraints.



Trilinear constraints

> Write \jx; = K,'(R,'X + T,')
> Writeas AY =0 with Y = (XT 1 =\ -« —=)\,)"

» Ahassize3nx (n+4) (n=2—-6x6,n=3—-9x7,...):
n > 2 = more rows than columns.

» Look at the rank of A (must be < n+ 4)



Trilinear constraints

» Assume R; = Id and T; = 0. We write A of size 3n x (n+ 4):

Ki 0 xx 0 --- 0
K2R2 K2 T2 0 X2 s 0
KoRy KnT, 0 -+ 0 x,

» Subtracting from 3rd column the first column multiplied by
Kl_lxl, rank of A = rank of A’ with:

Ki 0 0 o --- 0
A KoRy KoTo —K2R2Kf1x1 x -+ 0
KoRn KnTn —KoRoKi'xa -+ 0 x,

» Since Kj is invertible, we have to look at the rank of the
lower-right 3(n — 1) x (n + 1) submatrix.



Trilinear constraints

» Rank of A=3+rank of B with
Ko To K2R2Kf1X1
K373 K3R3K1_1X1
B = : :

Ko-1Tno1 Kn—1Ra—1K{ 'xa
KnT, KnRa K 1xa

» Size of B: 3(n—1) x (n+1).
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Trilinear constraints

» DB has same rank as B since D is full rank 3(n — 1):

3 0 0 0
0 x3 0 0
0 0 x, 0
-
| 0 0 0 X,
ol 0 0 0
0 [xs]lx O 0
0 0 [xo1]x O
0 0 0 [Xn] X

» D has size 4(n—1) x 3(n—1)
» |t is easy to check that the kernel of D is {0}.



Trilinear constraints

> We get:
X KoTy x) KoRoKi'xa xgx 0 -+ 0
X;K3 T3 X;—K3R3K1_1X1 0 X;X3 ce 0
DB — : : : . : :
anK,, T, XnTK,,R,,Kl_lxl 0 0 XnTx,,
My M, 0 ... 0 0
> Since x;' x; > 0, rank of B = (n — 1)+ Rank of M (size
3(n—1) x 2):
Dol KaRaK ' [xe]xKa T
M — . .

[Xn] X Kn Rn Kflxl [Xn] X Kn Th

» We should have: rank of M = 1, so that rank of A= n -+ 3.
> Write that 2 x 2 submatrices of M should have determinant 0



Trilinear constraints

» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:

al b1
M= :

an bp

Rank of M < 2 iff Vi, , a,-b}r — b,-ajT =0.



Trilinear constraints

» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:

ai b1
M= :

E

Rank of M < 2 iff Vi, a;bjT — b,-ajT =0.
» Proof: The case b = 0 is trivial, assume b # 0.

» — We have a = \b, and a,-bjT — b,-ajT = )\(b,-bjT — b,-bjT) =0.
bk
b!

)
get that all 2 x 2 submatrices of M have null determinant.

K
a:

T TVK _ okl pkal
> < We have (ajb; — bja; )" = ajb; — bia; = | - We




Trilinear constraints
» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:
al b1
M= :
an b,
Rank of M < 2 iff Vi, , a,-bjfr — b,-ajT =0.
» Fori=], ([x,-]XK,-R,-Kl_lxl) x ([xi]x Ki T;) = 0 amounts to
([X,']X K,-T,-)T(K,-R,-Kl_lxl) = ‘X,' K T; K,'R,-Kl_lxl} =0 or
x,TKi_T[ﬂ]XR,-Kl_lxl = 0 (epipolar constraint)

> [xi]x KiRiKy (] K T3) T =[xl Ki T[] x K Ri Ky ) T =
0

[xi]x (Z Xf77-f> [xj]x =0 (9 trilinear constraints)
k



Trilinear constraints

> A triplet (xi, X, xj) imposes at most 4 independent constraints
on 77}‘ because of the cross-products.

» Rank of M = 0 (multiple solutions X) means
Vi, [X,']XK,'R,'K;1X1 = [X,']XK,'T,' =0

so that K;R,-Kflxl and K;T; are proportional, hence
X1 = )\KlR,-TT,- (epipole in image 1 wrt image i), so that all
camera centers are aligned and X is on this line.
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PnP

» “PnP" = Perspective from n Points.

» From 2D-3D correspondences (x;, X;) and known K, recover
P= (R T) so that x; ~ PX;

» Remember calibration from a 3D rig: same problem but with
unknown K, P = K (R T).

» Minimal problem: n =3, P3P problem, up to 4 solutions:
P

=

\

.
<

I 2, 72 _ 2 _
S e Ye+Z°—pYZ—a"=0 (p=2cosa)

!

X2+ 27?2 - gXZ - b>=0 (q=2cosp)
X2+ Y2 XY —c®2=0 (r=2cosv)

Write x =X/Z, y=Y/Z,

a =a%/c? b =b*/c? v=c?Z°
(c) Gao, Hou, Tang & Cheng

y2+1—py—av=0 (1-a)y?—ax>+amxy—py+1=0
x24+1—gx—bv=0 =<((1-b)x>-by>+brxy—qgx+1=0
x2+y?—my—v=0 (intersection of two conics)



PnP, n>4
[Lepetit, Moreno-Noguer & Fua, EPnP: An accurate O(n) solution
to the PnP problem, 1JCV 2008]

> Write X; = Zj:l...4 ;i G with ¥ four fixed points.
> Write G = RCJ-W + T in camera coordinates.

» Project onto image to obtain a 2n x 12 linear system on {C;}:

[ ]XZ G=0

j=1..4

> From MC =0, write C = 3",_; p BkV* with the N last
columns of V from SVD of M
(n=4—-N=4n=5—-N=2,n>6—>N=1)

» Write the conservation of distances (6 equations in 3):

1<i<j<4:

> BV siasi — Visjas))

k=1...N
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Incremental multi-view calibration

1. Compute two-view correspondences

2. Build tracks (multi-view correspondences)

®

Start from initial pair: compute F, deduce R, T and 3D
points (known K)

Add image with common points.

Estimate pose (R, T)

Add new 3D points

Bundle adjustment

8. Goto 4

See open source software Bundler: SfM for Unordered Image
Collections (http://www.cs.cornell.edu/ snavely/bundler/)

N o o s

-
e



http://www.cs.cornell.edu/~snavely/bundler/

Incremental multi-view calibration

O, P=?=KI[R|t]
Left view Right view



Incremental multi-view calibration

object point
ol

feature point
!

Pik+1

Pk



Bundle adjustment

We have the equations

5= DK (R T))%

» ;. 3D point index

> j: view index

» Xx;: 2D projection in view j of point X;
» D: geometric distortion model

» K: internal parameters of camera

Minimize by Levenberg-Marquardt the error

E="dlx. DK (R, T;) X)?

y



Global calibration

» Compute Ej;, essential matrices between all views i and j

» Extract R;j and Tj; from Ej;

» Rotation alignment: recover {R;}, global rotation with respect
to Ry = Id, such that R; = R;;R; for all i, j

> [Martinec&Pajdla CVPR 2007]: write Rj; as unitary
quaternions, find minimum of

. T
> llai — qygill® with | (a7 -+ a7) [ =n

But this does not ensure ||g;|| = 1, condition for a quaternion
to represent a rotation...

» No exact solution since Rj;j can have an error. How to close
loops?

> What about outliers among the R;;?

» Translation alignment: recover { T;}, global translation with
respect to To = 0, such that T; = R; T; + \;j Tj;



Global

v

calibration

Compute Ejj;, essential matrices between all views i and j
Extract Rjj and Tj; from Ej

Rotation alignment: recover {R;}, global rotation with respect
to Ry = Id, such that R; = Rj;R; for all i, j

Translation alignment: recover { T;}, global translation with
respect to To = 0, such that T; = R;; T; + \;j Tj;

> [Moulon&Monasse&Marlet ICCV 2013]: solve the linear
programme

min =y with Aj > L[| T; = Ry Tj = A Tijlloo <
{T,-},{A,-,-},wv v I ij 1 i il v



Some results
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Some results

Opera Garnier dataset
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Visual hull

> \We assume we are able to segment the object of interest in
each view

» From the silhouette, we can restrict the location inside a cone

» Intersect cones from all views

» The result is called the visual hull

.;r_'*k

Source: Wikipedia http://en.wikipedia.org/wiki/Visual_hull


http://en.wikipedia.org/wiki/Visual_hull

Epipolar plane imagery
A technique for depth estimation from a movie with controlled
motion
» Assume a uniform motion of camera along the horizontal line
» Consider 2D cuts (x, y*, t) of the volume
» Edges move along lines, whose slope is the disparity
> Advantage: large baseline between distant time steps
(accurate estimation) and small baseline between close times
steps (easier tracking)

Source: http://www.informatik.uni-konstanz.de/cvia/
research/light-field-analysis/consistent-depth-estimation/


http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/
http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/

Software

Infrastructure:
» Eigen: C++ library for linear algebra

» Google's Ceres Solver for bundle adjustment (automatic
differentiation)

StM pipelines:

» Bundler (2008, open source, University of Washington)
PhotoScan (2010, commercial, Agisoft)
VisualSfM (2011, open source, University of Wahington): GPU
OpenMVG (2012, open source, Ecole des Ponts ParisTech)

>
>
>
» ColMap (2016, open source, University of North Carolina)



Conclusion

» Multi-view reconstruction is an active and lively field of
research, but less explored than 2-view stereo correspondence

» Project: openMVG (incremental and global pipelines)
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