Vision 3D artificielle
 Multiple view geometry

Pascal Monasse pascal.monasse@enpc.fr

IMAGINE, École des Ponts ParisTech

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Contents

Multi-view constraints

Perspective from n Points

Multi-view calibration
Incremental calibration Global calibration

Methods for Particular Cases

Contents

Multi-view constraints

Perspective from n Points

Multi-view calibration Incremental calibration Global calibration

Methods for Particular Cases

Reminder: Triangulation

- Let us write again the binocular formulae:

$$
\lambda x=K(R X+T) \quad \lambda^{\prime} x^{\prime}=K^{\prime} X
$$

- Write $Y^{\top}=\left(\begin{array}{llll}X^{\top} & 1 & -\lambda & -\lambda^{\prime}\end{array}\right):$

$$
\left(\begin{array}{cccc}
K R & K T & x & 0_{3} \\
K^{\prime} & 0_{3} & 0_{3} & x^{\prime}
\end{array}\right) Y=0_{6}
$$

(6 equations $\leftrightarrow 5$ unknowns +1 epipolar constraint)

- We can then recover X.

Multi-linear constraints

- Bilinear constraints: fundamental matrix $x^{\top} F x^{\prime}=0$.
- There are trilinear constraints: $x_{i}^{\prime \prime}=x^{\top} T_{i} x^{\prime}$, which are not combinations of bilinear contraints
- All constraints involving more than 3 views are combinations of 2- and/or 3-view constraints.

Trilinear constraints

- Write $\lambda_{i} x_{i}=K_{i}\left(\begin{array}{ll}R_{i} & T_{i}\end{array}\right) X$
- Write as $A Y=0$ with $Y=\left(\begin{array}{lllll}X & 1 & -\lambda_{1} & \cdots & -\lambda_{n}\end{array}\right)^{\top}$
- Look at the rank of A...

Trilinear constraints

- Assume $R_{1}=I d$ and $T_{1}=0$. We write A of size $3 n \times(n+4)$:

$$
A=\left(\begin{array}{cccccc}
K_{1} & 0 & x_{1} & 0 & \cdots & 0 \\
K_{2} R_{2} & K_{2} T_{2} & 0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
K_{n} R_{n} & K_{n} T_{n} & 0 & \cdots & 0 & x_{n}
\end{array}\right)
$$

- Subtracting from 3rd column the first column multiplied by $K_{1}^{-1} x_{1}$, rank of $A=$ rank of A^{\prime} with:

$$
A^{\prime}=\left(\begin{array}{cccccc}
K_{1} & 0 & 0 & 0 & \cdots & 0 \\
K_{2} R_{2} & K_{2} T_{2} & -K_{2} R_{2} K_{1}^{-1} x_{1} & x_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
K_{n} R_{n} & K_{n} T_{n} & -K_{n} R_{n} K_{1}^{-1} x_{1} & \cdots & 0 & x_{n}
\end{array}\right)
$$

- Since K_{1} is invertible, we have to look at the rank of the lower-right $3(n-1) \times(n+1)$ submatrix.

Trilinear constraints

- Rank of $A=3+$ rank of B with

$$
B=\left(\begin{array}{ccccccc}
K_{2} T_{2} & K_{2} R_{2} K_{1}^{-1} x_{1} & x_{2} & 0 & 0 & \cdots & 0 \\
K_{3} T_{3} & K_{3} R_{3} K_{1}^{-1} x_{1} & 0 & x_{3} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
K_{n-1} T_{n-1} & K_{n-1} R_{n-1} K_{1}^{-1} x_{1} & 0 & \cdots & 0 & x_{n-1} & 0 \\
K_{n} T_{n} & K_{n} R_{n} K_{1}^{-1} x_{1} & 0 & \cdots & 0 & 0 & x_{n}
\end{array}\right)
$$

- Size of B : $3(n-1) \times(n+1)$.

Trilinear constraints

- $D B$ has same rank as B since D is full rank $3(n-1)$:

$$
D=\left(\begin{array}{ccccc}
x_{2}^{\top} & 0 & 0 & \cdots & 0 \\
0 & x_{3}^{\top} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & x_{n-1}^{\top} & 0 \\
0 & \cdots & 0 & 0 & x_{n}^{\top} \\
{\left[x_{2}\right]_{\times}} & 0 & 0 & \cdots & 0 \\
0 & {\left[x_{3}\right]_{\times}} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & {\left[x_{n-1}\right]_{\times}} & 0 \\
0 & \cdots & 0 & 0 & {\left[x_{n}\right]_{\times}}
\end{array}\right)
$$

- D has size $4(n-1) \times 3(n-1)$
- It is easy to check that the kernel of D is $\{0\}$.

Trilinear constraints

- We get:

$$
D B=\left(\begin{array}{cccccc}
x_{2}^{\top} K_{2} T_{2} & x_{2}^{\top} K_{2} R_{2} K_{1}^{-1} x_{1} & x_{2}^{\top} x_{2} & 0 & \cdots & 0 \\
x_{3}^{\top} K_{3} T_{3} & x_{3}^{\top} K_{3} R_{3} K_{1}^{-1} x_{1} & 0 & x_{3}^{\top} x_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
x_{n}^{\top} K_{n} T_{n} & x_{n}^{\top} K_{n} R_{n} K_{1}^{-1} x_{1} & 0 & \cdots & 0 & x_{n}^{\top} x_{n} \\
M_{1} & M_{2} & 0 & \cdots & 0 & 0
\end{array}\right)
$$

- Since $x_{i}^{\top} x_{i}>0$, rank of $B=(n-1)+$ Rank of M (size $3(n-1) \times 2)$:

$$
M=\left(\begin{array}{cc}
{\left[x_{2}\right]_{\times} K_{2} R_{2} K_{1}^{-1} x_{1}} & {\left[x_{2}\right]_{\times} K_{2} T_{2}} \\
\vdots & \vdots \\
{\left[x_{n}\right]_{\times} K_{n} R_{n} K_{1}^{-1} x_{1}} & {\left[x_{n}\right]_{\times} K_{n} T_{n}}
\end{array}\right)
$$

- We should have: rank of $M=1$, so that rank of $A=n+3$.
- Write that 2×2 submatrices of M should have determinant 0

Trilinear constraints

- Proposition Let M a $3 n \times 2$ matrix written in blocks of 3 rows:

$$
M=\left(\begin{array}{cc}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Rank of $M<2$ iff $\forall i, j, a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}=0$.

Trilinear constraints

- Proposition Let M a $3 n \times 2$ matrix written in blocks of 3 rows:

$$
M=\left(\begin{array}{cc}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Rank of $M<2$ iff $\forall i, j, a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}=0$.

- Proof: The case $b=0$ is trivial, assume $b \neq 0$.
$\triangleright \Rightarrow$ We have $a=\lambda b$, and $a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}=\lambda\left(b_{i} b_{j}^{\top}-b_{i} b_{j}^{\top}\right)=0$.
$\triangleright \Leftarrow$ We have $\left(a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}\right)^{k l}=a_{i}^{k} b_{j}^{\prime}-b_{i}^{k} a_{j}^{\prime}=\left|\begin{array}{cc}a_{i}^{k} & b_{i}^{k} \\ a_{j}^{\prime} & b_{j}^{\prime}\end{array}\right|$. We get that all 2×2 submatrices of M have null determinant.

Trilinear constraints

- Proposition Let M a $3 n \times 2$ matrix written in blocks of 3 rows:

$$
M=\left(\begin{array}{cc}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Rank of $M<2$ iff $\forall i, j, a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}=0$.

- For $i=j,\left(\left[x_{i}\right]_{\times} K_{i} R_{i} K_{1}^{-1} x_{1}\right) \times\left(\left[x_{i}\right]_{\times} K_{i} T_{i}\right)=0$ amounts to

$$
\begin{gathered}
\left(\left[x_{i}\right]_{\times} K_{i} T_{i}\right)^{\top}\left(K_{i} R_{i} K_{1}^{-1} x_{1}\right)=\left|\begin{array}{lll}
x_{i} & K_{i} T_{i} \quad K_{i} R_{i} K_{1}^{-1} x_{1}
\end{array}\right|=0 \text { or } \\
x_{i}^{\top} K_{i}^{-\top}\left[T_{i}\right]_{\times} R_{i} K_{1}^{-1} x_{1}=0 \text { (epipolar constraint) }
\end{gathered}
$$

- $\left[x_{i}\right]_{\times} K_{i} R_{i} K_{1}^{-1} x_{1}\left(\left[x_{j}\right]_{\times} K_{j} T_{j}\right)^{\top}-$ $\left[x_{i}\right]_{\times} K_{i} T_{i}\left(\left[x_{j}\right]_{\times} K_{j} R_{j} K_{1}^{-1} x_{1}\right)^{\top}=0$

$$
\left[x_{i}\right]_{\times}\left(\sum_{k} x_{1}^{k} \mathcal{T}_{i j}^{k}\right)\left[x_{j}\right]_{\times}=0(9 \text { trilinear constraints })
$$

Trilinear constraints

- A triplet $\left(x_{1}, x_{i}, x_{j}\right)$ imposes at most 4 independent constraints on $\mathcal{T}_{i j}^{k}$ because of the cross-products.
- Rank of $M=0$ (multiple solutions X) means

$$
\forall i,\left[x_{i}\right]_{\times} K_{i} R_{i} K_{1}^{-1} x_{1}=\left[x_{i}\right]_{\times} K_{i} T_{i}=0
$$

so that $K_{i} R_{i} K_{1}^{-1} x_{1}$ and $K_{i} T_{i}$ are proportional, hence $x_{1}=\lambda K_{1} R_{i}^{\top} T_{i}$ (epipole in image 1 wrt image i), so that all camera centers are aligned and X is on this line.

Contents

Multi-view constraints

Perspective from n Points

Multi-view calibration Incremental calibration Global calibration

Methods for Particular Cases

PnP

- "PnP" = Perspective from n Points.
- From 2D-3D correspondences $\left(x_{i}, X_{i}\right)$ and known K, recover $P=K\left(\begin{array}{ll}R & T\end{array}\right)$ so that $x_{i} \sim P X_{i}$
- Remember calibration from a 3D rig: same problem but with unknown $K, P=K\left(\begin{array}{ll}R & T\end{array}\right)$.
- Minimal problem: $n=3, P 3 P$ problem, up to 4 solutions:

$$
\begin{aligned}
& \begin{cases}Y^{2}+Z^{2}-p Y Z-a^{2}=0 & (p=2 \cos \alpha) \\
X^{2}+Z^{2}-q X Z-b^{2}=0 & (q=2 \cos \beta) \\
X^{2}+Y^{2}-r X Y-c^{2}=0 & (r=2 \cos \gamma)\end{cases} \\
& \text { Write } x=X / Z, y=Y / Z, \\
& a^{\prime}=a^{2} / c^{2}, b^{\prime}=b^{2} / c^{2}, v=c^{2} / Z^{2} .
\end{aligned}
$$

(c) Gao, Hou, Tang \& Cheng

$$
\left\{\begin{array} { l }
{ y ^ { 2 } + 1 - p y - a ^ { \prime } v = 0 } \\
{ x ^ { 2 } + 1 - q x - b ^ { \prime } v = 0 } \\
{ x ^ { 2 } + y ^ { 2 } - r x y - v = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left(1-a^{\prime}\right) y^{2}-a^{\prime} x^{2}+a^{\prime} r x y-p y+1=0 \\
\left(1-b^{\prime}\right) x^{2}-b^{\prime} y^{2}+b^{\prime} r x y-q x+1=0 \\
\text { (intersection of two conics) }
\end{array}\right.\right.
$$

$\mathrm{PnP}, n \geq 4$

[Lepetit, Moreno-Noguer \& Fua, EPnP: An accurate $O(n)$ solution to the PnP problem, IJCV 2008]

- Write $X_{i}=\sum_{j=1 \ldots 4} \alpha_{i j} C_{j}^{w}$ with C_{j}^{w} four fixed points.
- Write $C_{j}=R C_{j}^{N}+T$ in camera coordinates.
- Project onto image to obtain a $2 n \times 12$ linear system on $\left\{C_{j}\right\}$:

$$
\left[K^{-1} \times{ }_{x}\right] \times \sum_{j=1 \ldots 4} \alpha_{i j} C_{j}=0
$$

- From $M C=0$, write $C=\sum_{k=1 \ldots N} \beta_{k} V^{k}$ with the N last columns of V from SVD of M

$$
(n=4 \rightarrow N=4, n=5 \rightarrow N=2, n \geq 6 \rightarrow N=1)
$$

- Write the conservation of distances (6 equations in β):

$$
1 \leq i<j \leq 4:\left\|\sum_{k=1 \ldots N} \beta_{k}\left(V^{k} 3 i-2: 3 i-V^{k}{ }_{3 j-2: 3 j}\right)\right\|=\left\|C_{i}^{w}-C_{j}^{w}\right\|
$$

Contents

Multi-view constraints

Perspective from n Points

Multi-view calibration
Incremental calibration
Global calibration

Methods for Particular Cases

Incremental multi-view calibration

1. Compute two-view correspondences
2. Build tracks (multi-view correspondences)
3. Start from initial pair: compute F, deduce R, T and 3D points (known K)
4. Add image with common points.
5. Estimate pose (R, T)
6. Add new 3D points
7. Bundle adjustment
8. Go to 4

See open source software Bundler: SfM for Unordered Image Collections (http://www.cs.cornell.edu/~snavely/bundler/)

Incremental multi-view calibration

Incremental multi-view calibration

Bundle adjustment

We have the equations

$$
x_{i j}=D K\left(R_{j} \quad T_{j}\right) X_{i}
$$

- i: 3D point index
- j : view index
- $x_{i j}$: 2D projection in view j of point X_{i}
- D: geometric distortion model
- K: internal parameters of camera

Minimize by Levenberg-Marquardt the error

$$
E=\sum_{i j} d\left(x_{i j}, D K\left(\begin{array}{ll}
R_{j} & T_{j}
\end{array}\right) X_{i}\right)^{2}
$$

Global calibration

- Compute $E_{i j}$, essential matrices between all views i and j
- Extract $R_{i j}$ and $T_{i j}$ from $E_{i j}$
- Rotation alignment: recover $\left\{R_{i}\right\}$, global rotation with respect to $R_{0}=I d$, such that $R_{i}=R_{i j} R_{j}$ for all i, j
- [Martinec\&Pajdla CVPR 2007]: write $R_{i j}$ as unitary quaternions, find minimum of

$$
\sum_{i j}\left\|q_{i}-q_{i j} q_{j}\right\|^{2} \text { with }\left\|\left(\begin{array}{lll}
q_{1}^{\top} & \cdots & q_{n}^{\top}
\end{array}\right)^{\top}\right\|=n
$$

But this does not ensure $\left\|q_{i}\right\|=1$, condition for a quaternion to represent a rotation...

- No exact solution since $R_{i j}$ can have an error. How to close loops?
- What about outliers among the $R_{i j}$?
- Translation alignment: recover $\left\{T_{i}\right\}$, global translation with respect to $T_{0}=0$, such that $T_{i}=R_{i j} T_{j}+\lambda_{i j} T_{i j}$

Global calibration

- Compute $E_{i j}$, essential matrices between all views i and j
- Extract $R_{i j}$ and $T_{i j}$ from $E_{i j}$
- Rotation alignment: recover $\left\{R_{i}\right\}$, global rotation with respect to $R_{0}=I d$, such that $R_{i}=R_{i j} R_{j}$ for all i, j
- Translation alignment: recover $\left\{T_{i}\right\}$, global translation with respect to $T_{0}=0$, such that $T_{i}=R_{i j} T_{j}+\lambda_{i j} T_{i j}$
- [Moulon\&Monasse\&Marlet ICCV 2013]: solve the linear programme

$$
\min _{\left\{T_{i}\right\},\left\{\lambda_{i j}\right\}, \gamma} \gamma \text { with } \lambda_{i j} \geq 1,\left\|T_{i}-R_{i j} T_{j}-\lambda_{i j} T_{i j}\right\|_{\infty} \leq \gamma
$$

Some results

Orangerie dataset

Some results

Opera Garnier dataset

Contents

Multi-view constraints

Perspective from n Points
Multi-view calibration Incremental calibration Global calibration

Methods for Particular Cases

Visual hull

- We assume we are able to segment the object of interest in each view
- From the silhouette, we can restrict the location inside a cone
- Intersect cones from all views
- The result is called the visual hull

Source: Wikipedia http://en.wikipedia.org/wiki/Visual_hull

Epipolar plane imagery

A technique for depth estimation from a movie with controlled motion

- Assume a uniform motion of camera along the horizontal line
- Consider 2D cuts $\left(x, y^{*}, t\right)$ of the volume
- Edges move along lines, whose slope is the disparity
- Advantage: large baseline between distant time steps (accurate estimation) and small baseline between close times steps (easier tracking)

s

Source: http://www.informatik.uni-konstanz.de/cvia/ research/light-field-analysis/consistent-depth-estimation/

Software

Infrastructure:

- Eigen: C++ library for linear algebra
- Google's Ceres Solver for bundle adjustment (automatic differentiation)
SfM pipelines:
- Bundler (2008, open source, University of Washington)
- PhotoScan (2010, commercial, Agisoft)
- VisualSfM (2011, open source, University of Wahington): GPU
- OpenMVG (2012, open source, École des Ponts ParisTech)
- ColMap (2016, open source, University of North Carolina)

Conclusion

- Multi-view reconstruction is an active and lively field of research, but less explored than 2-view stereo correspondence
- Project: openMVG (incremental and global pipelines)

Homography Fundamental matrix Essential matrix

