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Reminder: Triangulation

» Let us write again the binocular formulae:
MX=KRX+T) NxX=KX

> Write YT = (X7 1 —Xx =X

KR KT x 03\,
<K’ 03 03 X’>Y_06

(6 equations<+5 unknowns+1 epipolar constraint)

» \We can then recover X.



Multi-linear constraints

» Bilinear constraints: fundamental matrix x ' Fx’ = 0.

» There are trilinear constraints: x,{’ = x " T;x', which are not
combinations of bilinear contraints

» All constraints involving more than 3 views are combinations
of 2- and/or 3-view constraints.



Trilinear constraints

> Write \ix; = K; (R,‘ T,') X
» Write as AY =0 with Y = (X 1 —X)\
» Look at the rank of A...



Trilinear constraints

» Assume R; = Id and T; = 0. We write A of size 3n x (n+4):

Ki 0 x 0 - 0
K2 R2 K2 T2 0 X2 tee 0
KnRn KaT, 0 --- 0 x,

» Subtracting from 3rd column the first column multiplied by
Kflxl, rank of A = rank of A’ with:

Ki 0 0 o --- 0
A/ K2R2 K2 T2 —K2R2K1_1X1 X2 cee 0
KoRn KnTn —KuRoK{'xy -+ 0 x,

» Since Kj is invertible, we have to look at the rank of the
lower-right 3(n — 1) x (n+ 1) submatrix.



Trilinear constraints

» Rank of A=3+rank of B with

K2 T2 K2R2K1_1X1
K3 T3 K3R3K1_1X1
B = : :

Kn-1Too1 Koo1Roo1K{ '
K, T, KoRa K x1

» Size of B: 3(n—1) x (n+1).
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Trilinear constraints

» DB has same rank as B since D is full rank 3(n — 1):

Xy 0 0 0
0 x 0 0
0 0 x 0
| 0 0 0 X,
0 [x]x O 0
0 -+ 0 [xma]lx O
o - 0 0 [Xn]

» D has size 4(n —1) x 3(n—1)
» |t is easy to check that the kernel of D is {0}.



Trilinear constraints

> We get:
5 KoTy x) KoRoK{ 1 3% 0 - 0
X3TK3 T3 X;K3R3K1_1X1 0 X;X3 cee 0
DB = : : : - - :
X,TKnT,, X;—K,,Ranlxl 0 0 X,;an
M, Ms 0 0 0
» Since XI-TX,' > 0, rank of B = (n— 1)+ Rank of M (size
3(n—1) x2):
el KeReKi 'xa [xa]x K2 T2
M — ) )

[Xn] x KnRn K1_1X1 [Xn] xKnTh

» We should have: rank of M =1, so that rank of A = n+ 3.
» Write that 2 x 2 submatrices of M should have determinant 0



Trilinear constraints

» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:

di b1
M = :
an bn

Rank of M < 2 iff Vi, j, ajb} — bjaj = 0.



Trilinear constraints

» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:

dai b1
M = :

an bp

Rank of M < 2 iff Vi, a,-bjT — b,-aj—.r =0.
» Proof: The case b = 0 is trivial, assume b # 0.

» = We have a = \b, and a,-bjT — b,-ajT = )\(b,-bjT - b,-bJ-T) =0.
ak bk
a b
P
get that all 2 x 2 submatrices of M have null determinant.

> < We have (a;b] — bia] )X = afbj — bfaj = . We




Trilinear constraints
» Proposition Let M a 3n x 2 matrix written in blocks of 3 rows:
dai b1
M = :
an bp
Rank of M < 2 iff Vi, }, a,-bjT — b,-aj—-r =0.
> For i = j, ([xi]x KiRiK{ x1) x ([xi]x Ki T;) = 0 amounts to
([X;]XK;T,')T(K;R;Kflxl) = ‘X,' KiT; K,-R,-Kl_lxl} =0or
x K~ T[Ti]|x RiK{ 'x1 = 0 (epipolar constraint)

> [xi]x KiRiKy (]« K T) T =
[l Ki Ti([xj]x KiRj Ky Pxa) T =0

[xi] % (Z X1k'77-}(> [xj]x = 0 (9 trilinear constraints)
K



Trilinear constraints

> A triplet (xi, X;, X;) imposes at most 4 independent constraints
on ’77;‘ because of the cross-products.

» Rank of M =0 (multiple solutions X) means
Vi, [xi]x KiRiK{ tx1 = [xi]x Ki T; = 0
so that K,-R,-Kl_lxl and K;T; are proportional, hence

x1 = A\K3 R,-TT,- (epipole in image 1 wrt image i), so that all
camera centers are aligned and X is on this line.
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PnP

> “PnP” = Perspective from n Points.

» From 2D-3D correspondences (x;, X;) and known
P = (R T) so that x; ~ PX;

» Remember calibration from a 3D rig: same problem but with
unknown K, P = K(R T).

» Minimal problem: n =3, P3P problem, up to 4 solutions:

, recover

Y24+ 272 -pYZ-a>=0 (p=2cosa)
X?4+ 27?2 —gXZ—-b*=0 (g=2cosp)
X2+ Y2 —rXY —c2=0 (r=2cosv)

Write x =X/Z, y=Y/Z,

a =a%/c? b =b*/c? v=c?/Z
(c) Gao, Hou, Tang & Cheng

y2+1—py—av=0 (1-a)y?—ax>+amxy—py+1=0
X24+1—gx—bv=0 =<(1-b)x>-by>+brxy—qgx+1=0
xX24+y?—rmxy—v=0 (intersection of two conics)



PnP, n>4
[Lepetit, Moreno-Noguer & Fua, EPnP: An accurate O(n) solution
to the PnP problem, 1JCV 2008]

>
>
>

Write X; =3y 4 a;C" with " four fixed points.
Write C; = RCJ.W + T in camera coordinates.

Project onto image to obtain a 2n x 12 linear system on {C;}:

[k ]XZ G=0

j=1..4

From MC =0, write C =_,_; B« V* with the N last
columns of V from SVD of M
(h=4—-N=4n=5->N=2,n>6—>N=1)

Write the conservation of distances (6 equations in [3):

1<i<j<4: Z Bi(V 3i—23i — V" 3j—2:3))|| = H -

k=1...N
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Incremental multi-view calibration

1. Compute two-view correspondences

2. Build tracks (multi-view correspondences)

w

Start from initial pair: compute F, deduce R, T and 3D
points (known K)

Add image with common points.

Estimate pose (R, T)

Add new 3D points

Bundle adjustment

8. Goto 4

N o o os

See open source software Bundler: SfM for Unordered Image
Collections (http://www.cs.cornell.edu/"snavely/bundler/)



http://www.cs.cornell.edu/~snavely/bundler/

Incremental multi-view calibration

O, P=?=KI[R|t]
Left view Right view



Incremental multi-view calibration

object point
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Bundle adjustment

We have the equations

xj = DK (R, T;)X;

» j: 3D point index

> j: view index

» Xxjj: 2D projection in view j of point X;
» D: geometric distortion model

> K: internal parameters of camera

Minimize by Levenberg-Marquardt the error

E=Y d(xj,DK (R T;)X)

)



Global calibration

» Compute Ejj, essential matrices between all views / and j

» Extract Rjj and Tj; from Ej

» Rotation alignment: recover {R;}, global rotation with respect
to Rp = Id, such that R; = R;iR; for all i, j

» [Martinec&Pajdla CVPR 2007]: write Rj as unitary
quaternions, find minimum of

. T
> llai = qsqil)® with | (o -+ q7) [[=n
7

But this does not ensure ||g;|| = 1, condition for a quaternion
to represent a rotation...

» No exact solution since Rj; can have an error. How to close
loops?

» What about outliers among the R;;?

» Translation alignment: recover {T;}, global translation with
respect to To = 0, such that T; = R; T; + A\ Tj;



Global

v

calibration

Compute Ej;, essential matrices between all views i and j
Extract R;j and Tj; from Ej

Rotation alignment: recover {R;}, global rotation with respect
to Rp = Id, such that R; = R;R; for all /, j

Translation alignment: recover { T;}, global translation with
respect to To = 0, such that T; = R; T; + X\ Tj;

> [Moulon&Monasse&Marlet ICCV 2013]: solve the linear
programme

min with X\j > 1| Ti — Ri T — Xii Tijlloo <
(Tt | i = Ll i T = A Tijlloo <7



Some results
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Orangerie dataset



Some results

Opera Garnier dataset
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Visual hull

> \We assume we are able to segment the object of interest in
each view

» From the silhouette, we can restrict the location inside a cone
» Intersect cones from all views

» The result is called the visual hull

Source: Wikipedia http://en.wikipedia.org/wiki/Visual_hull


http://en.wikipedia.org/wiki/Visual_hull

Epipolar plane imagery
A technique for depth estimation from a movie with controlled
motion

» Assume a uniform motion of camera along the horizontal line

» Consider 2D cuts (x, y*, t) of the volume

» Edges move along lines, whose slope is the disparity

» Advantage: large baseline between distant time steps
(accurate estimation) and small baseline between close times
steps (easier tracking)

Source: http://www.informatik.uni-konstanz.de/cvia/
research/light-field-analysis/consistent-depth-estimation/


http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/
http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/

Software

Infrastructure:
» Eigen: C++ library for linear algebra

» Google's Ceres Solver for bundle adjustment (automatic
differentiation)

StM pipelines:

» Bundler (2008, open source, University of Washington)
PhotoScan (2010, commercial, Agisoft)
VisualSfM (2011, open source, University of Wahington): GPU
OpenMVG (2012, open source, Ecole des Ponts ParisTech)

>
>
>
» ColMap (2016, open source, University of North Carolina)



Conclusion

> Multi-view reconstruction is an active and lively field of
research, but less explored than 2-view stereo correspondence

» Project: openMVG (incremental and global pipelines)
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