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Reminder: Triangulation

▶ Let us write again the binocular formulae:

λx = K (RX + T ) λ′x ′ = K ′X

▶ Write Y⊤ =
(
X⊤ 1 −λ −λ′):(

KR KT x 03
K ′ 03 03 x ′

)
Y = 06

(6 equations↔5 unknowns+1 epipolar constraint)
▶ We can then recover X .



Multi-linear constraints

▶ Bilinear constraints: fundamental matrix x⊤Fx ′ = 0.
▶ There are trilinear constraints: x ′′

i = x⊤Tix ′, which are not
combinations of bilinear contraints

▶ All constraints involving more than 3 views are combinations
of 2- and/or 3-view constraints.



Trilinear constraints

▶ Write λixi = Ki (RiX + Ti )

▶ Write as AY = 0 with Y =
(
X⊤ 1 −λ1 · · · −λn

)⊤
▶ A has size 3n × (n + 4) (n = 2 → 6 × 6, n = 3 → 9 × 7, . . . ):

n > 2 ⇒ more rows than columns.
▶ Look at the rank of A (must be ≤ n + 4)



Trilinear constraints
▶ Assume R1 = Id and T1 = 0. We write A of size 3n × (n + 4):

A =


K1 0 x1 0 · · · 0

K2R2 K2T2 0 x2 · · · 0
...

...
...

. . . . . .
...

KnRn KnTn 0 · · · 0 xn


▶ Subtracting from 3rd column the first column multiplied by

K−1
1 x1, rank of A = rank of A′ with:

A′ =


K1 0 0 0 · · · 0

K2R2 K2T2 −K2R2K−1
1 x1 x2 · · · 0

...
...

...
. . . . . .

...
KnRn KnTn −KnRnK−1

1 x1 · · · 0 xn


▶ Since K1 is invertible, we have to look at the rank of the

lower-right 3(n − 1)× (n + 1) submatrix.



Trilinear constraints

▶ Rank of A=3+rank of B with

B =


K2T2 K2R2K−1

1 x1 x2 0 0 · · · 0
K3T3 K3R3K−1

1 x1 0 x3 0 · · · 0
...

...
...

. . . . . . . . .
...

Kn−1Tn−1 Kn−1Rn−1K−1
1 x1 0 · · · 0 xn−1 0

KnTn KnRnK−1
1 x1 0 · · · 0 0 xn


▶ Size of B : 3(n − 1)× (n + 1).



Trilinear constraints

▶ DB has same rank as B since D is full rank 3(n − 1):

D =



x⊤
2 0 0 · · · 0
0 x⊤

3 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 x⊤
n−1 0

0 · · · 0 0 x⊤
n

[x2]× 0 0 · · · 0
0 [x3]× 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 [xn−1]× 0
0 · · · 0 0 [xn]×


▶ D has size 4(n − 1)× 3(n − 1)
▶ It is easy to check that the kernel of D is {0}.



Trilinear constraints
▶ We get:

DB =


x⊤
2 K2T2 x⊤

2 K2R2K−1
1 x1 x⊤

2 x2 0 · · · 0
x⊤
3 K3T3 x⊤

3 K3R3K−1
1 x1 0 x⊤

3 x3 · · · 0
...

...
...

. . . . . .
...

x⊤
n KnTn x⊤

n KnRnK−1
1 x1 0 · · · 0 x⊤

n xn
M1 M2 0 . . . 0 0


▶ Since x⊤

i xi > 0, rank of B = (n − 1)+ Rank of M (size
3(n − 1)× 2):

M =

[x2]×K2R2K−1
1 x1 [x2]×K2T2

...
...

[xn]×KnRnK−1
1 x1 [xn]×KnTn


▶ We should have: rank of M = 1, so that rank of A = n + 3.
▶ Write that 2 × 2 submatrices of M should have determinant 0



Trilinear constraints

▶ Proposition Let M a 3n × 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 iff ∀i , j , aib⊤

j − bia⊤j = 0.



Trilinear constraints

▶ Proposition Let M a 3n × 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 iff ∀i , j , aib⊤

j − bia⊤j = 0.
▶ Proof: The case b = 0 is trivial, assume b ̸= 0.

▶ ⇒ We have a = λb, and aib⊤
j − bia⊤j = λ(bib⊤

j − bib⊤
j ) = 0.

▶ ⇐ We have (aib⊤
j − bia⊤j )

kl = ak
i bl

j − bk
i al

j =

∣∣∣∣ak
i bk

i
al
j bl

j

∣∣∣∣. We

get that all 2 × 2 submatrices of M have null determinant.



Trilinear constraints
▶ Proposition Let M a 3n × 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 iff ∀i , j , aib⊤

j − bia⊤j = 0.
▶ For i = j , ([xi ]×KiRiK−1

1 x1)× ([xi ]×KiTi ) = 0 amounts to

([xi ]×KiTi )
⊤(KiRiK−1

1 x1) =
∣∣xi KiTi KiRiK−1

1 x1
∣∣ = 0 or

xT
i K−⊤

i [Ti ]×RiK−1
1 x1 = 0 (epipolar constraint)

▶ [xi ]×KiRiK−1
1 x1([xj ]×KjTj)

⊤−[xi ]×KiTi ([xj ]×KjRjK−1
1 x1)

⊤ =
0

[xi ]×

(∑
k

xk
1 T k

ij

)
[xj ]× = 0 (9 trilinear constraints)



Trilinear constraints

▶ A triplet (x1, xi , xj) imposes at most 4 independent constraints
on T k

ij because of the cross-products.
▶ Rank of M = 0 (multiple solutions X ) means

∀i , [xi ]×KiRiK−1
1 x1 = [xi ]×KiTi = 0

so that KiRiK−1
1 x1 and KiTi are proportional, hence

x1 = λK1R⊤
i Ti (epipole in image 1 wrt image i), so that all

camera centers are aligned and X is on this line.



Contents

Multi-view constraints

Perspective from n Points

Multi-view calibration
Incremental calibration
Global calibration

Methods for Particular Cases



PnP
▶ “PnP” = Perspective from n Points.
▶ From 2D-3D correspondences (xi ,Xi ) and known K , recover

P = K
(
R T

)
so that xi ∼ PXi

▶ Remember calibration from a 3D rig: same problem but with
unknown K , P = K

(
R T

)
.

▶ Minimal problem: n = 3, P3P problem, up to 4 solutions:

(c) Gao, Hou, Tang & Cheng


Y 2 + Z 2 − pYZ − a2 = 0 (p = 2 cosα)
X 2 + Z 2 − qXZ − b2 = 0 (q = 2 cosβ)
X 2 + Y 2 − rXY − c2 = 0 (r = 2 cos γ)

Write x = X/Z , y = Y /Z ,
a′ = a2/c2, b′ = b2/c2, v = c2/Z 2.

y2 + 1 − py − a′v = 0
x2 + 1 − qx − b′v = 0
x2 + y2 − rxy − v = 0

⇒


(1 − a′)y2 − a′x2 + a′rxy − py + 1 = 0
(1 − b′)x2 − b′y2 + b′rxy − qx + 1 = 0
(intersection of two conics)



PnP, n ≥ 4
[Lepetit, Moreno-Noguer & Fua, EPnP: An accurate O(n) solution
to the PnP problem, IJCV 2008]
▶ Write Xi =

∑
j=1...4 αijCw

j with Cw
j four fixed points.

▶ Write Cj = RCw
j + T in camera coordinates.

▶ Project onto image to obtain a 2n × 12 linear system on {Cj}:

[K−1xi ]×
∑

j=1...4

αijCj = 0

▶ From MC = 0, write C =
∑

k=1...N βkV k with the N last
columns of V from SVD of M
(n = 4 → N = 4, n = 5 → N = 2, n ≥ 6 → N = 1)

▶ Write the conservation of distances (6 equations in β):

1 ≤ i < j ≤ 4 :

∥∥∥∥∥ ∑
k=1...N

βk(V k
3i−2:3i − V k

3j−2:3j)

∥∥∥∥∥ =
∥∥Cw

i − Cw
j
∥∥
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Incremental multi-view calibration
1. Compute two-view correspondences
2. Build tracks (multi-view correspondences)
3. Start from initial pair: compute F , deduce R , T and 3D

points (known K )

4. Add image with common points.
5. Estimate pose (R , T )
6. Add new 3D points
7. Bundle adjustment
8. Go to 4

See open source software Bundler: SfM for Unordered Image
Collections (http://www.cs.cornell.edu/~snavely/bundler/)

http://www.cs.cornell.edu/~snavely/bundler/


Incremental multi-view calibration



Incremental multi-view calibration



Bundle adjustment

We have the equations

xij = DK
(
Rj Tj

)
Xi

▶ i : 3D point index
▶ j : view index
▶ xij : 2D projection in view j of point Xi

▶ D: geometric distortion model
▶ K : internal parameters of camera

Minimize by Levenberg-Marquardt the error

E =
∑
ij

d(xij ,DK
(
Rj Tj

)
Xi )

2



Global calibration

▶ Compute Eij , essential matrices between all views i and j
▶ Extract Rij and Tij from Eij
▶ Rotation alignment: recover {Ri}, global rotation with respect

to R0 = Id , such that Ri = RijRj for all i , j
▶ [Martinec&Pajdla CVPR 2007]: write Rij as unitary

quaternions, find minimum of∑
ij

∥qi − qijqj∥2 with ∥
(
q⊤
1 · · · q⊤

n
)⊤ ∥ = n

But this does not ensure ∥qi∥ = 1, condition for a quaternion
to represent a rotation...

▶ No exact solution since Rij can have an error. How to close
loops?

▶ What about outliers among the Rij?

▶ Translation alignment: recover {Ti}, global translation with
respect to T0 = 0, such that Ti = RijTj + λijTij



Global calibration

▶ Compute Eij , essential matrices between all views i and j
▶ Extract Rij and Tij from Eij

▶ Rotation alignment: recover {Ri}, global rotation with respect
to R0 = Id , such that Ri = RijRj for all i , j

▶ Translation alignment: recover {Ti}, global translation with
respect to T0 = 0, such that Ti = RijTj + λijTij
▶ [Moulon&Monasse&Marlet ICCV 2013]: solve the linear

programme

min
{Ti},{λij},γ

γ with λij ≥ 1, ∥Ti − RijTj − λijTij∥∞ ≤ γ



Some results

Orangerie dataset



Some results

Opera Garnier dataset
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Visual hull

▶ We assume we are able to segment the object of interest in
each view

▶ From the silhouette, we can restrict the location inside a cone
▶ Intersect cones from all views
▶ The result is called the visual hull

Source: Wikipedia http://en.wikipedia.org/wiki/Visual_hull

http://en.wikipedia.org/wiki/Visual_hull


Epipolar plane imagery
A technique for depth estimation from a movie with controlled
motion
▶ Assume a uniform motion of camera along the horizontal line
▶ Consider 2D cuts (x , y∗, t) of the volume
▶ Edges move along lines, whose slope is the disparity
▶ Advantage: large baseline between distant time steps

(accurate estimation) and small baseline between close times
steps (easier tracking)

Source: http://www.informatik.uni-konstanz.de/cvia/
research/light-field-analysis/consistent-depth-estimation/

http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/
http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/


Software

Infrastructure:
▶ Eigen: C++ library for linear algebra
▶ Google’s Ceres Solver for bundle adjustment (automatic

differentiation)
SfM pipelines:
▶ Bundler (2008, open source, University of Washington)
▶ PhotoScan (2010, commercial, Agisoft)
▶ VisualSfM (2011, open source, University of Wahington): GPU
▶ OpenMVG (2012, open source, École des Ponts ParisTech)
▶ ColMap (2016, open source, University of North Carolina)



Conclusion
▶ Multi-view reconstruction is an active and lively field of

research, but less explored than 2-view stereo correspondence
▶ Project: openMVG (incremental and global pipelines)

Homography Fundamental matrix Essential matrix

Resection Triangulation
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