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Reminder: Triangulation

I Let us write again the binocular formulae:

λx = K (RX + T ) λ′x ′ = K ′X

I Write Y> =
(
X> 1 −λ −λ′

)
:(

KR KT x 03
K ′ 03 03 x ′

)
Y = 06

(6 equations↔5 unknowns+1 epipolar constraint)
I We can then recover X .



Multi-linear constraints

I Bilinear constraints: fundamental matrix x>Fx ′ = 0.
I There are trilinear constraints: x ′′i = x>Tix

′, which are not

combinations of bilinear contraints
I All constraints involving more than 3 views are combinations

of 2- and/or 3-view constraints.



Trilinear constraints

I Write λixi = Ki

(
Ri Ti

)
X

I Write as AY = 0 with Y =
(
X 1 −λ1 · · · −λn

)>
I Look at the rank of A...



Trilinear constraints

I Assume R1 = Id and T1 = 0. We write A of size 3n× (n+ 4):

A =


K1 0 x1 0 · · · 0

K2R2 K2T2 0 x2 · · · 0
...

...
...

. . . . . .
...

KnRn KnTn 0 · · · 0 xn


I Subtracting from 3rd column the �rst column multiplied by

K−11 x1, rank of A = rank of A′ with:

A′ =


K1 0 0 0 · · · 0

K2R2 K2T2 −K2R2K
−1
1 x1 x2 · · · 0

...
...

...
. . . . . .

...
KnRn KnTn −KnRnK

−1
1 x1 · · · 0 xn


I Since K1 is invertible, we have to look at the rank of the

lower-right 3(n − 1)× (n + 1) submatrix.



Trilinear constraints

I Rank of A=3+rank of B with

B =


K2T2 K2R2K

−1
1 x1 x2 0 0 · · · 0

K3T3 K3R3K
−1
1 x1 0 x3 0 · · · 0

...
...

...
. . . . . . . . .

...
Kn−1Tn−1 Kn−1Rn−1K

−1
1 x1 0 · · · 0 xn−1 0

KnTn KnRnK
−1
1 x1 0 · · · 0 0 xn


I Size of B : 3(n − 1)× (n + 1).



Trilinear constraints

I DB has same rank as B since D is full rank 3(n − 1):

D =



x>2 0 0 · · · 0
0 x>3 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 x>n−1 0
0 · · · 0 0 x>n

[x2]× 0 0 · · · 0
0 [x3]× 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 [xn−1]× 0
0 · · · 0 0 [xn]×


I D has size 4(n − 1)× 3(n − 1)
I It is easy to check that the kernel of D is {0}.



Trilinear constraints

I We get:

DB =


x>2 K2T2 x>2 K2R2K

−1
1 x1 x>2 x2 0 · · · 0

x>3 K3T3 x>3 K3R3K
−1
1 x1 0 x>3 x3 · · · 0

...
...

...
. . . . . .

...
x>n KnTn x>n KnRnK

−1
1 x1 0 · · · 0 x>n xn

M1 M2 0 . . . 0 0


I Since x>i xi > 0, rank of B = (n − 1)+ Rank of M (size

3(n − 1)× 2):

M =

[x2]×K2R2K
−1
1 x1 [x2]×K2T2

...
...

[xn]×KnRnK
−1
1 x1 [xn]×KnTn


I We should have: rank of M = 1, so that rank of A = n + 3.
I Write that 2× 2 submatrices of M should have determinant 0



Trilinear constraints

I Proposition Let M a 3n× 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 i� ∀i , j , aib>j − bia

>
j = 0.



Trilinear constraints

I Proposition Let M a 3n× 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 i� ∀i , j , aib>j − bia

>
j = 0.

I Proof: The case b = 0 is trivial, assume b 6= 0.
I ⇒ We have a = λb, and aib

>
j − bia

>
j = λ(bib

>
j − bib

>
j ) = 0.

I ⇐ We have (aib
>
j − bia

>
j )

kl = aki b
l
j − bki a

l
j =

∣∣∣∣aki bki
alj blj

∣∣∣∣. We

get that all 2× 2 submatrices of M have null determinant.



Trilinear constraints

I Proposition Let M a 3n× 2 matrix written in blocks of 3 rows:

M =

a1 b1
...

...
an bn


Rank of M < 2 i� ∀i , j , aib>j − bia

>
j = 0.

I For i = j , ([xi ]×KiRiK
−1
1 x1)× ([xi ]×KiTi ) = 0 amounts to

([xi ]×KiTi )
>(KiRiK

−1
1 x1) =

∣∣xi KiTi KiRiK
−1
1 x1

∣∣ = 0 or

xTi K−>i [Ti ]×RiK
−1
1 x1 = 0 (epipolar constraint)

I [xi ]×KiRiK
−1
1 x1([xj ]×KjTj)

> −
[xi ]×KiTi ([xj ]×KjRjK

−1
1 x1)

> = 0

[xi ]×

(∑
k

xk1 T k
ij

)
[xj ]× = 0 (9 trilinear constraints)



Trilinear constraints

I A triplet (x1, xi , xj) imposes at most 4 independent constraints
on T k

ij because of the cross-products.
I Rank of M = 0 (multiple solutions X ) means

∀i , [xi ]×KiRiK
−1
1 x1 = [xi ]×KiTi = 0

so that KiRiK
−1
1 x1 and KiTi are proportional, hence

x1 = λK1R
>
i Ti (epipole in image 1 wrt image i), so that all

camera centers are aligned and X is on this line.
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PnP
I �PnP� = Perspective from n Points.
I From 2D-3D correspondences (xi ,Xi ) and known K , recover

P = K
(
R T

)
so that xi ∼ PXi

I Remember calibration from a 3D rig: same problem but with
unknown K , P = K

(
R T

)
.

I Minimal problem: n = 3, P3P problem, up to 4 solutions:

(c) Gao, Hou, Tang & Cheng


Y 2 + Z 2 − pYZ − a2 = 0 (p = 2 cosα)

X 2 + Z 2 − qXZ − b2 = 0 (q = 2 cosβ)

X 2 + Y 2 − rXY − c2 = 0 (r = 2 cos γ)

Write x = X/Z , y = Y /Z ,
a′ = a2/c2, b′ = b2/c2, v = c2/Z 2.

y2 + 1− py − a′v = 0
x2 + 1− qx − b′v = 0
x2 + y2 − rxy − v = 0

⇒


(1− a′)y2 − a′x2 + a′rxy − py + 1 = 0
(1− b′)x2 − b′y2 + b′rxy − qx + 1 = 0
(intersection of two conics)



PnP, n ≥ 4
[Lepetit, Moreno-Noguer & Fua, EPnP: An accurate O(n) solution
to the PnP problem, IJCV 2008]
I Write Xi =

∑
j=1...4 αijC

w
j with Cw

j four �xed points.
I Write Cj = RCw

j + T in camera coordinates.
I Project onto image to obtain a 2n × 12 linear system on {Cj}:

[K−1xi ]×
∑

j=1...4

αijCj = 0

I From MC = 0, write C =
∑

k=1...N βkV
k with the N last

columns of V from SVD of M
(n = 4→ N = 4, n = 5→ N = 2, n ≥ 6→ N = 1)

I Write the conservation of distances (6 equations in β):

1 ≤ i < j ≤ 4 :

∥∥∥∥∥ ∑
k=1...N

βk(V
k
3i−2:3i − V k

3j−2:3j)

∥∥∥∥∥ =
∥∥Cw

i − Cw
j

∥∥
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Incremental multi-view calibration

1. Compute two-view correspondences

2. Build tracks (multi-view correspondences)

3. Start from initial pair: compute F , deduce R , T and 3D
points (known K )

4. Add image with common points.

5. Estimate pose (R , T )

6. Add new 3D points

7. Bundle adjustment

8. Go to 4

See open source software Bundler: SfM for Unordered Image
Collections (http://www.cs.cornell.edu/~snavely/bundler/)

http://www.cs.cornell.edu/~snavely/bundler/


Incremental multi-view calibration



Incremental multi-view calibration



Bundle adjustment

We have the equations

xij = DK
(
Rj Tj

)
Xi

I i : 3D point index
I j : view index
I xij : 2D projection in view j of point Xi

I D: geometric distortion model
I K : internal parameters of camera

Minimize by Levenberg-Marquardt the error

E =
∑
ij

d(xij ,DK
(
Rj Tj

)
Xi )

2



Global calibration

I Compute Eij , essential matrices between all views i and j

I Extract Rij and Tij from Eij

I Rotation alignment: recover {Ri}, global rotation with respect
to R0 = Id , such that Ri = RijRj for all i , j
I [Martinec&Pajdla CVPR 2007]: write Rij as unitary

quaternions, find minimum of∑
ij

‖qi − qijqj‖2 with ‖
(
q>
1
· · · q>n

)> ‖ = n

But this does not ensure ‖qi‖ = 1, condition for a quaternion
to represent a rotation...

I No exact solution since Rij can have an error. How to close
loops?

I What about outliers among the Rij?

I Translation alignment: recover {Ti}, global translation with
respect to T0 = 0, such that Ti = RijTj + λijTij



Global calibration

I Compute Eij , essential matrices between all views i and j

I Extract Rij and Tij from Eij

I Rotation alignment: recover {Ri}, global rotation with respect
to R0 = Id , such that Ri = RijRj for all i , j

I Translation alignment: recover {Ti}, global translation with
respect to T0 = 0, such that Ti = RijTj + λijTij

I [Moulon&Monasse&Marlet ICCV 2013]: solve the linear
programme

min
{Ti},{λij},γ

γ with λij ≥ 1, ‖Ti − RijTj − λijTij‖∞ ≤ γ



Some results

Orangerie dataset



Some results

Opera Garnier dataset
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Visual hull

I We assume we are able to segment the object of interest in
each view

I From the silhouette, we can restrict the location inside a cone
I Intersect cones from all views
I The result is called the visual hull

Source: Wikipedia http://en.wikipedia.org/wiki/Visual_hull

http://en.wikipedia.org/wiki/Visual_hull


Epipolar plane imagery
A technique for depth estimation from a movie with controlled
motion
I Assume a uniform motion of camera along the horizontal line
I Consider 2D cuts (x , y∗, t) of the volume
I Edges move along lines, whose slope is the disparity
I Advantage: large baseline between distant time steps

(accurate estimation) and small baseline between close times
steps (easier tracking)

Source: http://www.informatik.uni-konstanz.de/cvia/
research/light-field-analysis/consistent-depth-estimation/

http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/
http://www.informatik.uni-konstanz.de/cvia/research/light-field-analysis/consistent-depth-estimation/


Software

Infrastructure:
I Eigen: C++ library for linear algebra
I Google's Ceres Solver for bundle adjustment (automatic

di�erentiation)

SfM pipelines:
I Bundler (2008, open source, University of Washington)
I PhotoScan (2010, commercial, Agisoft)
I VisualSfM (2011, open source, University of Wahington): GPU
I OpenMVG (2012, open source, École des Ponts ParisTech)
I ColMap (2016, open source, University of North Carolina)



Conclusion

I Multi-view reconstruction is an active and lively �eld of
research, but less explored than 2-view stereo correspondence

I Project: openMVG (incremental and global pipelines)

Homography Fundamental matrix Essential matrix

Resection Triangulation
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