Local Features
Detection and Description
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-> let me know if you are interested in

What dO | WOrk On? internships/PhDs on these topics

Main Focus: Efficient machine learning + large-scale geospatial data

/ 3D data: large-scale + real time + forestry \
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Local features and correspondences pipeline
for 3D reconstruction

Extract location of Summarize their Find matching Filter the matches
‘local features’ appearance in a vector features based on geometry
(interest points, keypoints)
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Motivation: panorama




3D reconstruction
 External camera calibration

= determination of pose (i.e., location and orientation)
of each camera in a common coordinate system

- requires enough corresponding points
in several images

- detection and matching
of salient points

e Dense 3D reconstruction

= by triangulation, given camera pose
(1) not restricted to salient points only

- requires matching image patches
In several images




Motivation: tracking

J. Lezama, K. Alahari, J. Sivic, |. Laptev
Track to the Future: Spatio-temporal Video Segmentation with Long-range Motion Cues
CVPR 2011



Motivation: instance retrieval

|dentify salient points

Look for similar salient
points in other image

Check geometrical
consistency
(rigid or deformable)

Ok 2011 @ ENPC
Toys dataset 2004 © ETHZ



Motivation: content-based image retrieval

Philbin, J. , Chum, O., Isard, M., Sivic, J. and Zisserman, A.
Object retrieval with large vocabularies and fast spatial matching
CVPR 2007



Difficulty:

Why is so hard to find the same content across
different pictures? What could go wrong?



Difficulty

Illumination changes



Difficulty

Season changes



Difficulty

Viewpoint changes



Difficulty

Clutter and occlusion



Difficulty

JPRO

* change of camera parameters (speed/aperture ...)



Difficulty

UEIEY
(REANLS

* non-rigid scene (objects in motion, deformable surface)

Dyke etal Non-rigid
registration under
anisotropic deformations




Difficulty

Smoother surface focus specular reflection Rougher surface larger dimmer highlight

Adobe

Diffuse:
Direction
varies

* surface reflectance (Lambertian or not,
reflection,transpar.)



Difficulty
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* repetitive patterns (windows, road marks...)



What is a local feature?

e Distinctive:
o identifiable region of an image
O unique

® [nvariant:
o to various transformations and noise

e Repeatable:
o Can be retrieved robustly
o Will appear in different images



Which features?

* Edges: eg. Canny edges

Canny, J. (1986). A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine intelligence



Which features?

* Regions: eg. MSER (maximally stable extremal regions)

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 2004



Which features?

*Simple regions, blobs: eg. Harris-affine




Which features?

* Points




Which features?

e distinctive/repeatable




Outline

1. Classical local features

- Feature detection: How to extract informative features consistently?
- Feature description: how to compare features?
- Some more discussion of SIFT and SURF

2. Deep local features
3. Some deep 3D reconstruction



Convolutions

» fo:RiorZ9— R (or with values in C)

 Ex. 2D continuous convolution

+00 400 +0o0 +00

(fxg)x,y)= _r f flu,v)g(x—u,y—v)dudv = _f f flx—u,y—v)g(u,v)dudy

—00 — a0 —o0 —00

 Ex. 2D discrete convolution

(f*g)i,]) = ZZflJ (i—k,j—1)= ZZf(z—k]l (k, 1)

k=— [=—x0 kKk=—x |=—x0

.. if integral/sum exists

» sufficient: / compactly supported, f integrable and g bounded...
 Efficient convolution in Fourier



Blur-Convolution

*Blurred image: O — K x [

e.g. uniform motion blur

Levin, A., Weiss, Y.,
Durand, F., & Freeman, W.
T. (2009, June).
Understanding and
evaluating blind
deconvolution algorithms.
CVPR 2009



Convolution
(K «1)(i,§) =Y K(=k,~DI(i+k,j+1)




Convolution
(K «1)(i,§) =Y K(=k,~DI(i+k,j+1)




Convolution
(K «1)(i,§) =Y K(=k,~DI(i+k,j+1)




Convolution
(K «1)(i,§) =Y K(=k,~DI(i+k,j+1)

Weighted average

(K + 1)(i,7)



Convolution
(K «1)(i,§) =Y K(=k,~DI(i+k,j+1)




Practice with linear filters
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Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

o|lo|o ‘)
0|01 ®
o|lo|o

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

O|

Original

Source: D. Lowe



Practice with linear filters
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Original Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters
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1
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Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Derivatives on images

For 2D function f(x,y), the partial derivative is:

6f(xay) :hmf(x_l_gay)_f(xay)

6x e—0 E

For discrete data, we can approximate using finite differences:

@f(xay) ~ f(x_l_l:y)_f(xay)
Ox 1

To implement the above as convolution, what would be the associated filter?

Source: K. Grauman



Partial derivatives of an image

Which shows changes with respect to x7?

or

Source: L. Lazebnik



Filtering in frequency domain

FFT

intensity image

log fit magnitude

Slide: Hoiem



Effects of noise

* Consider a single row or column of the image

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f ()

1 | | 1 | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Source: S. Seitz



Solution: smooth first

f*g

d
E(f*g)

e To find edges, look for peaks in

Convolution Kernel Signal

Differentiation

Sigma = 50
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Source: S. Seitz



Derivative theorem of convolution

e Differentiation is convolution, and convolution is associative:

e This saves us one operation:

Convolution

d d
d—x(f*g)—f*d—xg

Sigma = 50
T

.................................................
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Source: S. Seitz



Derivative of Gaussian filters

x-direction y-direction

* Which one finds horizontal/vertical edges?

Source: L. Lazebnik



Differential operators

More generally, rather than trying to manually design a filter, we:
- apply an operator to the Gaussian kernel (eg: derivative, laplacian)
- discretize the result (to create a filter)
- convolve with the image

Useful for:

- Noise reduction
- Scale election
- Isotropic

- Etc!



Outline

1. Classical local features
* Reminder on convolutions

* Feature detection: How to extract informative features consistently?
Harris corners, Laplacian/Hessian blobs, scale and orientation

* Feature description: how to compare features?
e Some more discussion of SIFT and SURF

2. Deep local features
3. Some deep 3D reconstruction



Local features and correspondences pipeline
for 3D reconstruction

Feature Feature Feature Geometric
extraction description matching verification
Extract location of Summarize their Find matching Filter the matches

‘local features’ appearance in a vector features based on geometry

(interest points, keypoints)



Auto-correlation for corner detection
(Moravec 1980)

e Corner?

A. Interior Region B. Edge C. Edge D. Edge
Little intensity variation Little intensity variation Large intensity variation Large intensity variation
in any direction along edge, large in all directions in all directions

variation perpendicular
to edge

Parks & Grave @ McG7l U.



Harris Corner

ldea: compare a patch P and a patch shifted by (Ax,Ay)

S(Az, Ay) = ) (I(m+Agy+4y) - I(z,y))°

R

-> if the difference is large for all (Ax,Ay) the patch is
distinctive.



Harris Corner

|dea: compare a patch P and a patch shifted by (Ax,Ay)

2
S(Az,Ay) = ) (I(z+Asy+Ay) —I(z,y))
z,yepr
Use Taylor extension of / (Harris and Stephen 1988):

I(x+ Az, y+ Ay) ~ I(z,y) + L. (z,y) Az + [y(xa y)Ay

A Bgd = ¥ [As Ay L

z,y€P - 4



Harris Corner

A=) [ II"} I?jg"”]
S large in all direction <-> condition on Tty Y

o Slarge in all direction e —

<-> Ay and A, are large,
the two eigenvalues of A~ Ay
large




Spectral theorem

We can diagonalize the any symmetric positively

defined matrix M in an orthonormal basis (€1, ..., €m)
l.e. write
m
T
M = ZAieiei M&; — )\767
=1

A1 > ... > Ay > 0 arethe eigenvalues
m
oIf u= Zuiei
2.=1

m
min A;[|ul|® < u” Mu =) Aui < max A;||ul’
2 1

2= 1



Spectral theorem

We can diagonalize the any symmetric positively

defined matrix M in an orthonormal basis (€1, ..., €m)
l.e. write
m
T
M = ZAieiei M&; — )\767
=1

A1 > ... > Ay > 0 arethe eigenvalues

Interpretation: level-sets of uv"Mu=">A\u?

=1
@



Harris Corner

* Slarge in all direction <-> the two eigenvalues of A — Z
are large z,y€P



Harris Corner

* S large in all direction <-> the two eigenvalues of 4= ) [Ia:]y
are large el

* Harris and Stephens suggest to use

M, =M — k(M + A)* = det(A) — & trace®(A)

the auto-correlation or second moment matrix

w Gaussian -> invariant to in plane rotation



Harris Corner

“Corner”

Ay and A, are large,

A

Figure from Cordelia Schmid



Harris Corner: algo

« Compute images derivatives / (x ) and I (x ) for each pixel ¢ of /

- compute smooth derivation operators G_and G

- compute “image derivatives” I_and I : convolve I with masks G_and G,

« Compute “product images” 7>, [x]“[1 (not matrix products!)
- then add extra smoothing using an “integration” Gaussian (e.g., 0, = 2)
(again using two 1D-convolutions rather than one 2D-convolution)
» Consider auto-correlation matrix4 = [/° 11 ; 11 17|
- compute corner response (or strength) for each ¢

- response above threshold and local maximum (8 neighbors) = detection
- possibly: only keep locally significant responses (see ANMS below)



Blob detection



Blob detection: Hessian

Idea: do a quadratic approximation of the image
Use the Hessian: its eigen-values/vector give principal curvatures of the image
Blob: both eigenvalue are : (i) large, (ii) same sign

o — Z §CB,CE Ia:,y

z,yeP - -

B + Dg, i +8) = E(7, ) + VE(Z,7)T [

> D>

g o
+
>
8
=
s
s
=
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Blob detection: LoG idea

minima

maxima

* Find maxima and minima of blob filter
response in space and scale

Source: N. Snavely



Blob detection: LoG

* |dea: convolve image with LapIaC|an of Gau55|an and look for extrema

Af=V2f=V .Vf= Z )

AG(Q?,y; U) — T

* Laplacian of Gaussian (LoG) detector score:

with  L(x,y;0) = G(z,y;0) * I(x,y)



Multi-scale

Gaussian pyramid

N e Convolution with
/A /A /A
@@@@%f' Gaussian of varylngcr
512 256 128

\\ Glx,y 0)=——e
‘,5’(:"' 2 T ()_ Z
|  Scale-space
/- - representation
£ }/ \ * | ‘ ‘
U Lix,y,0l=Glx,y;0)*I(x,)
2 e Scale pyramid

'Space X,y dimensions (location)
Scale -space: g dimension

Forgsth & Pons 2002 @ PrenticeHa - e a s e s ses s seE e EmEmEmEEEm e mmm ==



Scale-space

1 1

Be carefull when comparing
detector responses at
different scales, you might
need a scaling factor!

& =0 (original image) =1 s=4 e.g. scale normalized LoG

V2 G = c*V2G

norm

o =64 o=256

Find extrema in 2D and scale space (why?)



Covariance / Invariance

 We want the description to be invariant:
features(transform(image)) = features(image)

* A solution is to have a covariant detection:
det(transform(image)) = transform(det(image))



Rotation invariance/covariance

* example: use the dominant gradient direction to
rotate the image

o W




Affine invariance/covariance

e example: use the eigen-decomposition of the second moment matrix

IZ L,L )
M=, 7Y
(LxLy B2

* Give direction of maximum and minimum variation of the image and a
characteristic scale

-> Normalize the image




Evaluation

* The main criteria for a detector is repeatability, i.e. to detect the same
features in two different views of the same scene.

* Another criteria is the number of features detected/image

*”Same” can mean different things depending on the feature type
(location, scale, orientation...)



Non-Max suppression



Non-Maximum Suppression

e Problem:
maximality in 3x3 neighborhood

- uneven distribution
(dense where high contrast)

-> poor robustness
(sensitive to noise)

e Solution 1 (NMS):

- check in larger region around p (e.g., disk of given radius r):

(a) Strongest 250 (b) Strongest 500

check maximality w.r.t. all points ¢ such that || X, —X | <r

- check almost largest response (e.g., within 10%):
Vg | x,-x || =r= cflx) Sﬂxp) [e.g.,c=0.09]



Adaptive non-maximal suppression (ANMS)

* Problem with NMS
e Distribution still uneven
* Need to tuner e
° Solution 2: AN MS a)sérongestzso o b)StrongcstSOO

each point
* Sort by radius




ANMS : algo

Sort DetectedPoints by decreasing response

p, < point with highest response
I'py < o0

ProcessedPoints < {p §, and remove p from DetectedPoints

For each detection p € DetectedPoints, in decreasing strength order
| such that f(xp) <cflx)

7 — min X —X
p p q

g € ProcessedPoints ||

add p to ProcessedPoints
Return 7 first points p with the highest suppression radius r,

// Still quadratic in number of points. (But there are subquadratic algorithms.)

// Compute, store and compare i~ rather than i to avoid computing a square root for r* = X —X,



ANMS : example

.-//



ANMS : example

) 4 strongest points: e
| 110, 105,97,96
4 strongest points with: NMS

| 4 strongest points with |I::AN MS::]

/
/
///




ANMS : example

) 4 strongest points: .
| 110, 105,97,96
4 strongest points with: NMS
110, 105, 94, 93
| 4 strongest points with! ANMS |

//




ANMS : example

) 4 strongest points: .
| 110, 105,97,96
4 strongest points with: NMS
110, 105, 94, 93
| 4 strongest points with! ANMS |
110, 105, 94, 78 . 4




Outline

1. Classical local features
* Reminder on convolutions
* Feature detection: How to extract informative features consistently?

* Feature description: how to compare features?
ShapeContext/HOG/BRIEF

e Some more discussion of SIFT and SURF

2. Deep local features
3. Some deep 3D reconstruction



Local features and correspondences pipeline
for 3D reconstruction

Feature Feature Feature Geometric
extraction description matching verification
Extract location of Summarize their Find matching Filter the matches

‘local features’ appearance in a vector features based on geometry

(interest points, keypoints)



Feature descriptors

* How to compare patches?
* Directly compare pixels
* Look at a more meaningful embedding (descriptor)

* Which distance/similarity?



Feature descriptors

Many type of descriptors
* Pixel values

* Based on local image statistics (local derivatives,
answer to filters...)

* Based on local histograms
* Binary comparisons
* CNN-based



Comparing patches using pixel values

Two square patches b and P of size W
e | 2 distance:

> (Poliyj) = Pi(i,4))* =Y (Po(i, ) + P1(i,4)*) =2 ) Po(i, §).Pi(i, j)

©,] i,] ©,]

Sensitive to illumination changes — average luminosity of the patch



Comparing patches using pixel values

Two square patches F;and P of size W
» Zero-mean Normalized Cross-correlation (ZNCC)

iz Poli, j) —po Pi(i,7) — i
w i 00 . 01

1
Ik w; k(%]) o

S(Puli. ) — )’

1,7

1
w

Rl V)

Invariant to affine illumination changes, robust to noise.
-> Problem: still limited robustness



Shape context

1. Detect edges ; 2. Sample points ; 3. Build histogram

Belongie, S., Malik, J., & Puzicha, J.
Shape matching and object recognition using shape contexts. PAMI 2002




Histograms of Oriented Gradients

Same idea as SIFT (coming in a few slides): histogram of gradients orientations

'0'!

) P L -
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'SEE SN

Dalal, N., & Triggs, B. Histograms of oriented gradients for human detection. CVPR 2005



BRIEF

Using binary comparisons between random
locations

0 otherwise

) {1 if p(x) <p(y)

fnd(p> o Z Qi_l T(p;xiaYi)

1<i1<ng

Calonder, M., Lepetit, V., Strecha, C., & Fua, P. Brief: Binary
robust independent elementary features. ECCV 2010

See also Local Binary Patterns (LBP)



Outline

1. Classical local features
* Reminder on convolutions
* Feature detection: How to extract informative features consistently?
* Feature description: how to compare features?
* Some more discussion of SIFT and SURF

2. Deep local features
3. Some deep 3D reconstruction



Local features and correspondences pipeline
for 3D reconstruction

Extract location of Summarize their Find matching Filter the matches
‘local features’ appearance in a vector features based on geometry
(interest points, keypoints)



SIFT

e Scale Invariant Feature Transform,
David Lowe, ICCV 1999, 1JCV2004

* Detector + descriptor

* Optimized for speed and precision, designed using performance over
synthetic transformations (rotation, scaling, affine stretch, change in
brightness and contrast, and addition of image noise)

* Still the main baseline for sparse features, even if deep methods now
lead to better detectors/descriptors



SIFT Detector

* Approximating LoG with DoG

0G /00 = oV*G

o« Computing the LoG is expensive

e LOG ~LOG G(CB, Y, 01) — G(CE, Y, 02)

V2G(z,y,0) ~

o Simply apply 2 convolutions



SIFT Detector

* Approximating LoG with DoG ; A

0G /00 = oV*G

* Localization in the 3D scale space beyond dlscretlzatlon

. oD" 1 70°D oD
 Rejection of unstable keypoints with low contrast / edges
trace(H)?2 (Mo +M)°  (r+1)? .
det(H)  don 1 r=A1/Ao

* Orientation assignment from local gradient

??????

||||||




e Geometric progression of

Efficient computation of scale-space: DoG

scales with ratio k=245

* Successive convolutions

e At each octave (i.e., every

sample s — scale factor of 2),
resample image '

every second pixel in each
row and column

NO aCCuracy loss

space & time efficient

aCale
(first
octave,

A

.......

o i i i o

T T T
T T T T T

Difference of
Gaussian [DOG)

Gaussian and DoG pyramids



Scale discretization parameter

Repeatability (%)

100

40

20

e — S
—/ &2 o % 25 - L Pl A
l‘/'
“-.t.-‘ .................................. .
Matching location and scale ——
Nearest descriptor in database - "]
1 2 3 4 5 6 7

Number of scales sampled per octave

Number of keypoints per image

3500

3000

2500

2000

1500

1000

500

Tota] number of keypoints s

j “Nearest descriptor in database -
y | 1 i
1 3 4 5 6 7

Number of scales sampled per octave

Similar experiments for every SIFT parameter -> a huge engineering paper




SIFT descriptor

For a given keypoint at a given scale

* resize the region to NK x NK

* splititin a KxK grid of cells of NxN pixels

* Build a weighted histogram of gradient orientations in M directions

Typically, N=K=4, M=8
[shown: 2x2 grid of 4x4-pixel cells]
— =
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7
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2004 © Springer
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Image gradients Keypoint descriptor




SIFT descriptor

Lots of tricks again:
e Gaussian weight on gradient magnitude

* Histogram smoothing ‘ﬁ o

x Axis Bins x Axis Bins
(a) Descriptor without Interpolation (b) Descriptor with Interpolation

Figure 5: The effect of interpolation when generating the SIFT descriptor. A single pirel’s gradient

* Normalization, thresholding of gradient, renormalization



SIFT matching

* Measure of similarity between descriptors
* Euclidean distance

* First to second nearest neighbor ratio test (to reduce nb of outliers),
keep match only if ratio < 0.8

O Does:
® O O - orange match blue?
- Red match green?



SIFT

* Tons of parameters (sizes, thresholds, etc.)

- “good” parameters found by experimentation

« possible bias towards used image database

 Many tiny details, some unsaid at all

« Most likely no 2 implementations give the same result



SURF

* Inspired by SIFT
* Faster, using approximations and integral images

[

L
(3
~

e S
- .

Bay, H., Tuytelaars, T., & Van Gool, Surf: Speeded up
robust features, ECCV 2006



Classical local features: summary

e Detectors: Harris, blob

* Description: ZNCC, shape context, HoG

* SIFT: detector + descriptor, 1st/2nd NN ratio test
* Evaluation/parameter tuning

* Lots of small but important and very general idea:

 1st to 2nd NN ratio, soft assignment, Taylor expension / spectral
decomposition, scale space, invariance/covariance...



Outline

Classical local features

2. Deep local features

- learning patch descriptors

- learning dense detectors and descriptors
- learning feature matching

3. Some deep 3D reconstruction

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Learning features and correspondences

1. Learning feature detectors and descriptors

1. Patch-based
2. Dense

2. Learning image matching
1. Coarse Flow

2. Fine flow
3. MVS

3. Learning to filter correspondences

Disclaimer: not a full litterature review!

There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Local features and correspondences pipeline
for 3D reconstruction

Feature Feature Feature Geometric
extraction description matching verification
Extract location of Summarize their Find matching Filter the matches

‘local features’ appearance in a vector features based on geometry

(interest points, keypoints)



CNNs/Deep features

Standard CNNs (eg. AlexNet):
e Succession of convolutions, non linearities (ReLu) and max-poolings
* Trained for image classification (1 million images from ImageNet)

‘ b 3| : + o o
- 3 : f | K\ EN 4 y
\ ! 3 . )
. ' 5 : 3 3
415 - ST |
| | a8 5 192 128 cal 2048 '.ccnsc
1% \ At , 12 f ‘
X" \ 3 13 3
-\ A \ 3 .
| S. ' _- 1 ‘ ] «
) ! 3 i -
224 S | ! dl H b 5“ WU ;'. | o | N -
] 4 | ol ] ‘ 1 13 13 dense Jense
) ! - >7 , | > \ -
" | |
- fes 3 | N ! ‘ 1000
11 _ 192 192 128 Max | J
o _ \ s 204E 2048
224 Jistride Max 128 Max pooling
of 4 :)OClI.".g poohnq
3 a8

Fischer, P., Dosovitskiy, A., & Brox, T., Descriptor matching with convolutional neural
networks: a comparison to sift. arXiv preprint 2014

Conv 4 features seem generic and outperform SIFTs



Patch descriptor learning

ldea: create a large database of ground truth local feature matches
using the 3D of reconstructed scenes and use it to learn the parameter

of a descriptor.

One of the first: M. Brown, G. Hua, and S. Winder. Discriminative learning of local
image descriptors. PAMI 2011

-> 0.5 million pairs

. _
b ’
i .




Going larger scale

0.5 billion correspondences from Google Street View

Zamir, A. R., Wekel, T., Agrawal, P., Wei, C., Malik, J., & Savarese, S.
Generic 3D Representation via Pose Estimation and Matching, ECCV 2016



Going larger scale

 Large datasets have been curated for SFM

73 models '
J. Heinly, J. Schoenberger, E. Dunn, and J.-M. Frahm.

Reconstructing the World in Six Days. CVPR, 2015

200 models

Li, Z., & Snavely, N

Megadepth: Learning single-view depth prediction from internet photos. CVPR
2018

-> can be used for training, but not/far from perfect



Deep patch feature descriptors

Idea: learning to compare features using a large database of
ground truth correspondences

similarity

T ________________ E

decision network

~ ConvNet | |
B e
patch 1 patch 2

Zagoruyko, S., & Komodakis, N. Learning to Compare Image
Patches via Convolutional Neural Networks. CVPR 2015



Many options

* Architecture
e.g. decision network
with early vs. late
fusion

*In recent works, simply
feature comparison with
cosine/L2 distance

I ¥ |
l !
| & '
e
<[

! branch network 1

t branch network 2



Triplet loss / Contrastive loss

Negative f ke 1

Anchor g LEARNING s
o— o— Negative
9 Anchor _ =
Positive Positive
N
2 2
Loss =3 152 = f13 — 152 = £7113 + o]
=1

- Choice of positive and negative is important (hard negative/positive
mining)



Contextdesc

' Geometric context encoder \ @ Chenael wise
( ( R [ - D ! concatenation
o ™ [
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o o3 T 3 '
& o 5 : ( | Multi-layer
s o ; MLP -
Matchability predictor| tanh - J ‘__‘ perceptron
N " """"_"“: : ( Context
- Kx1 h'- -(-Il-léd-li’s-s- = ,' Lﬂ} Normalization

HXWX3

____________

<
w
5.
o
o
=
a
ad
o
=
o
o
a
@
Lo

; E 1 ' A i
1 . - - K x 32 x 32 'K x 128 ; /K x 128 :
":1 -—_”Fy - HD : L 2 T =\  l;-Normalization J v
: - = : Pl o o= Sy ST Y. S e — R e - SR \\: " $

_____________

I
T —=EEe R s P —— R T TN, EL L ey e o e L T
E I M Sy AR 5wy LT Sl 4 75 —-"'--"‘::‘ 5 E
| Regional feature extractor | H W : ey O 3 | o !
: : — X — X 2048 : i ' !
! i 32 32 A 000 0T Q- Gy o | = :
: ResNet-50 ! ! 000000 o = = !
! ; : B :
] | . ' Regional features Sampling grid Interpolation K x 2048 ¥ .
k. hesscssesssssesss Preparation| J { --=---------------F--F-o---- - T Stk Augmentation
-
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Classical local features

2. Deep local features

- learning patch descriptors

- learning dense detectors and descriptors
- learning feature matching

3. Some deep 3D reconstruction

Disclaimer: not a full literature review!
There are tons of paper over the last 2-5 years,
this is a biased selection to illustrate idea | think | worth knowing



Local features and correspondences pipeline
for 3D reconstruction

Extract location of Summarize their Find matching Filter the matches
‘local features’ appearance in a vector features based on geometry
(interest points, keypoints)



Deep detectors/dense local descriptors

e Use the full image
e Use a fully convolutional architecture

2 key elementS'

Jaderberg, M., Simonyan, K., & Zisserman, A.
Spatial transformer networks. NIPS 2015

Spatial Transformer

>y exp(BS(y))y
)

e Soft-argmax: similar to softmax

softargmax (S) = Zy exp(BS(y)
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description
. vector

every operation can be made differentiable (softargmax, spatial transformer networks)
Training data: SIFT-based SFM points b (pk ! f " .

— or positive pairs, and
Loss descriptors: hinge embedding »Cdesc(P]gaPlo) = {“ (po) (p0)||2 P P

k l : ;
Loss orientation: minimize descriptors distance e= llh” (pg) —hp (p9) ”2) for negative pains,

Loss detector: peaked distribution in regions with SfM points + flat distribution in regions with no SfM points +
leads to similar descriptors for positives (pre-training with loU of reconstructed points)
Descriptor, orientation and detector learned one after the other

Yi, K. M., Trulls, E., Lepetit, V., & Fua, P.
Lift: Learned invariant feature transform, ECCV 2016



Superpoint

Interest Point Decoder V

DeTone, D., Malisiewicz, T., & Rabinovich, A.
Superpoint: Self-supervised interest point detection and description.
CVPR 2018




Superpoint

* 1st training on synthetic shape (includinginterest points labels)

« 2nd training on synthetic image transformations

Unlabeled Image

Base Detector

/

Homographic Adaptation

Sample Random
Homography
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Warp
Images
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Apply
Detector
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Response

Unwarp
Heatmaps
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@» Loss

DeTone, D., Malisiewicz, T., & Rabinovich, A.
Superpoint: Self-supervised interest point detection and description.

CVPR 2018




D2-net

joint detection and description

o
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soft detection module

soft detection score
S,ﬁj

e Descriptors are simply the CNN features

* Detection is max norm features + NMS made differentiable

Dusmanu, M., Rocco, |., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T.
D2-net: A trainable cnn for joint description and detection of local features.

CVPR 2019




Weak supervision from epipolar geometry

S
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y

Wang, Q., Zhou, X., Hariharan, B., & Snavely, N.
Learning feature descriptors using camera pose supervision.
ECCV 2020
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Classical local features

2. Deep local features

- learning patch descriptors

- learning dense detectors and descriptors
- learning feature matching

3. Some deep 3D reconstruction

Disclaimer: not a full literature review!
There are tons of paper over the last 2-5 years,
this is a biased selection to illustrate idea | think | worth knowing



Local features and correspondences pipeline
for 3D reconstruction

Feature Feature Feature Geometric
extraction description matching verification
Extract location of Summarize their Find matching Filter the matches

‘local features’ appearance in a vector features based on geometry

(interest points, keypoints)



* Trained detector and descriptors +

Superg|ue superglue = best method today
Attentional Graph Neural Network Optimal Matching Layer
feftiis Attentional Aggregation matching Sinkhorn Algorithm
| | @ ~ descriptors /—\ - N partial
d;l visual descriptor Self Cy"'—_’ fg4— e —_— — assignment
y - ﬂ H normalization
i T | Keypoint S, [ e
B —P l,] | - E —
p Encoder W \ O
Ly o B ‘
a? > -2l =
' Nt L) dustbin /' N+1 \_ T/ :

score <

* Consider keypoint extraction and description done
e Feature matching problem = Graph matching
e Use GNN (here transformers)

Sarlin et al. SuperGLue Learning Feature Matching With Graph Neural Network CVPR 2020



Local features and correspondences pipeline
for 3D reconstruction

Feature Feature Feature Geometric
extraction description matching verification
Extract location of Summarize their Find matching Filter the matches

‘local features’ appearance in a vector features based on geometry

(interest points, keypoints)



Learning to filter
correspondences

o[l 20 260 | -0
< E (0 RESNET BLOCK 1 5 Y () ([ )
. .8 = - ; - & :
2 Elé Elg 3 S
S M o v o + o -»8
z z s z < =l - pur
w @ : )
—r - é & é & ~llE |l |* -
: : z 4 : wil= w
w o [ o = w w
g -1 3 B = -»>| @
- \— et | A

Input = raw matches (m*4)
Output = weights « how good the match is »
Supervision = GT geometry

Moo Yi, K., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., & Fua, P.
Learning to find good correspondences. CVPR 2018



Learning to filter
correspondences

* Computing the essential matrix is a SVD which is a differentiable
operation

* Compute the SVD with weighted correspondences and compare it to
the GT essential matrix -> optimize weights

* Also uses (and start with only) cross entropy with “GT” labels

Moo Yi, K., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., & Fua, P.
Learning to find good correspondences. CVPR 2018



Evaluation

* Remains an important challenge, as datasest with good Ground Truth
are rare, small, biased...

* A solution can be to evaluate another task than 3D reconstruction, for
which GT is easier to get, e.g. localization



Outline

1. Classical local features
2. Deep local features
3. Some deep 3D reconstruction

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Outline

1. Classical local features
2. Deep local features

3. Some deep 3D reconstruction

* Correspondences without keypoints
* Coarse Flow

* Fine flow
* Deep MVS

* NERFs

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Learning transformation

* By learning to predict transformation

l. Rocco, R. Arandjelovi¢€ and J. Sivic, CVPR 2017
Convolutional neural network architecture for geometric matching



Learning transformation

* By learning to predict transformation

1,7 Feature extraction CNN [~ fA\

- .|, £ _| Regression |
VIV Matching > fag CNN 6

Iz~ Feature extraction CNN "fB/ k

1. Feature extraction / 3. Regression
f A /B 2. Matchi . A
wxhxd wxhxd| 4 Matching (¢,7) convl, BN1  ReLUl,conv2, BN2 ReLU2, FC
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Vo layer ~ R norm. I Output: Estimated parameters of
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: cap(i,j. k) = f(i, )T falix, j . . .
do_‘;i‘;:ﬁ'si“;’:aff‘:‘;'t‘jﬁes ap(i:J, k) = £5(3, 3)" £a(ik: i) |. Rocco, R. Arandjelovi¢ and J. Sivic,
Output: L2 normalized CVPR 2017
pairwise correlation tensor .
TBaituien fatelinng scies) Convolutional neural network
architecture for geometric matching




Learning to match features

* Using consistency

A Cijkl B Cijkl
Tijkl = , and Tijkl =
maXagp Cabkl maXed Cijed
YA
Nia Soft mutual i Soft mutual
BEESBE nearest neighbour N nearest neighbour
'.(’ 7) filtering 2 ) 5| filtering
e . B ; 5 @ i
/ , - .
oo B T A Ciikl 2 ) By . 4D filtered
(2,7, k,1) J % 4 matches
) 4D space of feature 4D correlation Neighbourhood
Dense CNN 74 55 matches map Consensus
features Network
A exp(Cijiki) B exp(Cijkt)

G5 = and s ., =
G Zab eXp(Cabkl) s ch eXP(Cz'jcd)

Rocco, I., Cimpoi, M., Arandjelovié, R., Torii, A., Pajdla, T., & Sivic, J
Neighbourhood consensus networks. NIPS 2018



Learning to match features

* Using weak supervision only
(pairs of matching and non matching images)

A 1B A 1 =B
y=1 for positive pairs, -1 for negative pairs

Rocco, I., Cimpoi, M., Arandjelovié, R., Torii, A., Pajdla, T., & Sivic, J
Neighbourhood consensus networks. NIPS 2018



Epipolar supervision

ResNet Feature
extraction

\

J

Correlation
volume

4D
CNN

Output
volume

Heatmaps

.

Supervision
signal

Darmon, F., Aubry, M., & Monasse, P. Learning to Guide Local Feature Matches, 3DV 2020
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1. Classical local features
2. Deep local features

3. Some deep 3D reconstruction

* Correspondences without keypoints
* Coarse Flow

* Fine flow
* Deep MVS

* NERFs

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



RANSAC-Flow

Stage 1:
RANSAC on deep features
% % B B

Stage 2: Local flow predictions

CNN |—

CNN |—

Shen, X., Darmon, F., Efros, A. A., & Aubry, M.
RANSAC-Flow: generic two-stage image alignment.

ECCV 2020

\

Final Flow

A




RANSAC-Flow

Stage 1:
RANSAC on deep features




RANSAC-Flow

Stage 1:
RANSAC on deep features




RANSAC-Flow

Stage 1:
RANSAC on deep features Q>




An unsupervised two-stage method

Stage 2: Local flow predictions

Stage 1:

RANSAC on deep features | CNN [—=>




Architecture (RANSAC-Flow)
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Correlation volume (RANSAC-flow, standard in OF)
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RANSAC-Flow

SSIM + mask + cycle-consistency loss

I'e

Stage 2: Local flow predictions

Stage 1:
RANSAC on deep features Q>

CNN |—=>

Ll lsy= Y 1MF*%mg)—1

(xay)elt

Mask loss Confidence at (x,y)



RANSAC-Flow

SSIM + mask + cycle-consistency loss

I'e

Stage 2: Local flow predictions

Stage 1:

RANSAC on deep features | CNN [—=>

LZIM(I, L) = Y MP(z,y) (1 — SSIM (I,(z',y"), I(z,y)))
(:E,y)EIt *

Confident regions

A

LIy = Y, Myl y) Fios(@ y)ll2
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RANSAC-Flow

SSIM + mask + cycle-consistency loss

¥

Stage 2: Local flow predictions

Stage 1:
RANSAC on deep features

CNN |—=>

CNN |—>




RANSAC-Flow

E.g. : MOCO features

Stage 1:l
RANSAC on deep features Q>
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SSIM + mask + cycle-consistency loss

Stage 2: Local flow predictions

CNN

Final Flow
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No 3D, unsupervised generic image
ent

. Localization
Optical flow

Dense image alighment 2-view geometry estimation



Application: Aligning artworks from Brueghel [6,7]

[6]: Brueghel family,
http://www.janbrueghel.net/

: [7]: Shen Xi et al., Discovering visual
~ patterns in art collections with
spatially-consistent feature learning,
CVPR 2019



http://www.janbrueghel.net/

Average images of the inputs




Average image after our coarse alignment




Average image after our fine alighment
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1. Classical local features
2. Deep local features

3. Some deep 3D reconstruction

* Correspondences without keypoints
* Coarse Flow

* Fine flow
* Deep MVS

* NERFs

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Deep MVS

Source
images

|

|

1

|

|_ref

-

\,
N
s

Homography

[ v A
Regularization +
argmax .
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warping

Huang, P. H., Matzen, K., Kopf, J., Ahuja, N., & Huang, J. B.
DeepMVS: Learning multi-view stereopsis.
CVPR2018



Deep MVS

Ci,j,d — var (fref(iaj)v fl(ivja d)v S 7fN(i7j7 d))
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1. Classical local features
2. Deep local features

3. Some deep 3D reconstruction

* Correspondences without keypoints
* Coarse Flow

* Fine flow
* Deep MVS

* NERFs

Disclaimer: not a full litterature review!
There are tons of paper over the last 2-5 years,
this is a biaised selection to illustrate idea | think | worth knowing



Parametric scene / NeRF [Mildenhall20]
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Can use correspondences

¥

Target patch P Warped patch W, (P) - I
Center pixel p s

NeuralWarp: Improving neural implicit surfaces geometry with patch warping
F. Darmon, B. Bascle, J.-C. Devaux, P. Monasse, M. Aubry
CVPR 2022
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Conclusion

e Detection-description powerful idea, part of SFM success with classical
detector-descriptors as SIFT

* Lots of classical approaches are being “deepified”, i.e. formulated as
modular and end-to-end learnable framework, with important
performance gains

* Tricks from classical approach often remain important in NN-architectures

e Are NeRFs the future of MVS?



