Neural Rendering & Neural Radiance Fields(NeRFs)

Arslan Artykov, PhD Candidate @ ENPC

Novel View Synthesis

e Step 1: use the images to calibrate cameras (sparse scene geometry)

Screen capture from RealityCapture

Novel View Synthesis

e Step 2: use the images to build a dense 3D scene representation

Kerbl, Kopanas et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering” SIGGRAPH 2023

Forward Graphics (Rendering)

* Given a 3D scene specification and Cameras, yield images

WA BB S A
‘:' '“} ".“ it I ii' ,3: -v‘_ el)
ay AN EFgE LR

7 T e B e Y, RN ANSFES
y Lok Render PGB E RN

CR R R T E A
FeedEge rED
B 0RO B T %
S EE S EE L4
B Y R N

3D Scene Camera Poses Images

Inverse Graphics

A A kR
L TS E
AN EFgEL Ol
E R R e R B R

P b E R & N

EHBRRU AT
¥l eIegeTED
THREEGREFE %
w3 2 Sk ok WA
A OE R R

Reconstruct

Images —> Camera Poses 3D Scene
Assume Given

SLAM / BundleAdjustment
(OrbSLAM, COLMAP)

Put All Together...

3D

ﬁ Scene ﬁ

Inverse Rendering iepiccnisuen Rendering

Neural Radiance Fields (NeRF) as an approach to inverse rendering

Neural

— Radiance — -

Inverse Rendering ARt Rendering

Deep learning for 3D reconstruction

* Previously: we reconstruct geometry by running stereo or
multi-view stereo on a set of images

— "Classical” approach

« How can we leverage powerful tools of deep learning?
— Deep neural networks
— GPU-accelerated stochastic gradient descent

NeRF and related methods - Key ideas

« We need to create a loss function and a scene
representation that we can optimize using gradient
descent to reconstruct the scene

* Differentiable rendering

Rendering (Signature)

e (Given

- Scene: {lights, materials, geometry, ...}

S P

Light2 ™. 0

Y,

A

- Camera Ray (origin + direction)

Ta

Viewer

 (Generate

- | color of the ray/pixel

Differentiable Rendering

4) g ..4 oS F5 i X o % % .ﬁ & 9§
Lol Rl N & b B &
- = e oh A 5% ‘ o S & wy _ -+
Scene Differentiable , FaWaLE AL
Representation Renderer Lot SRR i b B
W W &3 B R

) ’ rendered ground truth

Optimization via SGD

Given an observable variable (pixel colors), we will build a differentiable forward model
that we then use to estimate unobserved (latent) variables (geometry, appearance)

NeRF == Differentiable Rendering with
a Neural Volumetric Representation

Rendering

querying the radiance value
along rays through 3D space

What color?

Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections

Neural

using a neural network as a
scene representation, rather
than a voxel grid of data

Scene
properties

Multi-layer
Perceptron (Neural
Network)

NeRF: Representing
Scenes as Neural Radiance
Fields for View Synthesis

ECCV 2020

Ben Mildenhall* Pratul Srinivasan* Matt Tancik*

4

Google Research UC San Diego

Google UCSan Diego

UC Berkeley UC Berkeley

NeRF Overview

> Volumetric rendering
> Neural networks as representations for spatial data

» Neural Radiance Fields (NeRF)

NeRF Overview

> Volumetric rendering

Volume Rendering

Scene is a cloud of tiny colored particles

Camera

Volume Rendering Digest (for NeRF)

Andrea Tagliasacchi?> Ben Mildenhall
!Google Research ?Simon Fraser University

Neural Radiance Fields [3] employ simple volume rendering as a way to overcome the challenges of differen-
tiating through ray-triangle intersections by leveraging a probabilistic notion of visibility. This is achieved
by assuming the scene is composed by a cloud of light-emitting particles whose density changes in space (in
the inols of i dering, this would be described as a volume with absorption and
emission but no scauenng [4 Sec 11.1]. In what follows, for the sake of exposition simplicity, and without
loss of generality, we assume the emitted light does not change as a function of view-direction. This technical
report is a condensed version of previous reports [1, 2], but rewritten in the context of NeRF, and adopting
its commonly used notation'.

Transmittance. Let the density field o(x), with x€R® indicate lh(‘ differential likelihood of a ray hmmg a
particle (i.e. the probability of hitting a particle while travelling an infinitesimal di . We

the density along a given ray r=(o, d) as a scalar function (), since any point x along the ray can be written
as r(t)=o+td. Density is closely tied to the transmittance function 7 (t), which indicates the probability
of a ray traveling over the interval [0, t) without hitting any particles. Then the probability 7 (t+dt) of not
hitting a particle when taking a differential step dt is equal to 7 (), the likelihood of the ray reaching ¢,
times (1 — dt - o(t)), the probability of not hitting anything during the step:

T(t+dt) =T(t) - (1 - dt - o(t)))
Tesd) = TO vy = 1) -0(0) @

This is a classical differential equation that can be solved as follows:

T'(t) = =T(t) - o(t) (3)
e _

ZU- @

T’(l) b
[o= _/d olt) dt)

b
log T(t)[% = _/ oft) dt (6)

3

Tasb)= % — (7 / olt) az) Q)

where we define T(a — b) as the probability that the ray travels from distance a to b along the ray without
hitting a particle, which is related to the previous notation by 7(t) = 7(0 — t).

Tagliasacchi and Mildenhall “Volume Rendering Digest (for NeRF)” arXiv 2022

Volumetric Formulation for NeRF

Rayr(t) =0+ td

Camera Consider a ray traveling through the scene, and a point
at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t)

Volumetric Density

 Probability that ray stops in a small interval around t is o(?) dt

o(t) is called Volumeltric] Density

‘ t] = o(r) dt

Scene Representation

e Qur 3D scene representation is therefore a field:
®: R > RXxRY;, Px)=(s,c)

f] = altyas

Occlusion Modelling

 Should we retrieve the color ¢(¢)? ...only if position r(#) is not occluded

- Transmittance T(¥) is the probability of no particles hit in [0, 7) range

P[no hits before t] = T(t

Relating 0(?) to 1(7)

» Hit probabilities are statistically independent along ray
P[no hit before t + dt] = P[no hit before] - P[no hit at]
T(t+dt) =T() - (1 — o(?) dr)

P[no hits before 1] = T(¢)
' Plhit at] = o(t) dt

Transmittance

70— 1) :=T1(t) = exp (—[o(u) a’u)
0

No hits before 7 is equal to integral over density up until 7.

, (1 1(®)): Opacity l (1-T(t)) =T(t) - o(t)

Volume Rendering

0 0

= JOO 1(t) - o(t) - c¢(t)dt where T(t) = exp (—[o(u) du)

e How do we solve this?

- Discretize the nested integral!

Approximating the Integral

« Split the ray up into N segments with endpoints {tl, lry ..

 Segment lengthis 0, = ;| — f;

l

- warning: non-necessarily uniform!

piecewise constant density
Z
piecewise constant transmittance

o Ivi1)

“Near Plane”

Approximating the Nested Integral

* Assume volume density/color are constant within interval (i.e. Reimann)

* Warning: constant density # constant transmittance!

= J T(t) - o(t) - c(t) dt = Z [. 1() - 0; - ¢;dt

0 =1 ti

Forward Model - NeRF

i = J 1(t) - o(¢) - c¢(t) dt ~ Z J " 1(t) - 0; - ¢;dt

0 i=1 Y14

/

get rid of the inner
integral...

NeRF as Alpha Blending

N n—1
C=) T, (1-exp(-0,5))-¢, where T,=exp () - ak5k>

k=1

n=1 .
a, = opacity

N
C= Z T, -a,-c, where
n=1
n—1
T, = H(l — ay,) ... segment occlusion
k=1

Volume rendering estimation: integrating color along a
ray
Rendering model for ray r(t) = o + td:

n
C~ T;a;C; /
/ El RN

final rendered colors
color along ray weights

How much light is blocked earlier along ray:

i—1 tl%
Ti == 1—a; - L
L s

‘ Camera

3D volume

Computing the color for a
set of rays through the
pixels of an image yields
a rendered image

Volume rendering estimation: integrating color along a
ray

3D volume

/ How do we store the values of
‘ ¢, 0 at each point in space?
Camera

NeRF Overview

> Neural networks as representations for spatial data

Toy problem: storing 2D image data

Usually we store an image as a
2D grid of RGB color values

Toy problem: storing 2D image data

Fq
(x,7) —»III—» (r, 9, b)

What if we train a simple fully-connected
network (MLP) to do this instead?

Naive approach fails!

Ground truth image Neural network output fit
with gradient descent

Problem:

“Standard” coordinate-based MLPs cannot represent
high frequency functions

Spectral Bias: Neural networks are biased to fit lower frequency
signals.

Solution:

Pass input coordinates through a
high frequency mapping first

Example mapping: “positional encoding”

/ sin(v), cos(v) \

sin(2v), cos(2v)
sin(4v), cos(4v) _plll_y y

\ sin(2X71v), COS(QL_lv)/

Problem solved!

Ground truth image Neural network output without Neural network output with
high frequency mapping high frequency mapping

NeRF Overview

» Neural Radiance Fields (NeRF)

NeRF = volume rendering +
coordinate-based network

How do we store the values of ¢, o at each point in space

encoding

(10}
=
o
b
wv
O
o

Extension: view-dependent field

encoding

©
=
o
=
wv
o)
a

3D point
Include the ray direction in
‘ the input to the MLP -

allows for capturing and
rendering view-dependent
effects (e.g., shiny surfaces)

Putting it all together

L — ..
T E >

T Ray 1/
a\ ﬁRayZ

Ray Distance .

Train network using gradient descent
to reproduce all input views of scene

Volume rendering of ~ Ground truth
MLP colors/densities image

ok

NeRF Requires(incomplete list):

e Limited to either bounded or forward facing scenes

e Pixel-perfect camera calibration(e.g. COLMAP)

e Scene to be completely static

e Hundreds of images per scene(overfitting)

e Long training time(~1 day/scene)

e Real-time rendering is almost impossible(volume integration requires multiple samples at
each ray)

Results

NeRF encodes convincing view-dependent effects using
directional dependence

NeRF encodes detailed scene geometry with occlusion effects

Summary

Represent the scene as volumetric colored “fog”

Store the fog color and density at each point as an MLP
mapping 3D position (x, y, z) to color ¢ and density o

Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL", Inria, Université Cote d’Azur, France
GEORGIOS KOPANAS?, Inria, Université Cote d’Azur, France
THOMAS LEIMKUHLER, Max-Planck-Institut fiir Informatik, Germany
GEORGE DRETTAKIS, Inria, Université Cote d’Azur, France

Ours (93 fps)
Train: 51min, PSNR: 25.2

InstantNGP (9.2 fps)
Train: 7min, PSNR: 22.1

Plenoxels (8.2 fps)
Train: 26min, PSNR: 21.9

Mip-NeRF360 (0.071 fps) Ours (135 fps)
Train: 48h, PSNR: 24.3 [Train: 6min, PSNR: 23.6

Ground Truth

3D Gaussian Splatting for

Real-Time

Rendering
SIGGRAPH 2023

|]]
Fig. 1. Our method achieves real-time rendering of radiance fields with quality that equals the previous method with the best quality [Barron et al. 2022],
while only requiring optimization times competitive with the fastest previous methods [Fridovich-Keil and Yu et al. 2022; Miiller et al. 2022]. Key to this
performance is a novel 3D Gaussian scene representation coupled with a real-time differentiable renderer, which offers significant speedup to both scene

and novel view synthesis. Note that for

ble training times to InstantNGP [Miiller et al. 2022], we achieve similar quality to theirs; while

this is the maximum quality they reach, by training for 51min we achieve state-of-the-art quality, even slightly better than Mip-NeRF360 [Barron et al. 2022].

Radiance Field methods have recently revolutionized novel-view synthesis
of scenes captured with multiple photos or videos. However, achieving high
visual quality still requires neural networks that are costly to train and ren-
der, while recent faster methods inevitably trade off speed for quality. For
unbounded and complete scenes (rather than isolated objects) and 1080p
resolution rendering, no current method can achieve real-time display rates.
We introduce three key elements that allow us to achieve state-of-the-art
visual quality while maintaining competitive training times and importantly
allow high-quality real-time (> 30 fps) novel-view synthesis at 1080p resolu-
tion. First, starting from sparse points produced during camera calibration,
we represent the scene with 3D Gaussians that preserve desirable proper-
ties of continuous volumetric radiance fields for scene optimization while
avoiding unnecessary computation in empty space; Second, we perform
interleaved optimization/density control of the 3D Gaussians, notably opti-
mizing anisotropic covariance to achieve an accurate representation of the
scene; Third, we develop a fast visibility-aware rendering algorithm that
supports anisotropic splatting and both accelerates training and allows real-
time rendering. We demonstrate state-of-the-art visual quality and real-time
rendering on several established datasets.

CCS Concepts: » Computi hodologies — o
models; Rasterization; Maclune learning approaches.

Point-based

*Both authors contributed equally to the paper.

Authors’ addresses: Bernhard Kerbl, bernhard kerbl@inria fr, Inria, Université Cote
d'Azur, France; Georgios Kopanas, georgios.kopanas@inria.fr, Inria, Université Cote
d’Azur, France; Thomas Leimkihler, thomas leimkuchler@mpi-infmpg.de, Max-
Planck-Institut fiir Informatik, Germany; George Drettakis, george.drettakis @inria.fr,
Inria, Université Cte d'Azur, France.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the retains a free right to publish or
reproduce this articl, or to allow others to do so, for Government purposes only.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/0-ARTO $15.00

hitps://doi.org/XXXXXXX XXXXXXX

Additional Key Words and Phrases: novel view synthesis, radiance fields, 3D
gaussians, real-time rendering

ACM Reference Format:

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Dret-
takis. 2018. 3D Gaussian Splatting for Real-Time Radiance Field Rendering.
ACM Trans. Graph. 0,0, Article 0 (2018), 14 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

Meshes and points are the most 3D scene rep ion
because they are explicit and are a good fit for fast GPU/CUDA-based
rasterization. In contrast, recent Neural Radiance Field (NeRF) meth-
ods build on continuous scene representations, typically optimizing
a Multi-Layer Perceptron (MLP) using volumetric ray-marching for
novel-view synthesis of captured scenes. Similarly, the most efficient
radiance field solutions to date build on continuous representations
by interpolating values stored in, e.g., voxel [Fridovich-Keil and Yu
etal. 2022] or hash [Miiller et al. 2022] grids or points [Xu et al. 2022].
While the continuous nature of these methods helps optimization,
the stochastic sampling required for rendering is costly and can
result in noise. We i duce a new h that bines the best
of both worlds: our 3D Gaussian rep ion allows opti i
with state-of-the-art (SOTA) visual quality and competitive training
times, while our tile-based splatting solution ensures real-time ren-
dering at SOTA quality for 1080p resolution on several previously
published datasets [Barron et al. 2022; Hedman et al. 2018; Knapitsch
et al. 2017] (see Fig. 1).

Our goal is to allow real-time rendering for scenes captured with
multiple photos, and create the rep ions with optimization
times as fast as the most efficient previous methods for typical
real scenes. Recent methods achieve fast training [Fridovich-Keil

ACM Trans. Graph, Vol. 42, No. 4, Article . Publication date: August 2023.

Volume Splatting

e 3D scene is represented as 3D Gaussians(blobs).

Pz Or Ogzy Oz _
p=|Dy X = Oy Oy ¢ SH
P- 0

position shape opacity color

How to Render? Sort/Splat/Blend

e Sort: based on depth

e Splat: compute the shape of the Gaussian after projection (3D—2D)

» Blend: alpha composite the gaussians (in 2D / screen space)

c= ZCZ/\:/ CiW; Jll(l i A ||| _____

Pz Oy Ogy Ogz
p= |py| e i, e 0 SH
P2 0z

position shape opacity color

Splat

» Positions (3D—2D)

- Just apply the classic matrices from graphics: X' = Pe Ve x

- Perspective effect

- divide by z-component of homogeneous coordinate

e Covariance (3D—2D)

- World to view transformation is linear (Rotation+Translation)
- Linear transformations apply a simple change to covariance matrix

- Perspective effect J: Jacobian of the affine approx. of projective matrix

B2 RT T R: 3D Gaussian orientation

e D=1 :
2d ro . .
prel ': Covariance matrix

proj

Blend

How to implement this in a shader? (for serving in browser)
Alpha Blending: opacity

e

c=) Ciw; H(l — w,)
icN L F=1

color W

¢ = ¢y + cyw(1 — wy)

For 2 Gaussians:

For 3 Gaussians:

¢ = Wy + c.1w1(1 — wo) + c2w2(1 — wl)(l — wo)

Optimization

* How to ensure that Gaussians remain Gaussians?
L(8) = Ec~ic,} Ernc [|C(r; 8) — Ci(r)]]3
0 = {(px, ok, Xk, he)}
« Covariance matrices ought to be symmetric and positive semi-definite

- all eigenvalues should be positive (or zero)

e Solution: re-parameterize the problem
> =RSS'R'
R = quat2mat(q), |[|q/l2 =1
S = diag([sz, Sy, 52])

Can we just train a 3DGS now?

* No... you need to implement the “adaptive density control” heuristics

heuristics

Kerbl, Kopanas et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering” SIGGRAPH 2023

What are these heuristics?

@one

Densification

- increase the number of points whenever
under-reconstruction is detected, as
measured by positional gradients

Optimization
Continues

Under
Reconstruction

Over-
Reconstruction

Optimization
Continues

Pruning

- of very large Gaussians

Opacity reset (every N iterations)

- to remove floaters in the representation
Require a good initialization (e.g. SFM)

- as all the above are local heuristics

Kerbl, Kopanas et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering” SIGGRAPH 2023

-
4

Acknowledgements
e Slides modified from:
- Fundamentals of (neural) Inverse Rendering (Lecture talk at ICVSS 24)

Assoc. Prof. Andrea Tagliasacchi

- Cornell Uni. CS5670: Computer Vision

Questions?

