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Neural Fields

Implicit Representation: F continuous
function mapping spatial coordinates to
colour / occupancy:

- Image: F : R2 7→ R3: pixel to RGB.

- 3D : F : R2 7→ R4: RGB + occupancy.

Benefits:

- Infinite resolution

- Adaptive to complexity

- Can be learned

- Generalization

Converting to other Format:

- Image: sample pixels

- 3D: Marching cubes.

M
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Background on Deep 3D Reconstruction

AtlasNet F : R3×N 7→ Rm shape embedder, and G : Rm+2 7→ R3 function deforming
a tessellated patch (papier-maché)

Works with single images!

PiFU implicit functions : G : Rm+3 7→ [0, 1]: inside/outside

Infinite resolution, no explicit mesh.

Learns and generalize from a set of shapes.

Groueix2018, Saito2019
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Neural Radiance Fields

Problem: new view synthesis

We have (many) views of the same scene

We train a single neural network to fit the scene

We can now generate new views from unseen camera positions

Rely heavily on the recent differentiable renderers

Does not generalize at all to unseen parts/scenes.

https://www.matthewtancik.com/nerf
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Examples

Exploit the (not yet fully understood) generalization of ANNs.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Differentiable Rendering

We consider a ray associated with a pixel in an image

We query a function XYZθφ 7→ RGBσ along the ray (σ : volume density)

We “integrate” the values along the ray.Rendering equation:

C(r) =

∫ ∞
0

σ(rt)︸ ︷︷ ︸
part of r stops.

c(rt , d)︸ ︷︷ ︸
color of pt in dir. d

T (t)dt with T (t) = exp

(
−
∫ t

0

σ(rs)ds

)
︸ ︷︷ ︸

what’s left of r

We compare the resulting RGB with the true color

For each image and pixel, many times.
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Synthetic examples

Can generate photorealistic new view!
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




View-Dependant Appearance

Query at XYZ
depends on the angle
of view

Can naturally deal
with non
Lambertian +
transparent
materials!
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}




Geometry Regression

By-product: geometry. Can be meshified with Marching Cube.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}




Positional Encoding

Very hard for ANN to learn high
frequency band-pass filters

XYZ represented with Positional
Encodings / Discrete Fourrier
Transforms:

each direction encoded into a D-sized
vector of different frequencies

XYZ 7→ R3×D

Necessary to help the network to learn
high frequencies / small details
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}




Gaussian Splatting

Learns position and size of Gaussians

Backpropagable through diff. renderer

Blazing fast and super versatile!

Very recent paper, more to come
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}




Pros and Cons

PROS

Looks really cool

Does not need explicit 3D supervision

A new way to encode 3D scenes

The first visibility-driven implicit
function method

A new era for photogrammetry?

CONS

Slow and compute-intensive to train

Does not generalize to unseen views/
objects

Implicit representation - hard to
understand and manipulate

Can it scale?

Already obsolete?

Going further:

- https://www.matthewtancik.com/nerf
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Usage in Earth Observation

Shadow Neural Radiance Fields for Multi-view Satellite Photogrammetry, Derksen & Izzo,
EarthVision21
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