
3DCV 2024

Page 1

MVA Grade (/20) TP1 TP2 TP3 TP4 Exam
BELLANCA Ugo 14.5 5 5 3.5 4.5 9
FOURREAU Félix 12 4 4 4.5 3 7
KADDAMI Yassine 13.5 5 5 5 4 5
MEGHRAOUI Abdallah 14.5 5 5 5 4.5 7.5
MICHETTI Marius 13 5 2 5 4 8.5
RAVAUD Tom 15.5 5 4 5 5 10.5
SAULNIER François 4.5
SEREYJOL-GARROS Nicolas 13.5 5 4.5 4.5 4 6.5
SOUCAILLE Matti 12.5 5 4.5 4.5 3.5 4.5
VERSINI Lucas 18.5 5 5 5 5 16
VICTOR Ludvig 15.5 4 4.5 5 5 11.5
WAUQUIEZ Mathis 13 4 4 3 5 9

IMA Grade (/20) TP1 TP2 TP3 TP4
CADI Yacine 14.5 5 4.5 4 1
DRACEA Iulian-Ilie 15.5 4 2 4.5 5
DROZDOV Dmitrii 17 5 3.5 4 4.5
GONCALVES Samuel 17 5 3 4.5 4.5
GRUSS Carlos 17 5 4 4 4
HASSAYOUNE Ahmed 18 4.5 4.5 5 4
KHAREF Okba 14 5 0 4.5 4.5
KILINC Sena 16.5 4.5 4 4 4
LAVAL Luka 17.5 5 4.5 4 4
MAOUCHE Mounir 13 4 2 3 4
OUMAZIZ Thiziri 13.5 5 4.5 4 0
PAGNEUX Gabriel 13 4.5 4 3 1.5
RCHAKI Oussama 17.5 5 4.5 4 4
ROUSSELLE Naomi 18 5 4 4.5 4.5
SELLAHENNEDI Ménalie 12 4 1.5 1.5 5
SHIKHLI Nadir 18.5 5 4 5 4.5
SIDKI Noureddine 16 4 3.5 4 4.5
SOARES Robin 17 4.5 4 4.5 4
TIAN Ning 17.5 5 4 4.5 4

Panorama

Page 2

Panorama(/5)
MVA

BELLANCA Ugo 5

FOURREAU Félix 4

KADDAMI Yassine 5 Good!

MEGHRAOUI Abdallah 5

MICHETTI Marius 5

RAVAUD Tom 5 Very good!
SAULNIER François 4.5 Good, it lacks just the transparency blending on common parts of images.
SEREYJOL-GARROS Nicolas 5 Great work and very good report!

SOUCAILLE Matti 5

VERSINI Lucas 5 Excellent overall, both code and report.

VICTOR Ludvig 4

WAUQUIEZ Mathis 4

IMA
CADI Yacine 5 Neat and clean, good job!

DRACEA Iulian-Ilie 4

DROZDOV Dmitrii 5 Good!
GONCALVES Samuel 5 Good!
GRUSS Carlos 5 Very good and great to see results on your own pair of images.

HASSAYOUNE Ahmed 4.5

KHAREF Okba 5 Excellent! Nice to see the results on other test images.

KILINC Sena 4.5

LAVAL Luka 5 Good! You could check the button clicked through Event::button.

Good work, even if there may be white pixels in image 1 and detecting superposition
through check of color may make mistakes.
Good for trying progressive blending. The grid you see is because you “push” pixels
from I1, instead of “pulling” from them. The grid-filling part seems to have no effect…

Good! Notice though that coordinates (0,0) are still valid for a pixel, so your function
isWithinBounds is a bit conservative.
Good, though detecting superposition through white color is sensitive to white color in
image 1.

Good overall, though the code is a bit more complex than necessary. Notice that
coordinates (0,0) are still a valid pixel.

Color distortion is due to overflow of unsigned char in Color+Color: it wraps around to
0 when above 255. The point selection procedure is not very user friendly.
Transparency is lacking (your trial did not work because of overflow of sum of
unsigned char). You assume the (0,0) pixel of left image coincides with (0,0) pixel of
panorama, which is not necessarily true.

The white grid you see in your panorama is because your push pixels instead of
pulling them. Using white color to detect superposition is not optimal.

The grid appearing is due to pushing pixels instead of pulling. Relying on background
color for superposition fails sometimes (though rarely).

Calculating inverse(H) for each pixel takes its (small) cost. Right click is detected
through event.button.

Panorama

Page 3

MAOUCHE Mounir 4

OUMAZIZ Thiziri 5

PAGNEUX Gabriel 4.5

RCHAKI Oussama 5

ROUSSELLE Naomi 5 Good job!

SELLAHENNEDI Ménalie 4

SHIKHLI Nadir 5 Good job!

SIDKI Noureddine 4

SOARES Robin 4.5

TIAN Ning 5 Great!

The grid that appears is the panorama is because you push pixels from I1 instead of
pulling. Using white color to detect superposition is not the best thing to do.
Good job, but relying on a particular background color for detecting superposition is
not optimal as it is a legit color in image 2.
Good, though relying on color check for superposition is not the best option, as the
information is already present. It would have been good if more than 4 pairs could be
input.
Very good! I would have liked to see the results of the experiment of your desk
images, as promised in the report…

The grid you see in the panorama is because you push pixels from image 1 instead
of pulling. Detecting superposition based on background color is not foolproof.

Your code relies on the fact that point (0,0) of image 1 and the panorama coincide. It
may be true for the test images, but not in general. Good otherwise.
Detecting superposition through color check is a pity, as the information is already
present through earlier check.

Fundamental

Page 4

Fundamental(/5)
MVA

BELLANCA Ugo 5 Very good!

FOURREAU Félix 4

KADDAMI Yassine 5 Very good!
MEGHRAOUI Abdallah 5 Very good!

MICHETTI Marius 2

RAVAUD Tom 4

SAULNIER François

SEREYJOL-GARROS Nicolas 4.5

SOUCAILLE Matti 4.5

VERSINI Lucas 5

VICTOR Ludvig 4.5

WAUQUIEZ Mathis 4

IMA

CADI Yacine 4.5

DRACEA Iulian-Ilie 2

DROZDOV Dmitrii 3.5

Good, though there is a bug that degrades the performance: when you count inliers,
you compute F*points1[i] instead of transpose(F)*points1[i].

Several mistakes that ruin the results: 1) method setDiagonal just sets the diagonal
but does not ensure there are 0 outside. 2) Dynamic setting of Niter must ensure that
m is large enough so that 1-(m/n)^8 < 1 numerically. Computing m/matches.size() is
Euclidean division, yielding 0. Operands must be cast into floating point.
There is a dumb bug (but aren’t they all?) that distorts the results:
A(i,4)=x[1]*y[1]*y[1]. Fixing that yields much better results.

Good, but numerical precautions must be taken when applying formula for update of
Niter.
The only thing lacking is the least square refinement of F based on all inliers at the
end.
Very good! Note though that your trial on the first homework images is not very
pertinent, because there is no parallax and F=0…
Very good, except for a dumb bug in getDistance: line 94 should be x[1]=match.y1,
not y2! Fixing this increases significantly the number of inliers and yields a better F.
Formula for adjustment of Niter must not be applied without numerical precaution, as
it may stop the loop just after first iteration if inliers.size()<<matches.size(). At the end
of RANSAC, there should be a refinement based on all inliers.

There should be refinement of F based on all inliers at the end of RANSAC.
1+rand()@n_match is dangerous as the result is in [1,n_match] whereas index
should be between 0 and n_match-1.
At output of SVD, we use the last column of V, which is the last row of its transpose,
that we get as ouput of function svd. When adjusting the number of iterations,
Niter_lower_bound may overflow the maximal integer, yielding a negative number
Niter. Since your index i is size_t, the algorithm may run indefinitely. Moreover, in this
formula, the division must be in floating point.
When finding inliers, you multiply left image points by F instead of its transpose,
which yields wrong results. The numerical precautions you take for updating Niter are
not sufficient, as the result can overflow the integers.

Fundamental

Page 5

GONCALVES Samuel 3

GRUSS Carlos 4

HASSAYOUNE Ahmed 4.5

KHAREF Okba 0 This is not your personal work, it was copied from an earlier year.

KILINC Sena 4

LAVAL Luka 4.5

MAOUCHE Mounir 2

OUMAZIZ Thiziri 4.5

PAGNEUX Gabriel 4

RCHAKI Oussama 4.5

ROUSSELLE Naomi 4

SELLAHENNEDI Ménalie 1.5

SHIKHLI Nadir 4

SIDKI Noureddine 3.5

Based on the construction of matrix A, point in left image must be multiplied by
transpose(F) (as in the course). At iteration 0, you may have very few inliers and Niter
becoming -infinity because of numerical problem. There should be a refinement
based on all inliers at the end.
Your formula for displaying the epipolar line in right image (clicking in left image) is
wrong. Rather then setting a fixed number of inliers as precaution before adjusting
Niter, it should rather be a proportion.
Works fine, but there is a potential pitfall: if A is 8x9, the compact SVD (default for
function svd) gives Vt of size 8x9, so that the last row of Vt is not computed…

The update of Niter should have tighter check of numerical errors, I had many runs
finishing at iteration 0. There should be refinement with all inliers at the end for F.
Multiplying an uninitialized matrix by 0 may still leave some NaN.
At the end of RANSAC, a refinement based on inliers should be performed. You
should not rely on multiplying an uninitialized matrix by 0 to set the null matrix: one of
the coefficients could be Nan and stay NaN after multiplication. Use method fill.
If you use a sample-specific normalization, you must store the normalization
parameters so as to de-normalize after. EstimateF should consider more than the 9
first matches when useRefinement is used.
Good, but if A is 8x9, function svd uses by default the compact mode so that Vt is 8x9
and column number 8 of V is not available.
The last line of A is left uninitialized, which may cause trouble. There is no refinement
with all inliers at the end of RANSAC.
Your function getOptimalIterations always returns 100000, because your inlier ratio
formula is actually the inverse of its true value…
Good, except that in displayEpipolar you invert the roles of F and its transpose,
hence the epipolar lines are slightly wrong. There should be a refinement with all
inliers at the end.
You should have suspected something was wrong since you find no outlier. If you
don’t use a fixed normalization, you must store the normalization matrix so as to de-
normalize correctly. Your formula for Niter is wrong. The way you build A, points in
left image must be multiplied by F, not its transpose (as in your report).
You invert the role of F and its transpose in displayEpipolar. Moreover, when clicking
on right image, x of click should be relative to I1.width(). Your precaution against
numerical error of Niter is wrong.
You should initialize N with N.fill(0), otherwise you may have random coefficients left.
There is no adjustment of Niter. At the end of RANSAC, there should be a refinement
based on all inliers.

Fundamental

Page 6

SOARES Robin 4

TIAN Ning 4

You should take the SVD of A, not of transpose(A)*A, because the former is better
conditioned. It seems your distance threshold for inlier/outlier is sqrt(distMax).
In the update of Niter, numerical problems may occur. At the end of RANSAC,
refinement with all inliers should be performed. When clicking on right image,
I1.width() must be subtracted from x of click.

Seeds

Page 7

Seeds(/5)
MVA

BELLANCA Ugo 3.5

FOURREAU Félix 4.5

KADDAMI Yassine 5 Good!
MEGHRAOUI Abdallah 5 Good!
MICHETTI Marius 5 Very good, neat and tidy!
RAVAUD Tom 5 Good job!
SAULNIER François

SEREYJOL-GARROS Nicolas 4.5

SOUCAILLE Matti 4.5

VERSINI Lucas 5 Excellent! Very good code and amazing report!

VICTOR Ludvig 5

WAUQUIEZ Mathis 3

IMA

CADI Yacine 4

DRACEA Iulian-Ilie 4.5

DROZDOV Dmitrii 4

GONCALVES Samuel 4.5

No propagation since you compare again to nccSeed before committing a new
disparity. Using ccorrel would have spared you some code and for norm of patch you
could have used ccorrel with same image.
During propagation, it is not as good to simply project into [dmin,dmax] as to just
ignore disparities outside the interval. Also, beware of overflow in x (could happen if
dmax were positive).

Your function find_seeds is a bit too conservative as it discards pixels on the left for
which some disparities (but not all) lead to a suitable patch.
Valid disparities are assigned to some pixels for which no suitable patch is available.
The safety checks in correl and sum overload the code without benefit, as calls are
filtered before.

Good code+report, though you should protect from division by zero (uniform patch) in
NCC.
In find_seeds, it makes no sense to compute NCC for disparity 0. In propagate,
bestNcc should be initialized to -1 or lower, not 0. Also, you do not check if disparity
stays within [dmin,dmax].

In find_seeds, pixels yielding no suitable corresponding patch for any disparity get
assigned unitialized bestDisparity (ony for dense case). In propagate, check also
overflow on the right (could happen if dmax>=0).
Pixels with no valid corresponding patch still get assigned dmin as disparity, both
during dense computation and propagation.
In function sum, dx=win and dy=win are discarded, which is a mistake and makes
NCC not bounded by [-1,1]. Fixing that selects much fewer seeds, as it should.
Patch inclusion must be checked through image2.width, not image1.
The only defect is that during propagation some pixels with no valid translated patch
still get assigned a disparity.

Seeds

Page 8

GRUSS Carlos 4

HASSAYOUNE Ahmed 5 Good!

KHAREF Okba 4.5

KILINC Sena 4

LAVAL Luka 4

MAOUCHE Mounir 3

OUMAZIZ Thiziri 4

PAGNEUX Gabriel 3

RCHAKI Oussama 4

ROUSSELLE Naomi 4.5

SELLAHENNEDI Ménalie 1.5

SHIKHLI Nadir 5 Very good!

SIDKI Noureddine 4

SOARES Robin 4.5

TIAN Ning 4.5

In the dense case, pixels with no valid patch still get disparity dmin. Why does the
relative shift in propagation reach +2? Why the threshold -0.9 in propagation?

Good, though during propagation you should simply not compute NCC for disparities
outside [dmin,dmax] instead of thresholding afterwards.
For the dense case, pixels with no valid patch still get disparity dmin. During
propagation, overflowing dmax should not be allowed.
Initializing bestNcc to 0 is a bad idea, should be -1 or less. Moreover, leaving
bestDisparity uninitialized puts random values to pixels having no valid patch.
No propagation as nccSeed should not be reused. Beware of not going out of
[dmin,dmax]. For dense map, pixels with no valid patch should not get dmin.
In the dense estimation, pixels with no valid corresponding patch still get dmin, which
is an admissible disparity. They should not. In propagation, bestNCC is initialized to -
1 and can only increase, so the check >=-1.0 is useless and pixels with no valid
patch still get assigned the disparity of the seed.

In find_seeds, pixels with no valid patch for all disparities get assigned a random
(unitialized) value. Moreover, initial value of ncc_best must be -1 or less. Propagation
does not happen because by definition non-seeds have NCC less than nccSeed.

Pixels with no suitable patch still get assigend a disparity, which is not correct. Check
overflow of patch to the right also during propagation. W=2 should not be tested.
Propagation should not let disparity outside [dmin,dmax]. In find_seeds, if dmin<=-
1<=dmax, pixels with no valid patch would still get assigned a disparity.
Results are completely wrong, due to several bugs: in correl p2 is shifted by m1
instead of m2, the +EPS should be in denominator. In the dense case, some pixels
with no valid patch get a random disparity. Why the threshold 0 for NCC in
propagate?

In find_seeds, pixels with negative best NCC have no disparity, which leaves holes in
dense configuration. Valid patch in image 2 should compare to image2.width, not
image1. The propagation does not check we stay within [dmin,dmax].
In the dense case, the pixels having no valid corresponding patch get assigned a
random (unitialized) disparity. OK for propagation.
Good, but during propagation pixels with no valid patch should not get assigned a
disparity within [dmin,dmax].

GCDisparity

Page 9

GCDisparity(/5)
MVA

BELLANCA Ugo 4.5

FOURREAU Félix 3

KADDAMI Yassine 4

MEGHRAOUI Abdallah 4.5

MICHETTI Marius 4

RAVAUD Tom 5

SAULNIER François

SEREYJOL-GARROS Nicolas 4

SOUCAILLE Matti 3.5

VERSINI Lucas 5

VICTOR Ludvig 5 Good job!
WAUQUIEZ Mathis 5 Very good!

IMA

CADI Yacine 1

DRACEA Iulian-Ilie 5 Very good, even though disparity dmax gets excluded because nd-1 means dmax-1

DROZDOV Dmitrii 4.5

GONCALVES Samuel 4.5

Clean code, but for invalid patches w is used while uninitialized: infinity weight should
be used in that case.
Out-of-bounds patches must be detected and zncc not called in this case. Disparity d
must not be multiplied by zoom. Disparity dmax is never reached in decode_graph.
Good code, though decode_graph is more complex than needed. This assignment
deserved a report.
Nice code, but it is better to have no reverse edges with weight infinity between d and
d-1: add rather K to direct connection. A report was required for this assignment.
You are not handling well pixels that have some but not all translated patches valid.
In the report, it would have been good to include visual results of the different
experiments.
Very good, both code and report. The only defect is that dmax cannot be set in
decode_graph.

Good overall, but zncc must not be called without checking the patch is inside the
image bounds.
You do not handle patches out of bounds: calling zncc without security check is
dangerous. It would have been good to have a report for this assignment.
Very good, though in decode_graph value dmax is not reachable. You could also put
0 as reverse weight between d and d+1 instead of infinity, leading to fewer arcs and
helping the GC to run a bit faster.

The built graph is not correct: intermediate disparity nodes are not connected to the
terminals, but to the node with preceding disparity. You did not understand the role of
zoom. The tested patch must be at u+d, not u-d. In decode_graph, the while loop
may overflow the array the nodes.

You are not taking exactly the weight function suggested, which included a square
root. The weight to sink is not right since it should involve disparity dmax. Good for
the benchmark.
You are not taking into account the zoom factor. For node (i,j), the patch would be
centered at (i,j)*zoom+win. Good report.

GCDisparity

Page 10

GRUSS Carlos 4

HASSAYOUNE Ahmed 4

KHAREF Okba 4.5

KILINC Sena 4

LAVAL Luka 4

MAOUCHE Mounir 4

OUMAZIZ Thiziri 0 not handed in.

PAGNEUX Gabriel 1.5

RCHAKI Oussama 4

ROUSSELLE Naomi 4.5

SELLAHENNEDI Ménalie 5 Very good!

SHIKHLI Nadir 4.5

SIDKI Noureddine 4.5

SOARES Robin 4

TIAN Ning 4

Function zncc must not be called when the patch is not fully in image. The function
decode_graph never yields dmax.
If you add weights to 4 neighbors, each edge will have twice the normal weight
because the “neighbor” relation is symmetric. The test of in-bound patch must also
check at the left boundary. When comparing runtime with region growing method,
you should realize that graph cuts was considerably faster because of zoom factor.
Good, but in decode_graph dmax is not reachable and disparity must be reset to
dmin for each pixel.
If you add weights for the 4 neighbors, you are doubling lambda; you should consider
one horizontal and one vertical neighbors. In decode_graph, dmax+dmin is not a
correct disparity.
You are lucky the images are square, since get_id has a bug: x*nx instead of x*ny.
When connecting to neighbors, only two must be considered, since the relationship is
symmetric. Weights to neighbors at same disparity should be lambda, not 1. Terminal
weights are not correct. When comparing runtime, you should not forget that zoom=2
means that only 1 over 4 pixels is considered.
Overflow of patch can also occur on the left and should be checked. Disparity dmax
cannot be assigned in decode_graph. A report for this assignment is lacking.

Since you turned the images, they are no longer horizontally rectified, but vertically!
Dmax is not reachable in decode_graph.
d must not be multiplied by zoom in targetX. Because of the symmetry of neighbor
relationship, you should not add lambda to the 4 neighbors but only 2.
If adding weights for the 4 neighbors, it is as if you doubled lambda since p~q implies
q~p. It would have been good to compare empirically with the seeds method.

Overflow of patch on the right should also be checked. Disparity dmax cannot be
assigned in decode_graph as maximum d is nd-1, not nd. Taking 4 neighbors instead
of 2 adds twice lambda to edges of neighboring pixels at same disparity.
Good, but adding lambda to 4 neighbor amounts to doubling lambda, since the
relationship is symmetric. Pixels that must have disparity dmin actually get dmin-1
and dmax cannot be reached.
The NCC with disparity d must be used for weight to node (x,y,d-1), not (x,y,d+1).
The loop in decode_graph may overflow the nodes.
It is not a great idea to skip disparities with invalid patches as it creates for such
pixels a chain that is not connected to one terminal. By putting INF to sink, you are
forbidding disparity dmax. A report was required for this assignment.

	3DCV 2024
	Panorama
	Fundamental
	Seeds
	GCDisparity

