
3DCV 2023

Page 1

Grade TP1 TP2 TP3 TP4 Mean TP(/5) Exam
MVA

BAILLET Victor 16.5 4.5 4.5 4.5 5 4.6 13.5
BORNE-PONS Paul 14 4.5 5 5 4.5 4.8 7
DE SENNEVILLE Adhémar 12.5 5 3.5 4.5 4.5 4.4 5
EVE Célestin 15.5 5 3 4 5 4.3 13.5
GAUILLARD Emma 13.5 4.5 4.5 5 4 4.5 6.5
GOLLIER Maxence 13 4.5 5 2 3 3.6 11
JANVIER Maya 14 4.5 4.5 5 4 4.5 8
JAUMAIN Pierre 12 3 5 5 4 4.3 5
LABIAD IsmaIl 14.5 4 4 4.5 5 4.4 10.5
LAFENETRE Jamy 14.5 4 4 4.5 4.5 4.3 11
MARENGO Matteo 14 5 4.5 4.5 4 4.5 8.5
MELO Sébastien 15 5 2 4 4.5 3.9 14
POLLET Florent 13.5 5 4.5 4 4 4.4 8
RANJBAR Mahdi 4.5 1.5
ROBERT Hugo 13.5 5 4.5 5 4 4.6 5.5
TERRISSE Theïlo 16 5 5 5 5 5 9.5

IMA Grade TP1 TP2 TP3 TP4
ARAOUI Mohammed 18 5 4.5 4 4.5
BIENVENU Marie 16.5 5 4.5 4.5 2.5
BIOSCA MARRON Pau 16 4 4.5 4.5 3
CHEN Yunqi 10.5 4.5 4.5 0 1.5
FODIL Zine-Eddine 18 4.5 4.5 4 5
GUO Youheng 18 4.5 4.5 4.5 4.5
LEONELLI Caterina 14.5 4.5 1 4 5
LIU Wenda 13.5 4.5 4.5 3 1.5
MADRAU Maxime 14.5 3 4 3.5 4
MELLUL Yona 19.5 5 4.5 5 5
MOEINI Mina 12 4 2 4.5 1.5
MUSTROPH Henryk Alexander 5.5 2 1.5 1 1
OMIDI Mojan 18 4.5 4.5 4 5
PORTE Leo 12 5 1.5 3.5 2
RICHARD Tom 8 3 1 3 1

3DCV 2023

Page 2

RIFFAUD Hugo 16.5 5 4.5 3 4
SADREDDINI Kimia 12 4 4.5 0 3.5
SCHADE Oskar Hartvig 10.5 3.5 1.5 4.5 1
THOMAS Guillaume 6.5 2.5 1 2 1
XI Yuxuan 17.5 4.5 4.5 4 4.5
YANG Kai 13 4.5 0 4 4.5
ZHANG Jacques 9 4.5 2 2.5 0

Auditors Grade TP1 TP2 TP3 TP4 Mean TP(/5) Exam
ADJEVI-NEGLOKPE Ambre 12.5 3 4 3.5 2 4.5
ZEINATY Paul 18 5 5 3.5 4.5

Panorama

Page 3

Panorama(/5)
MVA

BAILLET Victor 4.5

BORNE-PONS Paul 4.5 see comments for Emma Gauillard. Good for adding Doxygen comments.
DE SENNEVILLE Adhémar 5 Great job!
EVE Célestin 5 Good, code clean and tidy.

GAUILLARD Emma 4.5

GOLLIER Maxence 4.5 Everything good, except the missing transparency at overlapping pixels.
JANVIER Maya 4.5 see comments for Emma Gauillard.

JAUMAIN Pierre 3

LABIAD IsmaIl 4

LAFENETRE Jamy 4

MARENGO Matteo 5 Good, though the code for blending could have been shorter with factorization.
MELO Sébastien 5 Good, though the clicking part could have been more friendly with anyGetMouse.
POLLET Florent 5 Good job!

RANJBAR Mahdi 4.5

ROBERT Hugo 5 Good, but don’t compute twice inverseH*pt2.
TERRISSE Theïlo 5 Exactly as requested!

IMA

ARAOUI Mohammed 5

BIENVENU Marie 5

BIOSCA MARRON Pau 4

CHEN Yunqi 4.5 Your transparency application in two steps could be simplified.

Good work overall, but careful, 3 components for Color so at line 27 the loop
condition must be I<3, not I<4.

When pulling, the translation by (x0,y0) must be applied before the homography, not
after. Do not recompute inverse of H at each iteration. Detecting overlap with white
color is not the best idea.

Disappointing results are due to one main problem: signs of B are wrong (should be
+, not -). When fetching pixel in I1, point should be translated before applying the
homography, not after. White pixel has values 255, not 0, anyway that is not the best
way to check overlap. Do not recompute inverse of H at each pixel. Good for your
experimental effort to assess the quality.
You applied the push method, which yields missing pixels. Moreover detecting
overlop through white color is not optimal.
Your panorama looks fine because the upper left corner of I1 coincides with the one
of the panorama, but it does not stand in general.

It is somewhat wasteful to recompute the inverse of H at each pixel. Detection of
overlap by white pixel is not quite satisfying.

Very good! However, take care of code presentation (indentation, mutlple
consecutive blank lines with no logic).
Very good! For the bilinear interpolation, you could have used directly
Image::interpolate.
Why is your point normalization after application of H commented out? It has to
happen to get correct pixel coordinates. You did not implement transparency.

Panorama

Page 4

FODIL Zine-Eddine 4.5

GUO Youheng 4.5 Transparency is missing. Compute the inverse of H outside the loop.
LEONELLI Caterina 4.5 The transparency on overlapping regions is missing, fine otherwise.
LIU Wenda 4.5 Your way of applying the transparency is convoluted, it could be done directly.

MADRAU Maxime 3

MELLUL Yona 5 Good! NB: on a MacBook, clicking with two fingers simulates a right click.

MOEINI Mina 4

MUSTROPH Henryk Alexander 2

OMIDI Mojan 4.5

PORTE Leo 5 Very good!

RICHARD Tom 3

RIFFAUD Hugo 5 Great, and congrats for having tested on your own data!
SADREDDINI Kimia 4 Good, except the transparency is not implemented.

SCHADE Oskar Hartvig 3.5

THOMAS Guillaume 2.5

XI Yuxuan 4.5 You did not apply the transparency effect, but otherwise it is fine.
YANG Kai 4.5 Good, only the transparency on overlapping regions is missing.

ZHANG Jacques 4.5

Auditors

The color distortion in the transparency is due to an overflow of color components,
stored in unsigned char.

Results are not very good because you have some wrong values in matrix A:
A(2i,7)=-y1*x2 and A(2i+1,6)=-x1*y2. Moreover, you forget to normalize by the third
component when multiplying by the homography to retrieve pixel coordinates.

Please send the source code next time, not only the report. What is missing is the
transparency
Something is wrong with the clicks, last points look suspect. In the panorama
construction, you check if the point is inside image with the dimensions of I instead of
I1 and I2. You do not implement the transparency.
There is no blending or transparency, which would have helped assess the quality of
the panorama. However, very good for trying on your own data.

To pull pixels from I1, you have to apply the inverse of H. Moreover, a translation by
(x0,y0) must occur before, not after. Transparency is not handled correctly, white
pixel is (255,255,255).

You did not get the interest of anyGetMouse, which indicates in which window the
click occurred. To pull pixels from I2, you have to apply H, not its inverse. However,
the bounding box was computed assuming I2 would stay fixed and I1 mapped.
The homography should be applied to a single image, the other has just a
translation. Moreover, to get image coordinates, it is necessary to divide by the 3rd
component.

Good for testing on your own data. The number of clicked points should not be fixed
in the program, right click should stop. Transparency is not impemented. (0,0) is a
valid pixel.

Panorama

Page 5

ADJEVI-NEGLOKPE Ambre 3

ZEINATY Paul 5 Good, but some feedback would have been welcome while clicking.

You should not expect unfilled coefficients of matrices to be zero. The code assumes
that point (0,0) of I1 and panorama coincide. What you do is push pixels from I2 to
the panorama, hence the missing pixels. Transparency has an overflow because
channels are unsigned char and the addition may wrap around 0.

Fundamental

Page 6

Fundamental(/5)
MVA

BAILLET Victor 4.5

BORNE-PONS Paul 5 Very good, but the two functions for 8-point and n-point algorithms could be merged.

DE SENNEVILLE Adhémar 3.5

EVE Célestin 3

GAUILLARD Emma 4.5

GOLLIER Maxence 5

JANVIER Maya 4.5

JAUMAIN Pierre 5

LABIAD IsmaIl 4

LAFENETRE Jamy 4

MARENGO Matteo 4.5

MELO Sébastien 2

POLLET Florent 4.5

LS refinement is missing at the end. With thin SVD and A of size 8x9, we should
have Vt of size 8x9, and the last column missing. Beware, 10e-3=1e-2=0.01.

Normalizing the matches inplace prevents their display in main function. You should
not compute the SVD of A^t A but the one of A. In the refinement, you leave the last
row of A undefined because of a loop bound off by 1. The user interaction is
cumbersome because two clicks are expected. Good for trying on custom data.
The vector inliers is not cleared at each iteration, in some runs I had more inliers than
matches! No LS refinement at the end.
By default, the svd function should compute the thin SVD, hence Vt would be 8x9
and the last row is missing. Because of a bug, it computes the full SVD, hence you
are spared. Niter may be become -infty if 1-(m/n)^8==1 (too few inliers).
Very good, though the fixed min number of inliers to catch the numerical problem
could be better handled.
You should be careful, unset coefficients of Vector and Matrix are not initialized and
may have random values. The formula for Niter update may suffer from numerical
problem when the proportion of inliers is small (typically less than 10%).
Good, though repeating very similar code for the minimal solver and the LS is not
great.
You should not compute A^t A, the SVD of A has the same V and it is numerically
more favorable. After RANSAC, a least square minimization should be performed.
This is good work, unfortunately results are disappointing due to a dumb mistake: y2
is computed from matches_sample[i].y1. Niter needs an update only when the
number of inliers increases, not at each iteration. Very good for the gradient descent
(which is not stochastic, by the way), but would be better with parameterization by
the normalized F matrix.
There can be a numerical problem with 1-(m/n)^8=1, hence a division by 0 in the
formula for the update of Niter. The minimal solver and LS could have been merged.
Bad results because the vectors u and v have their last component uninitialized
(should be 1) and some coefficients of N are left also uninitialized. Also 10e-3=0.01,
you meant 1e-3, which is 0.001. Applying blindly the formula for Niter may lead to
division by 0 because of numerical problems.
Nothing wrong with your code, however Imagine++’s doc says that by default svd
computes the thin SVD, hence if A is 8x9, Vt should be 8x9 and the last column of V
would be missing. It happens there is a bug and the full SVD is always computed.

Fundamental

Page 7

RANJBAR Mahdi 1.5

ROBERT Hugo 4.5

TERRISSE Theïlo 5 Very good!

IMA

ARAOUI Mohammed 4.5

BIENVENU Marie 4.5

BIOSCA MARRON Pau 4.5

CHEN Yunqi 4.5

FODIL Zine-Eddine 4.5

GUO Youheng 4.5 Good, would have been even better with least square refinement using all inliers.

LEONELLI Caterina 1

LIU Wenda 4.5

MADRAU Maxime 4

MELLUL Yona 4.5

MOEINI Mina 2

MUSTROPH Henryk Alexander 1.5

OMIDI Mojan 4.5

PORTE Leo 1.5

You don’t compute the denominator for the point-line distance, and at the end
compare with the squared maximum distance. The number of inliers is completely
wrong (I got all matches).
Good! However, you should not compute A^t A, the SVD of A is enough and
numerically better.

Good but the update formula for Niter should be protected from numerical problems
(potential division by 0). Indentation of the code is disastrous. Notice it makes no
sense to try on panorama images, there is no translation.
Very good, except the formula for update of Niter must be protected from numerical
errors. And you inverted F and its transpose in displayEpipolar!
Very good! LS estimation should still be performed after RANSAC and the formula
for Niter update but be protected from numerical approximations.
Very good, but refinement has a problem: the loop for filling A uses only the first 8
points.
No LS refinement. Moreover, if some model has too few inliers, you can get
1-(m/n)^8=1 and a division by 0, hence Niter=-infty and the loop stops.

Plagiarism Sadreddini for the code. Fortunately, you provided good experimental
evaluation after my complaint.
Missing LS at the end of RANSAC. Good otherwise, though the code is a bit
verbose.
No LS after RANSAC. The formula for Niter must be applied with precautions. When
clicking on left image, the y of right point is wrong since its logical x is w, not 2*w.
The LS refinement is not applied, and should actually involve all inliers, not just 9.
Off-diagonal coefficients of N are not initialized.
Two fatal bugs: (1) line[2] is missing in formula for point-line distance. (2) Two
counters, samplingN and samplingNb, one is incremented but the other is tested.
Your normalization of points makes no sense, they should be all normalized with the
same factor. A(8,8) is left uninitialized. What is the role of x_values and y_values
(which are unitialized, by the way)?
Good job! The only missing part is the LS refinement. Also, your threshold at 50%
inliers for update of Niter is too conservative.
V(V.nrow(),…) is always out of bounds, you mean V(V.nrow()-1,…). Anyway, you
apply thin SVD and V is 9x8, V9 is missing. If you compute line-point distance in
normalized space, the threshold distMax must be adapted.

Fundamental

Page 8

RICHARD Tom 1

RIFFAUD Hugo 4.5 Good, only LS estimation is missing at the end of RANSAC.

SADREDDINI Kimia 4.5

SCHADE Oskar Hartvig 1.5

THOMAS Guillaume 1

XI Yuxuan 4.5

YANG Kai 0 Plagiarism

ZHANG Jacques 2

Auditors

ADJEVI-NEGLOKPE Ambre 4

ZEINATY Paul 5 Very good!

There is a confusion with H computation. Here, matrix A is 8x9 and each match gives
a single equation.

Good! What is missing is the LS refinement with all inliers. The safety against
numerical problem in Niter update is not flexible with its fixed threshold.
When refining the estimation with all inliers, matrix A has the wrong size and does
not require the addition of a line of zeros. There is no enforcement of rank-2
constraint. When drawing lines, line should be displayed on right part when click on
left part, and thickness is wrong.
Confusiont with computation of H. For F, each match gives a single equation, hence
a single row of matrix A.
Missing LS refinement at the end of RANSAC and lack of precaution when applying
the update formula for Niter.

Several bugs: A(i,2)=x1, not x2. Off-diagonal coefficients of N not initialized.
Reshaping Vt as F actually computes its transpose.

If A is 8x9, Vt should be also 8x9 if thin SVD is applied (default for function svd), and
the last column of V is missing. Beware, 10e-3=0.01. The code for displayEpipolar is
hardly readable and i_min1 is left unitialized. Precautions should be taken when
applying the update for Niter.

Seeds

Page 9

Seeds(/5)
MVA

BAILLET Victor 4.5

BORNE-PONS Paul 5 Very good!

DE SENNEVILLE Adhémar 4.5

EVE Célestin 4

GAUILLARD Emma 5 Very good!

GOLLIER Maxence 2

JANVIER Maya 5 Very good!

JAUMAIN Pierre 5

LABIAD IsmaIl 4.5

LAFENETRE Jamy 4.5

MARENGO Matteo 4.5

MELO Sébastien 4

bestDisparity may be assigned unitialized to pixels. It happens at the left border,
where every patch overflows the image.

Good report! d_end should be excluded from the loop, as it would overflow if dmax
were positive. In propagate, some pixels are assigned disparity 0 because they have
no valid patch. Clipping the best disparity is not as good as just ignoring invalid
disparities.
In find_seeds, pixels with no valid patch are assigned dBest, which is unitialized.
Same with ddBest in progagate. The patch may also overflow to the right if dmax
were positive. No check of disparity bounds during propagation.

Results are particularly bad due to a dumb bug: in correl, denominator is
sqrt(var1)*sart(var2), not with pixel1 and pixel2! Pixels with no valid patch get
assigned an uninitialized disparity. Right overflow of patch should also be taken care
of. During propagation, some pixels have no valid patch and should not get a
disparity. Clamping to [dmin,dmax] is worse than ignoring bad disparities.

Very good work! Just a little problem in propagate, where uninitialized bestDisparity
is assigned to pixels with zero valid patch.
During propagation, clamping to [dmin,dmax] is not as good as just ignoring wrong
disparities. Moreover, it assigns dmin to pixels that have no valid patch. Notice also
that the right overflow check should be stricter with >=im2.width(), not >.
Good. No check for disparity bounds during propagation. The median filter does not
help that much as wrong pixels are not initial seeds and are bound to have close
disparity as their neighbors.
Clamping the disparity to [dmin,dmax] after the minimization is not as good as just
ignoring disparities out or range. Overflow of a patch to the right should also be
guarded against, since in all generality dmax could be positive (no control over the
crop or the rectification).
In find_seeds, pixels on the left with no valid patch are assigned argmaxd, which is
unitialized. The same for pixels whose best NCC is negative. Overflow on the right
should be checked with im2.width() (not im1), and the inegality should be >=. No
check of disparity range [dmin,dmax] in propgate. Idem, argmaxd may be assigned
while uninitialized.

Seeds

Page 10

POLLET Florent 4

RANJBAR Mahdi

ROBERT Hugo 5

TERRISSE Theïlo 5

IMA

ARAOUI Mohammed 4

BIENVENU Marie 4.5

BIOSCA MARRON Pau 4.5

CHEN Yunqi 0

FODIL Zine-Eddine 4

GUO Youheng 4.5

LEONELLI Caterina 4

LIU Wenda 3

During propagation, out of bounds checks must still be performed. Clamping the
disparity between [dmin,dmax] is worse than just ignoring wrong disparities. Finally,
some pixels may have no valid patch and should be assigned a disparity.

Very good! Still, during propagation, we should accept pixels with bestNCC negative.
A better test is bestNCC>-1.0f.
Very good, but the overflow should be checked wrt to im2.width() during propagation,
not im1.

In find_seeds, initializing Max_ncc as 0 is a mistake, as pixels with no valid patch are
still assigned Best_disparity, which is uninitialized. In the propagation, bestDisparity
would rather never be tested if outside [dmin,dmax]. It is wasteful to add several
times the same seed.
Good work. During propagation, bounds [dmin,dmax] must still be observed. In
find_seeds, the checks for bounds are useless, this is already ensured by the
bounds of the for loop.
In find_seeds, check for overflow to the right should be performed, it can happen with
dmax>=0. In propagation, clamping the best disparity to [dmin,dmax] is not the best
solution. Some pixels to the left with no valid patch still get bestDisparity, which is
dmax due to clamping and dmax<0.
Plagiarsim of Wenda Liu’s work. The few changes introduced a bug: variable dp
should vary around s.d, not s.x…
In find_seeds, you are too conservative: if some disparities but not all in [dmin,dmax]
yield a valid patch, they should be tested. Overflow to the right should be checked
(could happen if dmax>0). During propagation, it is not bestCorr that should be
compared to dmin and dmax, but dispar…
During propagation, clamping to [dmin,dmax] should not be performed after testing
the 3 disparities, it is better to discard the ones outside the interval. Also, some pixels
with no valid patch are still assigned dmin.
During propagation, some pixels have no valid patch associated, they should not be
assigned a disparity. It is best to not consider disparities outside [dmin,dmax] then to
clamp the result. There could be some overflow of the patch to the right (with
different dmax), this should be checked.
In functions correl and sum, you must go to win inclusive, otherwise the
normalization in ccorrel is wrong. Moreover, in these functions you implicitly do 0-
padding, which produces articial patches. It is better to not consider overflowing
patches. In propagate, variable best_cur must be reset inside the for(i) loop, not
before.

Seeds

Page 11

MADRAU Maxime 3.5

MELLUL Yona 5 Very good!

MOEINI Mina 4.5

MUSTROPH Henryk Alexander 1

OMIDI Mojan 4

PORTE Leo 3.5

RICHARD Tom 3

RIFFAUD Hugo 3

SADREDDINI Kimia 0 Plagiarism. This is a copy-paste of a previous year’s code.

SCHADE Oskar Hartvig 4.5

THOMAS Guillaume 2

XI Yuxuan 4

YANG Kai 4

In find_seeds, a disparity is still set even though the NCC does not exceed nccSeed,
which interferes with visualization of the seeds. During propagation, no check of
patch overflow is performed. In non-Release mode, an assert stops the program.

In propagate, clamping to [dmin,dmax] a posteriori is not the best solution. Some
pixels with no valid patch have best uninitialized compared to dmin.
I think you have not understood at all the principle. For each possible disparity, we
compute the NCC and finally select the argument of the maximum.
In find_seeds, the test is too conservative, some disparities in [dmin,dmax] may be
testable with all being so. During the propagation, you test also s.d+2. Clamping the
disparity afterwards is not the best. When you test with other images, you must adust
dmin and dmax.
nccSeed has no role in propagation. There should also be a problem because at the
bottom and the right you have disparities whereas the patch does not fit within the
image.
Disparities should be tested only within the range [dmin,dmax]. A bit too conservative
in the propagation, some pixels have one or two valid patches wihin [x+dp-
1,x+dp+1]. Fatal mistake in propagate: conditions for if with = instead of ==. Infinite
loop if new seeds are not marked during propagation.
Some dumb bugs that ruin the results: (1) in correl, division by
sqrt(cpt_im2)*sqrt(cpt_im2) instead of sqrt(cpt_im1)*sqrt(cpt_im2), (2) in sum,
im(i+v,j+v) instead of im(i+u,j+v). Check for overflow of patch to the right should be
performed. During propagation, for some pixels none of the three disparities yields
an NCC, so best_disparity is compared to dmin without being set.

During propagation, no check of disparity within [dmin,dmax] is performed. Also,
some pixels with no valid patch still have a disparity assigned. Good otherwise.
You are mixing dmax, which is the maximal possible disparity, with an NCC. The
range [dmin,dmax] is the set of possible disparities. Overflow on the right would be
possible if dMax were positive.
In find_seeds, if some but not all of the disparities in [dmin,dmax] yield a valid patch,
they should be tested. Overflow of a patch to the right should also be tested.
Clamping to [dmin,dmax] is not the best. Moreover, for pixels with no valid patch,
best_d is uninitialized and still compared to dmin and dmax.
In find_seeds, pixels with no valid patch are still assigned a disparity, which is
actually bestD, left uninitialized. Similar problem in propagate. Patch inclusion should
also check the right boundary.

Seeds

Page 12

ZHANG Jacques 2.5

Auditors

ADJEVI-NEGLOKPE Ambre 3.5

ZEINATY Paul 3.5

nccSeed is unused in find_seeds. In the propagation, why is disps>s.d significant?
We test s.d-1 and s.d, which are perfectly fine. When you test on other images, dMin
and dMax must be adjusted.

Why divide the grey levels by 256 (through and RGB<float> on top of that)? NCC is
invariant to such a factor. Disparities should be restriced to the interval [dmin,dmax].
In propagate, x+d+win should be compared to im2.width(), not im1.
In find_seeds, some pixels have their best NCC negative. In that case, since bestNcc
is 0, they are assigned bestDisp, which is whatever happened before. Moreover, the
right overflow check should be x+d>= im2.width()-win. In propagate, simliar problem
and the interval [dmin,dmax] is not used.

GCDisparity

Page 13

GCDisparity(/5)
MVA

BAILLET Victor 5 Great job!

BORNE-PONS Paul 4.5

DE SENNEVILLE Adhémar 4.5

EVE Célestin 5 Very good!

GAUILLARD Emma 4

GOLLIER Maxence 3

JANVIER Maya 4

JAUMAIN Pierre 4

LABIAD IsmaIl 5 Excellent, both code and report!

LAFENETRE Jamy 4.5

MARENGO Matteo 4

MELO Sébastien 4.5

POLLET Florent 4

RANJBAR Mahdi

ROBERT Hugo 4

Good, though you add lambda twice by using 4 neighbors instead of 2. By putting
INF as terminal weights, you are excluding dmin and dmax. Zncc at disparity d
should feed the weight from d-1 to d, not d to d+1. Great gif animations!
You forgot to put weight to y+1, hence the apparent horizontal stripes in the results.
By putting infinite weight to sink, you are forbidding disparity dmax, which should
actually depend on zncc. It you authorize it back, decode_graph should be adapted
to it. Great report!

Disparities dmin and dmax are excluded as you put infinite weights to terminal
nodes. Using the four neighbors amounts to adding twice lambda.
In call to zncc, disparity must not be multiplied by zoom as it is computed in original
images. Put INF as weight if the patch is not in the image. In decode_graph, the
result should be dmin+d, no normalization has to be performed.
Putting (INF,0) and (0,INF) as terminal weights excludes disparities dmin and dmax.
ZNCC at dmin+d should be used with nodes at d-1 and d, not d and d+1. If you
consider 4 neighbors, you are adding twice lambda to the edges. In decode_graph,
the test d<nd should precede the call to what_segment. Good report.
You are forbidding dmin and dmax as disparity because you put infinite weight from
the source and to the sink. All is fine otherwise. The vertical streaks in the result are
due to adding twice lambda for vertical smoothness but no horizontal smoothness.

Very good, but considering the 4 neighbors amounts to adding lambda twice
because (x,x+1) are neighbors and (x+1,x) also.
All calls to zncc must be preceded by checks that the patch is within the image. The
weight to sink should depend on zncc with disparity dmax. decode_graph does not
detect correctly disparity dmax (all nodes should be linked to the source). Good
report.
Good, just a minor mistake: you are still using the zncc at dmax-1 to feed the weight
to sink.
Function zncc cannot be called before checking the patch is within the image. In
Release mode, assertions are disabled and it can go unnoticed. The weight for d=0
should correspond to disparity dmin, not dmin+1. Good report.

You cannot call zncc without guarding against patch overflow (assertion triggered in
non-Release mode). In decode_graph, you would rather put dmax by default, as if
the cut happens just before the sink, this indicates dmax. Very good report!

GCDisparity

Page 14

TERRISSE Theïlo 5 Excellent, clean code and nice report!

IMA

ARAOUI Mohammed 4.5

BIENVENU Marie 2.5

BIOSCA MARRON Pau 3 You do not add K. Terminal weights are wrong. Decoding should put dmin+d.

CHEN Yunqi 1.5

FODIL Zine-Eddine 5

GUO Youheng 4.5

LEONELLI Caterina 5

LIU Wenda 1.5 Your weights to terminals are wrong. Why put (nd+20)*wcc?

MADRAU Maxime 4

MELLUL Yona 5 Very good! Do not ignore the possibility of left overflow in case d<0.

MOEINI Mina 1.5

MUSTROPH Henryk Alexander 1

OMIDI Mojan 5 Very good! When testing on other images, dmin and dmax must be adjusted.

PORTE Leo 2

RICHARD Tom 1

RIFFAUD Hugo 4

SADREDDINI Kimia 3.5

SCHADE Oskar Hartvig 1

Good, but zncc at d should feed weight from (d-1) to d, not d to (d+1). Problem in
decode_graph if the disparity is actually dmax.
There is some confusion about indices which are incremented by 1. This being fixed,
decode_graph should add dmin and put dmax to unassigned pixels.

It does not work because you put INF weights to terminal links, which prevents
cutting them.
Very good! Still, you should not rely on d>=0 and ignore the possibility of left overflow
of patch. Beware that computation time is with zoom=2.
Good overall, but you forget to add K to the cost, overflow check should not multiply
d+dmin by zoom and weight to sink should depend on ZNCC at dmax, not dmax-1.
Good! However, you should put weight INF instead of wcc for overflowing patch.
When testing on kitchen images, results cannot be good if the images are not
rectified.

The code must not call zncc unguarded against patch overflow, which happens here.
Otherwise, everything fine.

You cannot compute zncc without checking the patch is within the image. In
decode_graph, you must put D=dmin+d, the integer disparity.
Your node-number formula is wrong, x*y should not appear inside. You do not use
ZNCC as unary weights. Why do you have a double for loop on depth?

You forgot to add K to the weight, which changes everything. When decoding, you
must add dmin. Your function rho is not exactly the proposed one.
Everything should be changed: node numbers are wrong, weight does not care of
zoom factor, decoding should just assign d.
ZNCC with d must be used to link edge d-1 to d, not d to d+1. In decode_graph,
result should be dmin+d, not d.
Terminal weights are wrong: should be (w,0) for d=0 and (0,w) for d=nd-1. You do
not add K. Weight should be INF for out-of-bounds patch.
You did not understand the role of zoom: nx and ny already take into account the
zoom factor and the window radius. decode_graphs should be fine except that dmax
must be excluded as disparity dmax is encoded by the cut occurring just before the
sink.

GCDisparity

Page 15

THOMAS Guillaume 1

XI Yuxuan 4.5

YANG Kai 4.5

ZHANG Jacques

Auditors

ADJEVI-NEGLOKPE Ambre 2

ZEINATY Paul 4.5

In build_graph, x and y should start from 0 and stop at nx and ny, win is already
taken care of. Terminal node weights are wrong, do not put infinity.
neighbor_node_id is wrong, should be with d-1. Moreover, the zncc must be mapped
through the function sqrt(1-x) as weight.
The weight to the sink should depend on zncc at dmax=d+nd, not d+nd-1. Very good
otherwise. When comparing on other images, dmin and dmax must be adjusted.
You should add K to the weights. You should check also overflow of patch by the left
side (in case dmin<0). Default value for C in build_graph should be INF.

You do not take into account that there is a zoom factor to speed up the
computation, so the real x and y are x*zoom+win and y*zoom+win. Calls to zncc
must be done only after checking the patch is within the image.
Good! Still, the weight of (nd-1) to the sink should depend on zncc at disparity dmax,
not dmax-1. The x and y increments are not very intuitive. Good report.

	3DCV 2023
	Panorama
	Fundamental
	Seeds
	GCDisparity

