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Abstract

In this paper, we introduce a local image descriptor thah$pired by earlier detectors such
as SIFT and GLOH but can be computed much more efficientlyéosd wide-baseline matching
purposes. We will show that it retains their robustness tepetive distortion and light changes,
can be made to handle occlusions correctly, and runs fastrga images.

Our descriptor yields better wide-baseline performanem tthe commonly used correlation
windows, which are hard to tune. Too small, they do not brimgugh information. Too large, they
become vulnerable to perspective variations and occludibarefore, recent methods tend to favor
small correlation windows, or even individual pixel difégrcing and rely on global optimization
techniques such as graph-cuts to enforce spatial consyst€hey are restricted to very textured or
high-resolution images, of which they typically need mdratthree.

Our descriptor overcomes these limitations and is robusitaiion, perspective, scale, illumi-
nation changes, blur and sampling errors. We will show thptdduces dense wide baseline re-
construction results that are comparable to the best dugelmniques using fewer lower-resolution
images.

1 Introduction

Dense short-baseline stereo matching is now well undedq@ih 6]. In contrast, larger perspective
distortions and increased occluded areas make its widgibasounterpart much more challenging.
It is nevertheless worth addressing because wide-baselaiehing can yield more accurate depth
estimates while requiring fewer images to reconstruct apteta scene.

Large correlation windows are not appropriate for widedtias matching because they are not
robust to perspective distortions and tend to straddlesas&different depths or partial occlusions in
an image. Thus, most researchers favor simple pixel diffeng [20, 4, 13] or correlation over very
small windows [23]. They then rely on optimization techregusuch as graph-cuts [13] or pde based
diffusion operators [24] to enforce spatial consistendye @rawback of using small image patches is
that reliable image information can only be obtained whaeeiinage texture is of sufficient quality.
Furthermore, the matching becomes very sensitive to lighhges and repetitive patterns.



Figure 1. Depth maps for view-based syntheSigp row: Two 800 x 600 calibrated images we use
as input.Middlerow: A third image and the depth map computed using only the first psojected

in the referential of the thirdBottom row: On the left, image re-synthesized using the depth map and
the first two images. It is very similar to the original thinthage except at places where occlusions
were detected. On the right, depth map computed using atior] which could not handle the large

perspective and contrast change between the two input Bnage



An alternative would be to use local region descriptors aglSIFT [16] or GLOH [17], which
have been designed for robustness to perspective anchligtitienges and have proved successful for
sparse wide-baseline matching. They can be used to matpdr lmnage regions, even under severe
perspective distortion, and are less prone to errors inrégmepce of weak textures or repetitive patterns
because chances are better that at least part of the regigr@ade a reliable match. However, they
are also much more computationally demanding than simpteledion. Thus, for dense wide-baseline
matching purposes, they have so far only been used to mateWw aded points [26] or to provide
constraints on the reconstruction [24].

In this paper, we introduce a new descriptor that is inspine&IFT and GLOH and retains their
robustness but can be effectively computed at every simgége pixel. We then use it to perform
dense matching and view-based synthesis using sterepylairse baseline is too large for standard
correlation-based techniques to work, as shown in Fig. T.ekample, on a standard laptop, it takes
about 5 seconds to perform the computation using our descrper a 80&600 image, whereas it
takes over 250 seconds using SIFT. Furthermore, it givesilisvery similar results as one of the best
current techniques [23] we know of on difficult examples gdewer lower-resolution images as will
be discussed in the result section.

To be more specific, SIFT and GLOH owe much of their strengtheo use of gradient orientation
histograms, which are relatively robust to distortionse Key insight of this paper is that computing
the bin values of the histograms can be achieved by conyiiientation maps, which can be done
very effectively in the dense case. This lets us match welgtilarge patches —usually 3B1 and
sometimes 7373 patches for very high resolution images— at an acceptainigputational cost. This
improves robustness over techniques that use smallergsatohunoccluded areas, but could bring
its own set of problems if occlusion boundaries were not kethgroperly. We address this issue by
considering several different masks at each pixel locadiwth chose the best. This is inspired by the
earlier works of [10, 12, 11] where multiple or adaptive etation windows are used. However, we
formulate the problem in a more formal EM framework and aahi@ore refined occlusion estimates
compared to the case where the full descriptor is used witogEM treatment.

After discussing related work in Section 2, we introduce oew local descriptor in and present
a very efficient way to compute it in Section 3. In Section 3w, test its behavior under various
transformations and compare it to that of SIFT [16] and ofr&ation windows of different sizes.
Finally, we present our dense reconstruction results antghbace them with those of [23] in Section 5.

2 Reated Work

Even though multi-view 3—-D surface reconstruction has beegstigated for many decades [21, 6], it
is still far from being completely solved because many sesiaf errors such as perspective distortion,
occlusions, and textureless areas. Most state-of-theeittods rely on first using local measures to
estimate the similarity of pixels across images and themguosing global shape constraints using
dynamic programming [3], level sets [8], space carving [Ddaph-cuts [20, 5, 13], PDE [1, 24], or
EM [23]. In this paper, we do not focus on the method used tmsephe global constraints and use a
standard one [5]. Instead, we concentrate on the similarégsure all these algorithms rely on.

In a short baseline setup, the reconstructed surfacestareagsumed to be nearly fronto-parallel,
so the similarity between pixels can be measured by crosstating square windows. This is less
prone to errors than using pixel differencing and allowsmalization against illumination changes.

In a wide-baseline setup, however, large correlation wivalare especially affected by perspec-
tive distortions and occlusions. Thus, wide-baseline was$h[13, 1, 24, 23] tend to rely on very
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small correlation windows or revert to point-wise simitgrmeasures, which looses the discrimina-
tive power larger windows could provide. This loss can be gensated by using multiple [2] or
high-resolution [24] images. The latter is particularljeefive because areas that may appear uniform
at a small scale are often quite textured when imaged at arlamge. However, even then, lighting
changes remain difficult to handle. For example, [24] shaeegsilts either for wide baseline without
light changes, or with light changes but under a shorterliveese

As we will see, our feature descriptor reduces the need fylrdriresolution images and achieve
comparable results using less number of images. It does sorsidering large image patches while
remaining stable under perspective distortions. Earlgraaches to this problem relied on warping
the correlation windows [7]. However the warps were estaddtom a first reconstruction obtained
using classical windows, which is usually not practical ildevbaseline situations. By contrast, our
method does not rely on an initial reconstruction.

Local image descriptors have already been used in denséimgtaut to match only sparse pixels
that are feature points, in a more traditional manner [2h, 10§24, 26], these matched points are used
as anchors for computing the full reconstruction. [26] @ggtes the disparities of the matched feature
points to their neighbors, while, in a much safer way, [243hem to initialize an iterative estimation
of the depth maps.

Local descriptors are therefore proved their usefulnestemse matching. The first obstacle to
extending their use over all the pixels is the important cotaon time. We solve most of this problem
by convolving orientation maps, which can be computed véectvely in the dense case, to compute
the bin values of our local descriptor histograms.

The second obstacle is the weakness to occlusions: Using ilsrage patches gives its discrim-
inative power to our similarity measure but it can fail neaclading boundaries; a well researched
problem in the short-baseline case. For example, [12] adhptwindow for each pixel location. A first
reconstruction is estimated using a very small correlatiordow, each window is then expanded in
the direction that minimizes an appropriate criterion, #reprocess is iterated. However this method
is slow and may not converge towards a satisfying solutiosimpler approach is to compute, at each
pixel location, several correlation windows centered artbit, so that at least one of the windows does
not overlap with both foreground and background when closantoccluding boundary [10, 11]. A
unique value is then estimated as the minimum of the correipg correlation values. We incorporate
this idea into our measure in a similar technique in the sémsewe consider the distances between
local descriptors over different parts. However, we use Ehagorithm to choose the correct parts
instead of the minimal correlation value heuristic.

3 Our Local Descriptor

In this section, we first briefly describe SIFT [16] and GLOR]J1We then introduce our own DAISY
descriptor and discuss both its relationship with them asdrieater effectiveness for dense compu-
tations. Finally, we present experiments that demonsitateliability when matching images under
different varying conditions.

3.1 SIFT and GLOH

Before PCA dimensionality reduction, SIFT and GLOH are 3+€dgrams in which two dimensions
correspond to image spatial dimensions and the additiamartsion to the image gradient direction.
They are computed over local regions, usually centered atuife points but sometimes also densely
sampled for object recognition tasks [9, 15].
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Figure 2: Relationship between SIFT and DAISY. (a) SIFT is-B 3iistogram computed over a local
area where each pixel location contributes to bins depgnaimits location and the orientation of its
image gradient, the importance of the contribution beiragpprtional to the norm of the gradient. Each
gradient vector is spread ovex 2 x 2 bins to avoid boundary effects, and its contribution to daioh
is weighted by the distances between the pixel location hadbin boundaries. (b) DAISY computes
similar values but in a dense way. Each gradient vector adstributes to several of the elements
of the description vector, but the sum of the weighted cbations is computed by convolution for
better computation times. We first compute orientation nfiaga the original images, which are then
convolved to obtain the convolved orientation ma&psi. The values of th&z>: correspond to the
values in the SIFT bins, and will be used to build DAISY. By itliag the convolutions, th&> can
be obtained very efficiently.

Each pixel belonging to the local region contributes to tisédgram depending on its location in the
local region, and on the orientation and the norm of the ingagédient at its location: As depicted by
Fig. 2(a), when an image gradient vector computed at a pxetion is integrated to the 3D histogram,
its contribution is spread overx 2 x 2 = 8 bins to avoid boundary effects. More precisely, each bin
is incremented by the value of the gradient norm multipligcalweight inversely proportional to the
distances between the pixel location and the bin boundannekalso to the distance between the pixel
location and the one of the keypoint. As a result, each bitatos a weighted sum of the norms of the
image gradients around its center, where the weights rgugpend on the distance to the bin center.

3.2 Replacing Weighted Sums by Convolutions

In our descriptor, we replace the weighted sums of gradiernhe by the convolutions of the original
image with several oriented derivatives of Gaussian filétis large standard deviations. We will see
that this gives the same kind of invariance as the SIFT andl&hidtogram building, but much faster
for dense-matching purposes.

More specifically, we compute the

J’_
GE = Gy, * <§) (1)
0}

convolutions wheré-y, is a Gaussian kernel, andis the orientation of the derivative. We refer
to the convolution result&> asconvolved orientation maps. As we will detail below, we will build
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our descriptor by reading the values in the convolved oaigorh maps. We will refer to the oriented
derivatives of the imagé&, = (%)Jr asorientation maps.

To make the link with SIFT and GLOH, notice that each locatbthe convolved orientation maps
contains a value very similar to what a bin in SIFT or GLOH eoms$: a weighted sum computed over
a large area of gradient norms. The weights are slighthedsfit: We use a Gaussian kernel where
the weighting scheme of SIFT and GLOH corresponds to a kevitkla triangular shape since they
weight linearly.

The final values in these descriptors and ours will therefiatebe exactly equal; nevertheless, we
will capture a very similar behavior. Moreover, this giveswinsights on what makes SIFT work: The
Gaussian convolution simultaneously removes some nomkgaes some invariance to translation
to the computed values. This is also better than integrafj@vidkke computations of histograms [19]
in which all the gradient vectors contribute the same: Wewaaw efficiently reduce the influence of
gradient norms from distant locations.

Our primary motivation here is to reduce the computatioeglirements, since convolutions can
be implemented very efficiently especially when using Gaunsfilters, which are separable. Moreover,
we can compute the orientation maps for different scalemmatbst: Convolution with large Gaussian
kernel can indeed be obtained from several consecutiveotations with smaller kernels: If we have
already compute@>' we can efficiently computé&>2 with ¥, > 3, by convolvingG?Z?, since we

have: N N
G§2:G22* @ :GE*Gle* @ :Gz*Ggl,
do 0o
with 3 = /32 — 332,

3.3 TheDAISY Descriptor

We now give a more formal definition of oUDAISY descriptor. For a given input image, we first
compute eight orientation mafs,, one for each quantized direction, whékg(u, v) equals the image
gradient at locatioffu, v) for directiono if it is bigger than zero, else it is equal to zero. The reason f
this is to preserve the polarity of the intensity change.he@entation map is then convolved several
times with Gaussian kernels of differentvalues to have convolved orientation maps for different
scales. As mentioned above, this can be done efficiently ypating these convolutions recursively.
Fig. 2(b) summarizes the required computations.

As depicted by Fig. 3, at each pixel location, DAISY consadta vector made of values in the con-
volved orientation maps located on concentric circlesereat on the location, and where the amount
of Gaussian smoothing is proportional to the radius of theles.

Let hy(u, v) be the vector made of the values at locatjornv) in the orientation maps after con-
volution by a Gaussian kernel of standard deviadbn

hy(u,v) = [Glz(u,v),...,Gg(u,v)]T ,

whereG}, G¥, andG denote the:-convolved orientation maps. We normalize these vectothato
their norms are 1, and denote the normalized vecto&zb{ya, v). The normalization is performed in
each histogram independently to be able to represent tleéspiear occlusions as correct as possible.
If we were to normalize the descriptor as a whole, then therg®srs of the same point that is close
to an occlusion will be very different in two images.
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Figure 3: The DAISY descriptor. Each circle represents sreghere the radius is proportional to the
standard deviations of the Gaussian kernels and the '+'reigresents the locations where we sample
the convolved orientation maps center being a pixel locatithere we compute the descriptor. By
overlapping the regions we achieve smooth transitions é&tvithe regions and a degree of rotational
robustness. The radius of the outer regions are increadeavtban equal sampling of the rotational
axis which is necessary for robustness against rotation.

The full DAISY descriptorD(uq, vy) for location (ug, vy) is then defined as a concatenatiorhof
vectors, and can be written with a slight abuse of notation as

D(ug,v) =

hy, (uo, vo),

hy, (1 (uo, vo, R1)), -+ L, (L (uo, vo, Ry)),

hy, (1 (uo, vo, Ra)), - -+, g, (In(uo, vo, R2)), .
hy,, (i (ug, vo, R3)), -+, hy:, (I (uo, vo, R3)) :

wherel;(u, v, R) is the location with distancé from (u,v) in the direction given byj when the
directions are quantized iV values. In the experiments presented in this paper, weNuse 8
directions withR, = 2.5, R, = 7.5, R3 = 15 andX; = 2.55, ¥y = 7.65, X3 = 12.7. Our descriptor is
therefore made of + 8 x 3 x 8 = 200 values, extracted from 25 locations and 8 orientations.

We use a circular grid instead of SIFT’s regular one sinca# been shown to have better local-
ization properties [17]. In that sense, our descriptoreset to GLOH before PCA than to SIFT. Also,
the descriptor is naturally resistant to rotational pdrations as well by the use of isotropic Gaussian
kernels with a circular grid. The overlapping regions easaismooth changing descriptor along the
rotation axis and by increasing the overlap, we can furthenelase the robustness up to a certain point,
as we will show in the experiments below.

3.4 Empirical Evaluation

In this section, we present some of the tests we performedngpare the DAISY against SIFT and
correlation windows. We used 10 real images, applied thepective transformations, and tested the
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Figure 4. Comparing SIFT(red), Daisy(green), and Corn@ahdblue). In the plots, the horizontal axis
is the sweep range and the vertical axis is the inlier/authigo. (a) Changing the contrast by replacing
I by 17, with v ranging from0.1 to 1.3. SIFT and DAISY are unperturbed but correlation fails qlyick

(b) Rotating the images frort to 20 degrees. Since SIFT is computed with rotation invariance it
performs well. So does DAISY in the15° range because its circular grid and isotropic Gaussian
kernels also gives it rotation invariance. (c) Scaling thage fromb0% to 50% of their original sizes.

(d) Blurring the images by using Gaussian masks of variaanging from0 to 15. (e) Adding white
noise of variance ranging fromto 18.

descriptors at 600 point locations. We used a 128-point SI€Scriptor computed at a single scale
with rotation invariance enabled and correlation windoWsires3 x 3, 7 x 7, and15 x 15, always
picking the one that yields the best result. We ran DAISY \8Hibin histograms, 8-angular orientations
and 3-radial levels resulting in 25 regions and 200 vectz®.sThe vertical axis of the graph in Figure
4 show the inlier percent where we tried to match untranséofrimage pixels with transformed ones
over the whole transformed image. A match is assumed to belien if the matched pixel is within
V2 pixels of the correct one.

As shown in Table 1, our descriptor is much faster than SIFEnEhough it is slightly less robust,
it is still much better than correlation windows.

Image Size DAISY SIFT
800x600 5 252

1024x768 10 432
1290x960 13 651

Table 1. Computation Time Comparison (in seconds)



4 Occlusion Handling

To perform dense matching, we use DAISY to measure simdaribf locations across images that
we then feed to a graph-cut-based reconstruction metho#l].offp properly handle occlusions, we

incorporate an occlusion map, which is the counterpart @hikibility maps in other reconstruction

algorithms [13]. The reconstruction and occlusion map aterated by EM and we present a quick
formalization below.

We exploit the occlusion map to defibenary masks over our descriptors. We use them to avoid
integrating occluded parts in the similarity estimatiore Wroduce predefined masks that enforce the
spatial coherence of the occlusion map, and show they albdwmly for proper handling of occlusions,
but also to make the EM converge faster.

4.1 Formalization

Given a set of: calibrated images of the scene, we first compute our locarigsr for each image
as explained above. We denote the fields of descrifiddoy D,.,,. We then estimate the dense depth
mapZ for a given viewpoint by maximizing:

C = p(Z, O | Dl:n) X p(Dlzn | Zv O)p(z, O) . (2)

We introduced an occlusion map term that will be exploited below to estimate the similastibe-
tween image locations. As in [5], we assume some smoothmesiseodepth map, and also on our
occlusion map using a Laplacian distribution. For the daiteed posterior, we also assume indepen-
dence between pixel locations:

p(Di | 2,0) = []p (Dru(x) | 2,0) . ©)

Each termp (D1.,(x) | Z, O) of Eqg. 3 are estimated thanks to our descriptor. Becauseswigtor
considers relatively large regions, we introduce binargksacomputed from the occlusion mé@pas
explain below.

4.2 Using Masksover the Descriptor

Without occlusion-handling (D, .,(x) | Z, O) term of Eq. 3 would depend on distances of the form
|D;(M) —D;(M)||, whereD;(M) andD;(M) are the descriptors at locations obtained by projecting
the 3-D pointM defined by the locatior and the deptlZ(x) in the virtual view in image.

However, simply using the Euclidean distard®;(M) — D;(M)|| is not robust to partial occlu-
sions: Even for a good match, parts of the two descripgidpdM) andD,;(M) can be very different
when the projection oM is near an occluding boundary.

We therefore introduce binary mask#,,(x)} as the ones depicted in Fig. 5 that allow to take
into account only the visible parts when computing the dists between descriptors. Our descriptor
being built from 25 locations, these binary masks are defase2b-binary vectors.

We want the masks to depend on the current estimate for thesime mapO, and we tried three
different strategies: The simplest one depicted by Fig.&fasists in thresholding the current estimate
of the occlusion ma® at the locations used by the descriptor to obtain a singlarbimaskM . (x).
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Figure 5: Binary masks for occlusion handling. We use bimaagks over the descriptors to estimate
location similarities even near occlusion boundarieshla tigure, a black disk with a white circum-
ference corresponds to 1 and a white disks to 0. (a) We usecttieston map to define the masks;
however, considering only predefined masks (b) makes e&sgiitforce their spatial coherence and to
speed-up the convergence of EM estimation.

The two other strategies use the predefined masks depictétgb$(b) that have a high spatial
coherence. In the second strategy, each mask has a diffecd@bility estimated by considering the
average visible pixel numbef,,, and depth variance within the mask regiop,(Z):

1/ 1
pMn(x)|Z,0) = % (Um + W) (4)
whereY is a normalization factor. The last strategy is a more rddiession of the second strategy,
where we set the probability of the mask with the highestevalccording to Eq. 4 to 1 and others to 0.

From a probabilistic point of view, that simply means thattonputep (D;.,,(x) | Z, O) we con-
sider the following integration:

p<D1:n(X) ‘ Z, O) = (5)
>om P (D1n(x) | Z,0, M, (x)) p (Min(x) | Z,0) .

In the first and third strategies, only a single mask has agtitity p (M., (x) | Z, O) equal to 1, all
the other masks receive a null probability. In the secoratesgy, Eg. 5 is a mixture computed from
several masks.

The mask probabilities are re-estimated at each step ofthal@orithm. In our experiments, using
predefined masks resulted in more acceptable reconsimadiind the last strategy always resulted in
a much faster convergence towards a satisfying solutic tlaerefore, we use this one only. These
good performances over the other strategies can be exglhinthe fact that the chosen masks allow
to enforce the spatial consistency when comparing the igsrs.
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Figure 6: Results on low-resolution versions of the Rathiaages [24]. (a,b,c) Three input images of
Size768 x 512 instead oB072 x 2048. (d) Depth map computed using all three.

Finally, following [5], the termp (D.,,(x) | Z, O) of Eq. 3is takento beap (D(D1.,(x) | Z,0);0, \,,)
whereD is computed as

J

2(n — 2)! ¢
D D I I ©

i=1 j=i+1 \ k=1

2
n 25 M[k]HDEk] (X) o D[ff] (X)H

where M is thek™ element ofM, andD!* (M) the k™" histogramh in D;(M).

5 Results

To compare our method to Strecha’s [22], we ran our algorithnwo sets of his images, the Rathaus
sequence of Fig 6 and the Brussels sequence of Fig 7. In his ®trecha used very high resolution
3072 x 2048 images, which helps a lot because, at that resolution, dwempparently blank areas
exhibit usable texture. For example, on the walls, the ul&gties in the stone provide enough infor-
mation for matching. Unfortunately, such high-resolutimagery is not always available and we show
here that DAISY produces comparable results using muclcesti68 x 512 images.

Fig. 7 also highlights our effective occlusion handling. &dhusing only two images, the parts of
the church that are hidden by people in one image and not ltlee ate correctly detected as occluded.
When using three images, the algorithm returns an almdsddpith map that lets us erase the people
in the synthetic images we produce.
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Figure 7: Using low-resolution versions of the Brusselsge®[23]. (a,b,c) Thre®&8 x 510 versions

of the original2048 x 1360 images. (e,f) The depth-map computed using images (a) aise€n in the
perspective of image (c) and the corresponding re-syreéésmage. Note that the locations where
there are people in one image and not he other are correctieohas occlusions. (g,h) The depth-map
and synthetic image generated using all three images. Natdéhte previously occluded areas are now
filled and that the people have been erased from the synihetie.
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Figure 8: Depth maps and resynthesized images. In eachhrevirst two images are the inputs to our
stereo-matcher. The third one is not used to compute thé deptonly to validate the quality of the
fourth one, which is synthesized from the first two using t#d®Y depth map shown in fifth position.
The final image is the depth map computed using correlatitve. dccluded areas are overlaid in red
in the synthesized images and they’re black in the depthsmap

In Fig. 8 we show more disparity maps computed from sterexs paiose baseline is large enough
for standard correlation-based techniques fail and tHabésubstantial occlusions and lighting changes.
Our depth maps are correct—except at the detected locdtmsttusions where there is no depth—as
evidenced by the fact that we can use them to synthesizatiealew views, as would be seen from
a different perspective. To validate our approach, for eacyge pair, we use the perspective from a
third image and compare that image with the one we synthelizée first row, we expected to have
a descent result from the correlation approach. Howeveenwire inspected the input images more
closely, we noticed that the size of the objects in two inpusigles changes due to the rotation of the
camera and this small change plus the amount of low-textegidns becomes enough to disrupt cor-
relation. The most successful result for the correlationdeiv is achieved for image set 2. However,
even in this case there are problems on the torso of the tegllyamd constant intensity regions like
the lego blocks. In th8rd row, there is a significant light change in the input images @espite this,
DAISY manages to find a satisfactory result while correlafails.

6 Conclusion

In this paper, we introduced DAISY a new local descriptorjclhis inspired by earlier ones such
as SIFT and GLOH but can be computed much more efficiently émsd matching purposes. The
speed increase comes from replacing the weighted sums yske learlier descriptors by sums of
convolutions, which can be computed very quickly.

Although we do not explicitly handle scale and rotation imaace, DAISY retains good invariance
properties against these transformations, as well asagirdthange, blur, and additive noise. It there-
fore allows matching with baselines significantly greakart correlation-based techniques. In future
work, we will address the scale and rotation issue more tighty so that we can work with even
wider baselines.
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