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Abstract

In this paper, we introduce a local image descriptor that is inspired by earlier detectors such
as SIFT and GLOH but can be computed much more efficiently for dense wide-baseline matching
purposes. We will show that it retains their robustness to perspective distortion and light changes,
can be made to handle occlusions correctly, and runs fast on large images.

Our descriptor yields better wide-baseline performance than the commonly used correlation
windows, which are hard to tune. Too small, they do not bring enough information. Too large, they
become vulnerable to perspective variations and occlusion. Therefore, recent methods tend to favor
small correlation windows, or even individual pixel differencing and rely on global optimization
techniques such as graph-cuts to enforce spatial consistency. They are restricted to very textured or
high-resolution images, of which they typically need more than three.

Our descriptor overcomes these limitations and is robust torotation, perspective, scale, illumi-
nation changes, blur and sampling errors. We will show that it produces dense wide baseline re-
construction results that are comparable to the best current techniques using fewer lower-resolution
images.

1 Introduction

Dense short-baseline stereo matching is now well understood [21, 6]. In contrast, larger perspective
distortions and increased occluded areas make its wide-baseline counterpart much more challenging.
It is nevertheless worth addressing because wide-baselinematching can yield more accurate depth
estimates while requiring fewer images to reconstruct a complete scene.

Large correlation windows are not appropriate for wide-baseline matching because they are not
robust to perspective distortions and tend to straddle areas of different depths or partial occlusions in
an image. Thus, most researchers favor simple pixel differencing [20, 4, 13] or correlation over very
small windows [23]. They then rely on optimization techniques such as graph-cuts [13] or pde based
diffusion operators [24] to enforce spatial consistency. The drawback of using small image patches is
that reliable image information can only be obtained where the image texture is of sufficient quality.
Furthermore, the matching becomes very sensitive to light changes and repetitive patterns.
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Figure 1: Depth maps for view-based synthesis:Top row: Two 800 × 600 calibrated images we use
as input.Middle row: A third image and the depth map computed using only the first two, projected
in the referential of the third.Bottom row: On the left, image re-synthesized using the depth map and
the first two images. It is very similar to the original third image except at places where occlusions
were detected. On the right, depth map computed using correlation, which could not handle the large
perspective and contrast change between the two input images.
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An alternative would be to use local region descriptors suchas SIFT [16] or GLOH [17], which
have been designed for robustness to perspective and lighting changes and have proved successful for
sparse wide-baseline matching. They can be used to match larger image regions, even under severe
perspective distortion, and are less prone to errors in the presence of weak textures or repetitive patterns
because chances are better that at least part of the region can provide a reliable match. However, they
are also much more computationally demanding than simple correlation. Thus, for dense wide-baseline
matching purposes, they have so far only been used to match a few seed points [26] or to provide
constraints on the reconstruction [24].

In this paper, we introduce a new descriptor that is inspiredby SIFT and GLOH and retains their
robustness but can be effectively computed at every single image pixel. We then use it to perform
dense matching and view-based synthesis using stereo-pairs whose baseline is too large for standard
correlation-based techniques to work, as shown in Fig. 1. For example, on a standard laptop, it takes
about 5 seconds to perform the computation using our descriptor over a 800×600 image, whereas it
takes over 250 seconds using SIFT. Furthermore, it gives visually very similar results as one of the best
current techniques [23] we know of on difficult examples using fewer lower-resolution images as will
be discussed in the result section.

To be more specific, SIFT and GLOH owe much of their strength totheir use of gradient orientation
histograms, which are relatively robust to distortions. The key insight of this paper is that computing
the bin values of the histograms can be achieved by convolving orientation maps, which can be done
very effectively in the dense case. This lets us match relatively large patches –usually 31×31 and
sometimes 73×73 patches for very high resolution images– at an acceptablecomputational cost. This
improves robustness over techniques that use smaller patches in unoccluded areas, but could bring
its own set of problems if occlusion boundaries were not handled properly. We address this issue by
considering several different masks at each pixel locationand chose the best. This is inspired by the
earlier works of [10, 12, 11] where multiple or adaptive correlation windows are used. However, we
formulate the problem in a more formal EM framework and achieve more refined occlusion estimates
compared to the case where the full descriptor is used without any EM treatment.

After discussing related work in Section 2, we introduce ournew local descriptor in and present
a very efficient way to compute it in Section 3. In Section 3.4,we test its behavior under various
transformations and compare it to that of SIFT [16] and of correlation windows of different sizes.
Finally, we present our dense reconstruction results and compare them with those of [23] in Section 5.

2 Related Work

Even though multi-view 3–D surface reconstruction has beeninvestigated for many decades [21, 6], it
is still far from being completely solved because many sources of errors such as perspective distortion,
occlusions, and textureless areas. Most state-of-the-artmethods rely on first using local measures to
estimate the similarity of pixels across images and then on imposing global shape constraints using
dynamic programming [3], level sets [8], space carving [14], graph-cuts [20, 5, 13], PDE [1, 24], or
EM [23]. In this paper, we do not focus on the method used to impose the global constraints and use a
standard one [5]. Instead, we concentrate on the similaritymeasure all these algorithms rely on.

In a short baseline setup, the reconstructed surfaces are often assumed to be nearly fronto-parallel,
so the similarity between pixels can be measured by cross-correlating square windows. This is less
prone to errors than using pixel differencing and allows normalization against illumination changes.

In a wide-baseline setup, however, large correlation windows are especially affected by perspec-
tive distortions and occlusions. Thus, wide-baseline methods [13, 1, 24, 23] tend to rely on very
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small correlation windows or revert to point-wise similarity measures, which looses the discrimina-
tive power larger windows could provide. This loss can be compensated by using multiple [2] or
high-resolution [24] images. The latter is particularly effective because areas that may appear uniform
at a small scale are often quite textured when imaged at a larger one. However, even then, lighting
changes remain difficult to handle. For example, [24] shows results either for wide baseline without
light changes, or with light changes but under a shorter baseline.

As we will see, our feature descriptor reduces the need for higher-resolution images and achieve
comparable results using less number of images. It does so byconsidering large image patches while
remaining stable under perspective distortions. Earlier approaches to this problem relied on warping
the correlation windows [7]. However the warps were estimated from a first reconstruction obtained
using classical windows, which is usually not practical in wide baseline situations. By contrast, our
method does not rely on an initial reconstruction.

Local image descriptors have already been used in dense matching but to match only sparse pixels
that are feature points, in a more traditional manner [25, 16]. In [24, 26], these matched points are used
as anchors for computing the full reconstruction. [26] propagates the disparities of the matched feature
points to their neighbors, while, in a much safer way, [24] uses them to initialize an iterative estimation
of the depth maps.

Local descriptors are therefore proved their usefulness indense matching. The first obstacle to
extending their use over all the pixels is the important computation time. We solve most of this problem
by convolving orientation maps, which can be computed very effectively in the dense case, to compute
the bin values of our local descriptor histograms.

The second obstacle is the weakness to occlusions: Using large image patches gives its discrim-
inative power to our similarity measure but it can fail near occluding boundaries; a well researched
problem in the short-baseline case. For example, [12] adapts the window for each pixel location. A first
reconstruction is estimated using a very small correlationwindow, each window is then expanded in
the direction that minimizes an appropriate criterion, andthe process is iterated. However this method
is slow and may not converge towards a satisfying solution. Asimpler approach is to compute, at each
pixel location, several correlation windows centered around it, so that at least one of the windows does
not overlap with both foreground and background when close to an occluding boundary [10, 11]. A
unique value is then estimated as the minimum of the corresponding correlation values. We incorporate
this idea into our measure in a similar technique in the sensethat we consider the distances between
local descriptors over different parts. However, we use an EM algorithm to choose the correct parts
instead of the minimal correlation value heuristic.

3 Our Local Descriptor

In this section, we first briefly describe SIFT [16] and GLOH [18]. We then introduce our own DAISY
descriptor and discuss both its relationship with them and its greater effectiveness for dense compu-
tations. Finally, we present experiments that demonstrateits reliability when matching images under
different varying conditions.

3.1 SIFT and GLOH

Before PCA dimensionality reduction, SIFT and GLOH are 3–D histograms in which two dimensions
correspond to image spatial dimensions and the additional dimension to the image gradient direction.
They are computed over local regions, usually centered on feature points but sometimes also densely
sampled for object recognition tasks [9, 15].
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Figure 2: Relationship between SIFT and DAISY. (a) SIFT is a 3–D histogram computed over a local
area where each pixel location contributes to bins depending on its location and the orientation of its
image gradient, the importance of the contribution being proportional to the norm of the gradient. Each
gradient vector is spread over2× 2× 2 bins to avoid boundary effects, and its contribution to eachbin
is weighted by the distances between the pixel location and the bin boundaries. (b) DAISY computes
similar values but in a dense way. Each gradient vector also contributes to several of the elements
of the description vector, but the sum of the weighted contributions is computed by convolution for
better computation times. We first compute orientation mapsfrom the original images, which are then
convolved to obtain the convolved orientation mapsG

Σi

o . The values of theGΣi

o correspond to the
values in the SIFT bins, and will be used to build DAISY. By chaining the convolutions, theGΣi

o can
be obtained very efficiently.

Each pixel belonging to the local region contributes to the histogram depending on its location in the
local region, and on the orientation and the norm of the imagegradient at its location: As depicted by
Fig. 2(a), when an image gradient vector computed at a pixel location is integrated to the 3D histogram,
its contribution is spread over2 × 2 × 2 = 8 bins to avoid boundary effects. More precisely, each bin
is incremented by the value of the gradient norm multiplied by a weight inversely proportional to the
distances between the pixel location and the bin boundaries, and also to the distance between the pixel
location and the one of the keypoint. As a result, each bin contains a weighted sum of the norms of the
image gradients around its center, where the weights roughly depend on the distance to the bin center.

3.2 Replacing Weighted Sums by Convolutions

In our descriptor, we replace the weighted sums of gradient norms by the convolutions of the original
image with several oriented derivatives of Gaussian filterswith large standard deviations. We will see
that this gives the same kind of invariance as the SIFT and GLOH histogram building, but much faster
for dense-matching purposes.

More specifically, we compute the

G
Σ
o = GΣ ∗

(
∂I

∂o

)+

(1)

convolutions whereGΣ is a Gaussian kernel, ando is the orientation of the derivative. We refer
to the convolution resultsGΣ

o asconvolved orientation maps. As we will detail below, we will build
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our descriptor by reading the values in the convolved orientation maps. We will refer to the oriented
derivatives of the imageGo =

(
∂I

∂o
)+ asorientation maps.

To make the link with SIFT and GLOH, notice that each locationof the convolved orientation maps
contains a value very similar to what a bin in SIFT or GLOH contains: a weighted sum computed over
a large area of gradient norms. The weights are slightly different: We use a Gaussian kernel where
the weighting scheme of SIFT and GLOH corresponds to a kernelwith a triangular shape since they
weight linearly.

The final values in these descriptors and ours will thereforenot be exactly equal; nevertheless, we
will capture a very similar behavior. Moreover, this gives new insights on what makes SIFT work: The
Gaussian convolution simultaneously removes some noise, and gives some invariance to translation
to the computed values. This is also better than integral image-like computations of histograms [19]
in which all the gradient vectors contribute the same: We canvery efficiently reduce the influence of
gradient norms from distant locations.

Our primary motivation here is to reduce the computational requirements, since convolutions can
be implemented very efficiently especially when using Gaussian filters, which are separable. Moreover,
we can compute the orientation maps for different scales at low cost: Convolution with large Gaussian
kernel can indeed be obtained from several consecutive convolutions with smaller kernels: If we have
already computedGΣ1

o we can efficiently computeGΣ2

o with Σ2 > Σ1 by convolvingG
Σ1

o , since we
have:

G
Σ2

o = GΣ2
∗

(
∂I

∂o

)+

= GΣ ∗ GΣ1
∗

(
∂I

∂o

)+

= GΣ ∗ G
Σ1

o ,

with Σ =
√

Σ2
2 − Σ2

1.

3.3 The DAISY Descriptor

We now give a more formal definition of ourDAISY descriptor. For a given input image, we first
compute eight orientation mapsGo, one for each quantized direction, whereGo(u, v) equals the image
gradient at location(u, v) for directiono if it is bigger than zero, else it is equal to zero. The reason for
this is to preserve the polarity of the intensity change. Each orientation map is then convolved several
times with Gaussian kernels of differentΣ values to have convolved orientation maps for different
scales. As mentioned above, this can be done efficiently by computing these convolutions recursively.
Fig. 2(b) summarizes the required computations.

As depicted by Fig. 3, at each pixel location, DAISY consistsof a vector made of values in the con-
volved orientation maps located on concentric circles centered on the location, and where the amount
of Gaussian smoothing is proportional to the radius of the circles.

Let hΣ(u, v) be the vector made of the values at location(u, v) in the orientation maps after con-
volution by a Gaussian kernel of standard deviationΣ:

hΣ(u, v) =
[
G

Σ
1 (u, v), . . . ,GΣ

8 (u, v)
]⊤

,

whereGΣ
1 , GΣ

2 , andG
Σ
8 denote theΣ-convolved orientation maps. We normalize these vectors sothat

their norms are 1, and denote the normalized vectors byh̃Σ(u, v). The normalization is performed in
each histogram independently to be able to represent the pixels near occlusions as correct as possible.
If we were to normalize the descriptor as a whole, then the descriptors of the same point that is close
to an occlusion will be very different in two images.
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direction−j

Figure 3: The DAISY descriptor. Each circle represents a region where the radius is proportional to the
standard deviations of the Gaussian kernels and the ’+’ signrepresents the locations where we sample
the convolved orientation maps center being a pixel location where we compute the descriptor. By
overlapping the regions we achieve smooth transitions between the regions and a degree of rotational
robustness. The radius of the outer regions are increased tohave an equal sampling of the rotational
axis which is necessary for robustness against rotation.

The full DAISY descriptorD(u0, v0) for location(u0, v0) is then defined as a concatenation ofh̃

vectors, and can be written with a slight abuse of notation as:

D(u0, v0) =[
h̃
⊤

Σ1
(u0, v0),

h̃
⊤

Σ1
(l1(u0, v0, R1)), · · · , h̃⊤

Σ1
(lN(u0, v0, R1)),

h̃
⊤

Σ2
(l1(u0, v0, R2)), · · · , h̃⊤

Σ2
(lN(u0, v0, R2)),

h̃
⊤

Σ3
(l1(u0, v0, R3)), · · · , h̃⊤

Σ3
(lN(u0, v0, R3))

]⊤
,

where lj(u, v, R) is the location with distanceR from (u, v) in the direction given byj when the
directions are quantized inN values. In the experiments presented in this paper, we useN = 8
directions withR1 = 2.5, R2 = 7.5, R3 = 15 andΣ1 = 2.55, Σ2 = 7.65, Σ3 = 12.7. Our descriptor is
therefore made of8 + 8 × 3 × 8 = 200 values, extracted from 25 locations and 8 orientations.

We use a circular grid instead of SIFT’s regular one since it has been shown to have better local-
ization properties [17]. In that sense, our descriptor is closer to GLOH before PCA than to SIFT. Also,
the descriptor is naturally resistant to rotational perturbations as well by the use of isotropic Gaussian
kernels with a circular grid. The overlapping regions ensure a smooth changing descriptor along the
rotation axis and by increasing the overlap, we can further increase the robustness up to a certain point,
as we will show in the experiments below.

3.4 Empirical Evaluation

In this section, we present some of the tests we performed to compare the DAISY against SIFT and
correlation windows. We used 10 real images, applied them respective transformations, and tested the
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Figure 4: Comparing SIFT(red), Daisy(green), and Correlation(blue). In the plots, the horizontal axis
is the sweep range and the vertical axis is the inlier/outlier ratio. (a) Changing the contrast by replacing
I by Iγ, with γ ranging from0.1 to 1.3. SIFT and DAISY are unperturbed but correlation fails quickly.
(b) Rotating the images from0 to 20 degrees. Since SIFT is computed with rotation invariance it
performs well. So does DAISY in the±15 ◦ range because its circular grid and isotropic Gaussian
kernels also gives it rotation invariance. (c) Scaling the image from90% to 50% of their original sizes.
(d) Blurring the images by using Gaussian masks of variance ranging from0 to 15. (e) Adding white
noise of variance ranging from1 to 18.

descriptors at 600 point locations. We used a 128-point SIFTdescriptor computed at a single scale
with rotation invariance enabled and correlation windows of sizes3 × 3, 7 × 7, and15 × 15, always
picking the one that yields the best result. We ran DAISY with8-bin histograms, 8-angular orientations
and 3-radial levels resulting in 25 regions and 200 vector size. The vertical axis of the graph in Figure
4 show the inlier percent where we tried to match untransformed image pixels with transformed ones
over the whole transformed image. A match is assumed to be an inlier if the matched pixel is within√

2 pixels of the correct one.
As shown in Table 1, our descriptor is much faster than SIFT. Even though it is slightly less robust,

it is still much better than correlation windows.

Image Size DAISY SIFT
800x600 5 252
1024x768 10 432
1290x960 13 651

Table 1: Computation Time Comparison (in seconds)
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4 Occlusion Handling

To perform dense matching, we use DAISY to measure similarities of locations across images that
we then feed to a graph-cut-based reconstruction method of [5]. To properly handle occlusions, we
incorporate an occlusion map, which is the counterpart of the visibility maps in other reconstruction
algorithms [13]. The reconstruction and occlusion map are estimated by EM and we present a quick
formalization below.

We exploit the occlusion map to definebinary masks over our descriptors. We use them to avoid
integrating occluded parts in the similarity estimation. We introduce predefined masks that enforce the
spatial coherence of the occlusion map, and show they allow not only for proper handling of occlusions,
but also to make the EM converge faster.

4.1 Formalization

Given a set ofn calibrated images of the scene, we first compute our local descriptor for each image
as explained above. We denote the fields of descriptorsD by D1:n. We then estimate the dense depth
mapZ for a given viewpoint by maximizing:

ζ = p(Z,O | D1:n) ∝ p(D1:n | Z,O)p(Z,O) . (2)

We introduced an occlusion mapO term that will be exploited below to estimate the similarities be-
tween image locations. As in [5], we assume some smoothness on the depth map, and also on our
occlusion map using a Laplacian distribution. For the data driven posterior, we also assume indepen-
dence between pixel locations:

p(D1:n | Z,O) =
∏

x

p
(
D1:n(x)

∣∣∣ Z,O
)

. (3)

Each termp (D1:n(x) | Z,O) of Eq. 3 are estimated thanks to our descriptor. Because the descriptor
considers relatively large regions, we introduce binary masks computed from the occlusion mapO as
explain below.

4.2 Using Masks over the Descriptor

Without occlusion-handlingp (D1:n(x) | Z,O) term of Eq. 3 would depend on distances of the form
‖Di(M)−Dj(M)‖, whereDi(M) andDj(M) are the descriptors at locations obtained by projecting
the 3–D pointM defined by the locationx and the depthZ(x) in the virtual view in imagei.

However, simply using the Euclidean distance‖Di(M) − Dj(M)‖ is not robust to partial occlu-
sions: Even for a good match, parts of the two descriptorsDi(M) andDj(M) can be very different
when the projection ofM is near an occluding boundary.

We therefore introduce binary masks{Mm(x)} as the ones depicted in Fig. 5 that allow to take
into account only the visible parts when computing the distances between descriptors. Our descriptor
being built from 25 locations, these binary masks are definedas 25-binary vectors.

We want the masks to depend on the current estimate for the occlusion mapO, and we tried three
different strategies: The simplest one depicted by Fig. 5(a) consists in thresholding the current estimate
of the occlusion mapO at the locations used by the descriptor to obtain a single binary maskMk(x).
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(a) (b)

Figure 5: Binary masks for occlusion handling. We use binarymasks over the descriptors to estimate
location similarities even near occlusion boundaries. In this figure, a black disk with a white circum-
ference corresponds to 1 and a white disks to 0. (a) We use the occlusion map to define the masks;
however, considering only predefined masks (b) makes easy itto enforce their spatial coherence and to
speed-up the convergence of EM estimation.

The two other strategies use the predefined masks depicted byFig. 5(b) that have a high spatial
coherence. In the second strategy, each mask has a differentprobability estimated by considering the
average visible pixel number,vm, and depth variance within the mask region,σm(Z):

p(Mm(x)|Z,O) =
1

Y

(
vm +

1

σ2
m(Z) + 1

)
(4)

whereY is a normalization factor. The last strategy is a more radical version of the second strategy,
where we set the probability of the mask with the highest value according to Eq. 4 to 1 and others to 0.

From a probabilistic point of view, that simply means that tocomputep (D1:n(x) | Z,O) we con-
sider the following integration:

p (D1:n(x) | Z,O) =∑
m p (D1:n(x) | Z,O,Mm(x)) p (Mm(x) | Z,O) .

(5)

In the first and third strategies, only a single mask has a probability p (Mm(x) | Z,O) equal to 1, all
the other masks receive a null probability. In the second strategy, Eq. 5 is a mixture computed from
several masks.

The mask probabilities are re-estimated at each step of the EM algorithm. In our experiments, using
predefined masks resulted in more acceptable reconstructions and the last strategy always resulted in
a much faster convergence towards a satisfying solution, and therefore, we use this one only. These
good performances over the other strategies can be explained by the fact that the chosen masks allow
to enforce the spatial consistency when comparing the descriptors.
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(a) (b)

(c) (d)

Figure 6: Results on low-resolution versions of the Rathausimages [24]. (a,b,c) Three input images of
size768 × 512 instead of3072 × 2048. (d) Depth map computed using all three.

Finally, following [5], the termp (D1:n(x) | Z,O) of Eq. 3 is taken to beLap (D(D1:n(x) | Z,O); 0, λm)
whereD is computed as

2(n − 2)!

n!

n∑

i=1

n∑

j=i+1

√√√√√
25∑

k=1

M[k]

∥∥∥D
[k]
i (x) − D

[k]
j (x)

∥∥∥
2

∑25
q=1 M[q]

, (6)

whereM[k] is thekth element ofM, andD
[k]
i (M) thekth histogramh̃ in Di(M).

5 Results

To compare our method to Strecha’s [22], we ran our algorithmon two sets of his images, the Rathaus
sequence of Fig 6 and the Brussels sequence of Fig 7. In his work, Strecha used very high resolution
3072 × 2048 images, which helps a lot because, at that resolution, even the apparently blank areas
exhibit usable texture. For example, on the walls, the irregularities in the stone provide enough infor-
mation for matching. Unfortunately, such high-resolutionimagery is not always available and we show
here that DAISY produces comparable results using much reduced768 × 512 images.

Fig. 7 also highlights our effective occlusion handling. When using only two images, the parts of
the church that are hidden by people in one image and not the other are correctly detected as occluded.
When using three images, the algorithm returns an almost full depth map that lets us erase the people
in the synthetic images we produce.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Using low-resolution versions of the Brussels images [23]. (a,b,c) Three768 × 510 versions
of the original2048×1360 images. (e,f) The depth-map computed using images (a) and (b) seen in the
perspective of image (c) and the corresponding re-synthesized image. Note that the locations where
there are people in one image and not he other are correctly marked as occlusions. (g,h) The depth-map
and synthetic image generated using all three images. Note that the previously occluded areas are now
filled and that the people have been erased from the syntheticimage.
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Figure 8: Depth maps and resynthesized images. In each row, the first two images are the inputs to our
stereo-matcher. The third one is not used to compute the depth but only to validate the quality of the
fourth one, which is synthesized from the first two using the DAISY depth map shown in fifth position.
The final image is the depth map computed using correlation. The occluded areas are overlaid in red
in the synthesized images and they’re black in the depth-maps.

In Fig. 8 we show more disparity maps computed from stereo pairs whose baseline is large enough
for standard correlation-based techniques fail and that exhibit substantial occlusions and lighting changes.
Our depth maps are correct—except at the detected location of occlusions where there is no depth—as
evidenced by the fact that we can use them to synthesize realistic new views, as would be seen from
a different perspective. To validate our approach, for eachimage pair, we use the perspective from a
third image and compare that image with the one we synthesize. In the first row, we expected to have
a descent result from the correlation approach. However, when we inspected the input images more
closely, we noticed that the size of the objects in two input images changes due to the rotation of the
camera and this small change plus the amount of low-texturedregions becomes enough to disrupt cor-
relation. The most successful result for the correlation window is achieved for image set 2. However,
even in this case there are problems on the torso of the teddy bear and constant intensity regions like
the lego blocks. In the3rd row, there is a significant light change in the input images and despite this,
DAISY manages to find a satisfactory result while correlation fails.

6 Conclusion

In this paper, we introduced DAISY a new local descriptor, which is inspired by earlier ones such
as SIFT and GLOH but can be computed much more efficiently for dense matching purposes. The
speed increase comes from replacing the weighted sums used by the earlier descriptors by sums of
convolutions, which can be computed very quickly.

Although we do not explicitly handle scale and rotation invariance, DAISY retains good invariance
properties against these transformations, as well as contrast change, blur, and additive noise. It there-
fore allows matching with baselines significantly greater than correlation-based techniques. In future
work, we will address the scale and rotation issue more thoroughly so that we can work with even
wider baselines.
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