1 Computation of homography

In the computation of a homography from (finite) point matches, we can write the vector equation \(X'_i \times (HX_i) = 0 \) as two independent linear equations in the parameters \(h = (H_{11} \ H_{12} \ldots H_{33}) \) of \(H \):

\[
\begin{pmatrix}
 x_i & y_i & 1 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{pmatrix}
\begin{pmatrix}
 h_1 \\
 h_2 \\
 \vdots \\
 h_9
\end{pmatrix}
= 0.
\]

From 4 point matches, we get an \(8 \times 9 \) system in \(h \), so \(h \) is a non-null vector of the kernel of the stacked matrix \(A \). There seems to be always a unique solution but obviously there are degenerate situations. The following questions examine these degeneracies.

1. Explain why there is no solution if \(X_1 = X_2 \) and points \(X'_1 \) and \(X'_2 \) are distinct.

2. By examining the structure of the matrix \(A \), explain why there is no unique solution if the points \(X_1, X_2 \) and \(X_3 \) are distinct but aligned.

3. Show the form of the homography matrix \(H \) keeping fixed all points of line \(y = 0 \) and also the point \((0, 1)\) of Euclidean plane. Explain why it is a 1-parameter family of homographies.

2 Sampson error for fundamental matrix

We recall that the Sampson error \(\epsilon_S(X) \) for a given geometric model, an approximation of the geometric error based on the algebraic error \(\epsilon(X) \), can be written:

\[
\epsilon_S = \epsilon^T (JJ^T)^{-1} \epsilon
\]
with \(J \) the matrix of partial derivatives (Jacobian matrix) of \(\epsilon \) as a function of data point \(X \). This exercise computes the formula of Sampson error for fundamental matrix \(F \).

The algebraic error is \(P^T F P = 0 \) with \(P = (x \ y \ 1)^T \) and \(P' = (x' \ y' \ 1)^T \).

1. Compute \(J \) at point \(X = (x \ y \ x' \ y') \).

2. Write formula for Sampson error associated to \(F \).

3. Discuss its relation to geometric error.

3 Recovery of projection matrices from \(F \)

From \(P \) and \(P' \), 3 \(\times \) 4 projection matrices in left and right images, we can compute \(F \), the fundamental matrix. The goal of this exercise is to recover all possible pairs of matrices \((P,P')\) from a given \(F \). We note \(e' \) the epipole in right image \((F^T e' = 0)\).

1. Show that if \(P = (I|0) \) and \(P' = ([e']_\times F|x') \), then \(S = P'^T F P \) is skew-symmetric \((X^T S X = 0 \text{ for all } X)\).

2. Deduce that the above pair \((P,P')\) gives rise to \(F \). Why is the right camera of this particular solution not a pinhole camera?

3. Show that if \(P = (I|0) \) and \(P' = (A|a) \) (with \(A \) a 3 \(\times \) 3 matrix and \(a \) a 3-vector), then \(F = [a]_\times A \).

4. Suppose \(F = [a]_\times A = [a']_\times A' \). Prove that there is some \(\lambda \neq 0 \) and some 3-vector \(v \) such that
 \[
 a' = \lambda a \text{ and } \lambda A' = A + av^T.
 \]

5. Prove that if \(P = (I|0) \), then \(P' = ([e']_\times F + e'v^T|\lambda e') \) with \(\lambda \neq 0 \) and \(v \) a 3-vector.

6. Explain why if the pair \((P,P')\) yields \(F \) then so does \((PH,P'H)\) for any 4 \(\times \) 4 matrix \(H \), then show that the general solution is such that \(P = (P_{3\times3}|P_4) \) with \(P_{3\times3} \) invertible, and
 \[
 P' = ([e']_\times F + e'v^T)P + e'w^T
 \]
 with \(w \) a 4-vector such that
 \[
 \begin{pmatrix} P \\ w^T \end{pmatrix}
 \]
 be invertible.
4 Feature detection and description

1. Between a 90° corner and a 45° corner, which one has the strongest response according to the Harris-Stephens criterion, and why?

To answer this question, you may simply compare the case of the central point in images \(I \) and \(I' \) defined by:

\[
I = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \quad \quad \quad I' = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

As indicated in the lecture on the Harris corner detector, directional derivatives can be computed convoluting respectively with \([-1 0 1]\) and \([-1 0 1]^T\).

You may restrict yourself to a derivative Gaussian, and forget about the integration Gaussian. To simplify calculations, you may also use an approximate Gaussian kernel defined as:

\[
g = \frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]

2. Does the answer differ if you consider the corner strength as defined by Brown et al. (2005), i.e., the harmonic mean of the eigenvalues?

3. Let \(x_1, x_2, x_3 \) be detected SIFT points in image \(I \), \(x'_1 \) be a detected SIFT points in image \(I' \) and \(v_1, v_2, v_3, v'_1 \) be the corresponding SIFT descriptors. Assume that \(\|v_1 - v_2\| = 0.1 \) and \(\|v_1 - v_3\| = 0.11 \). What can be said of a possible match between \(x_1 \) and \(x'_1 \)?

5 Graph cuts

1. What is the minimal cut of the following graph, and why?
2. When using a graph cut for estimating a disparity map as explained in the course, suppose you use a zero-mean normalized sum of square differences (E_{ZNSSD}) rather than a zero-mean normalized cross correlation (E_{ZNCC}). Has anything to be changed in edge weight definition?