3D Computer Vision - Final exam (duration: 2h)

P. Monasse

November 16, 2021

The exercises are independent. You can choose to answer in French or English, at your convenience.

1 Transfer of epipolar lines

We consider a stereo image pair linked by the epipolar constraint $x^{\top}Fx' = 0$ with epipoles e_L and e_R : $F^{\top}e_L = Fe_R = 0$.

- 1. Remind the definition of an epipolar line.
- 2. Explain geometrically why for any point x on a given left epipolar line ℓ_L , its homologous point is on a right epipolar line ℓ_R independent on the choice of x. This shows there is a function H mapping left epipolar lines ℓ_L to their corresponding right epipolar line ℓ_R . We show in the next questions that H is not unique, but that most are homographies:

$$H(v) = F^{\top}[e_L]_{\times} + v e_L^{\top},\tag{1}$$

with $v \in \mathbb{R}^3$.

- 3. Show that $x = e_L \times \ell_L$ is a point on epipolar line ℓ_L . Using this point, show that for any v in (1), $H(v)\ell_L = \ell_R$.
- 4. Let H_0 be a homography mapping left epipolar lines to the corresponding right epipolar lines. Show that there is some scalar λ such that

$$\lambda F^{\top} = H_0[e_L]_{\times}. \tag{2}$$

(Consider the mapping of any $x \in \mathbb{R}^3$ through each member of this equation)

5. Show then that up to scale

$$H_0 = H(-\frac{1}{\lambda}H_o e_L). \tag{3}$$

The remaining questions prove that H(v) is a homography if and only if $v^{\top}e_R \neq 0$.

- 6. Consider two independent vectors v_1 and v_2 orthogonal to e_L . Show that $e_L \times v_1$ and $e_L \times v_2$ are two distinct left epipolar lines.
- 7. Deduce that $H(v)v_1$ and $H(v)v_2$ are two distinct right epipolar lines.
- 8. Show that $H(v)v_1 \times H(v)v_2 = e_R$ up to scale.
- 9. Show that $H(v)e_L$ is in the span of vectors $H(v)v_1$ and $H(v)v_2$ if and only if $v^Te_R = 0$.
- 10. Show that H(v) is a homography if and only if $(H(v)e_L, H(v)v_1, H(v)v_2)$ is a basis.
- 11. Conclude.

2 Pose estimation with relative depth priors

Some magical deep-learning based methods can achieve the impossible: infer the depth of pixels in a single image, up to an unknown global scale s.

Stereo pair with estimated relative depth maps.

Homography in Question 18.

12. Writing $p_1 = (x_1, y_1, 1)^{\top}$ and $p_2 = (x_2, y_2, 1)^{\top}$ matching points in a stereo pair, with relative depth d_1 and d_2 (up to scale factors s_1 and s_2), explain why they are linked through

$$s_2 d_2 p_2 = s_1 d_1 R p_1 + t, (4)$$

with R and t the relative rotation and translation between the two views.

- 13. Write 3 linear equations satisified by the following 13 coefficients of a vector x composed of: 9 unknowns from s_1R , 3 from t and s_2 .
- 14. Assuming 4 or more matching pairs (p_1, p_2) are known, what is the procedure to recover R, t, s_1 and s_2 ?
- 15. Show that we can write six quadratic polynomial constraint equations involving the coefficients of a 3×3 matrix to be of the form $s_1 R$.
- 16. Assuming only two matching pairs (p_1, p_2) are given, explain how x can be written as a linear combination of 7 orthonormal vectors that we can compute. Show that in theory we are able to recover x up to some scale.¹
- 17. Assume that we have only relative depth prior for the first image, not the second one, and that three matching pairs (p_1, p_2) are available.
 - (a) For each pair, write two linear equations involving y, the vector composed of the 12 first coefficients of x (excluding s_2).
 - (b) Explain how y can be written as a linear combination of 6 orthonormal vectors that we can compute.
 - (c) Show that in theory we are able to recover y up to some scale.²
- 18. Suppose we know three pairs (p_1^i, p_2^i) with their relative depths d_1^i and d_2^i .
 - (a) Justify that points on the plane spanned by $\{p_1^i\}$ are related to points on the plane spanned by $\{p_2^i\}$ through a homography H.
 - (b) Show the centroid of $\{p_1^i\}$ is mapped by H to the centroid of $\{p_2^i\}$.
 - (c) Deduce that the homography H can be computed.
- 19. For each of the above situations, propose an algorithm to recover (R, t) or H from the stereo pair with the estimated relative depths. How is the relative depth useful and how can it lead to faster estimation?

¹More precisely, x is among a set of up to 16 possible solutions, up to scale.

 $^{^{2}}$ In this case, there are up to 8 solutions.