3D Computer Vision - Final exam (duration: 2 h)

P. Monasse

November 16, 2021

The exercises are independent. You can choose to answer in French or English, at your convenience.

1 Transfer of epipolar lines

We consider a stereo image pair linked by the epipolar constraint $x^{\top} F x^{\prime}=0$ with epipoles e_{L} and $e_{R}: F^{\top} e_{L}=$ $F e_{R}=0$.

1. Remind the definition of an epipolar line.
2. Explain geometrically why for any point x on a given left epipolar line ℓ_{L}, its homologous point is on a right epipolar line ℓ_{R} independent on the choice of x. This shows there is a function H mapping left epipolar lines ℓ_{L} to their corresponding right epipolar line ℓ_{R}. We show in the next questions that H is not unique, but that most are homographies:

$$
\begin{equation*}
H(v)=F^{\top}\left[e_{L}\right]_{\times}+v e_{L}^{\top} \tag{1}
\end{equation*}
$$

with $v \in \mathbb{R}^{3}$.
3. Show that $x=e_{L} \times \ell_{L}$ is a point on epipolar line ℓ_{L}. Using this point, show that for any v in $(1), H(v) \ell_{L}=\ell_{R}$.
4. Let H_{0} be a homography mapping left epipolar lines to the corresponding right epipolar lines. Show that there is some scalar λ such that

$$
\begin{equation*}
\lambda F^{\top}=H_{0}\left[e_{L}\right]_{\times} \tag{2}
\end{equation*}
$$

(Consider the mapping of any $x \in \mathbb{R}^{3}$ through each member of this equation)
5. Show then that up to scale

$$
\begin{equation*}
H_{0}=H\left(-\frac{1}{\lambda} H_{o} e_{L}\right) \tag{3}
\end{equation*}
$$

The remaining questions prove that $H(v)$ is a homography if and only if $v^{\top} e_{R} \neq 0$.
6. Consider two independent vectors v_{1} and v_{2} orthogonal to e_{L}. Show that $e_{L} \times v_{1}$ and $e_{L} \times v_{2}$ are two distinct left epipolar lines.
7. Deduce that $H(v) v_{1}$ and $H(v) v_{2}$ are two distinct right epipolar lines.
8. Show that $H(v) v_{1} \times H(v) v_{2}=e_{R}$ up to scale.
9. Show that $H(v) e_{L}$ is in the span of vectors $H(v) v_{1}$ and $H(v) v_{2}$ if and only if $v^{T} e_{R}=0$.
10. Show that $H(v)$ is a homography if and only if $\left(H(v) e_{L}, H(v) v_{1}, H(v) v_{2}\right)$ is a basis.
11. Conclude.

2 Pose estimation with relative depth priors

Some magieat deep-learning based methods can achieve the impossible: infer the depth of pixels in a single image, up to an unknown global scale s.

Stereo pair with estimated relative depth maps.

12. Writing $p_{1}=\left(x_{1}, y_{1}, 1\right)^{\top}$ and $p_{2}=\left(x_{2}, y_{2}, 1\right)^{\top}$ matching points in a stereo pair, with relative depth d_{1} and d_{2} (up to scale factors s_{1} and s_{2}), explain why they are linked through

$$
\begin{equation*}
s_{2} d_{2} p_{2}=s_{1} d_{1} R p_{1}+t \tag{4}
\end{equation*}
$$

with R and t the relative rotation and translation between the two views.
13. Write 3 linear equations satisified by the following 13 coefficients of a vector x composed of: 9 unknowns from $s_{1} R, 3$ from t and s_{2}.
14. Assuming 4 or more matching pairs $\left(p_{1}, p_{2}\right)$ are known, what is the procedure to recover R, t, s_{1} and s_{2} ?
15. Show that we can write six quadratic polynomial constraint equations involving the coefficients of a 3×3 matrix to be of the form $s_{1} R$.
16. Assuming only two matching pairs $\left(p_{1}, p_{2}\right)$ are given, explain how x can be written as a linear combination of 7 orthonormal vectors that we can compute. Show that in theory we are able to recover x up to some scale. ${ }^{1}$
17. Assume that we have only relative depth prior for the first image, not the second one, and that three matching pairs $\left(p_{1}, p_{2}\right)$ are available.
(a) For each pair, write two linear equations involving y, the vector composed of the 12 first coefficients of x (excluding s_{2}).
(b) Explain how y can be written as a linear combination of 6 orthonormal vectors that we can compute.
(c) Show that in theory we are able to recover y up to some scale. ${ }^{2}$
18. Suppose we know three pairs $\left(p_{1}^{i}, p_{2}^{i}\right)$ with their relative depths d_{1}^{i} and d_{2}^{i}.
(a) Justify that points on the plane spanned by $\left\{p_{1}^{i}\right\}$ are related to points on the plane spanned by $\left\{p_{2}^{i}\right\}$ through a homography H.
(b) Show the centroid of $\left\{p_{1}^{i}\right\}$ is mapped by H to the centroid of $\left\{p_{2}^{i}\right\}$.
(c) Deduce that the homography H can be computed.
19. For each of the above situations, propose an algorithm to recover (R, t) or H from the stereo pair with the estimated relative depths. How is the relative depth useful and how can it lead to faster estimation?

[^0]
[^0]: ${ }^{1}$ More precisely, x is among a set of up to 16 possible solutions, up to scale.
 ${ }^{2}$ In this case, there are up to 8 solutions.

