3D Computer Vision - MVA final exam (duration: 2h)

P. Monasse

November 21, 2023

The exercises are independent. You can choose to answer in French or English, at your convenience.

1 Camera Center Coordinates

1. Let A a linear form on \mathbb{R}^{n}. Show that there is a unique $x(A) \in \mathbb{R}^{n}$ such that $A X=x(A)^{\top} X$ for all X.
2. Let $P=\left(\begin{array}{c}P_{1}^{\top} \\ P_{2}^{\top} \\ P_{3}^{\top}\end{array}\right)$ the 3×4 projection matrix of a camera $\left(P_{i} \in \mathbb{R}^{4}\right)$ and $C \in \mathbb{R}^{4}$ the homogeneous coordinates of its center. Show that $P_{i}^{\top} C=0$ for $i=1,2,3$.
3. Consider the linear form A on \mathbb{R}^{4} defined by

$$
A X=\left|\left(\begin{array}{llll}
P_{1} & P_{2} & P_{3} & X \tag{1}
\end{array}\right)\right|
$$

Show that $P_{i}^{\top} x(A)=0$.
4. Using a development of the determinant along the last column, write an expression of the coordinates of C involving determinants of matrices extracted from P.

2 Multi-View Stereo

We recall from the course that the existence of one 3 D point X viewed in 3 cameras as x_{1}, x_{2}, x_{3} depends on the rank of the 6×2 matrix

$$
M=\left(\begin{array}{ll}
{\left[x_{2}\right]_{\times} K_{2} R_{2} K_{1}^{-1} x_{1}} & {\left[x_{2}\right]_{\times} K_{2} T_{2}} \tag{2}\\
{\left[x_{3}\right]_{\times} K_{3} R_{3} K_{1}^{-1} x_{1}} & {\left[x_{3}\right]_{\times} K_{3} T_{3}}
\end{array}\right)
$$

with $x_{i}=\lambda_{i} K_{i}\left(R_{i} X+T_{i}\right), R_{1}=I_{3}$ and $T_{1}=0$. We have $x_{i}, X, T_{i} \in \mathbb{R}^{3}, K_{i} \in \mathbb{R}^{3 \times 3}, R_{i} \in S O(3)$.
5. Remind the number of solutions X as a function of the rank of M.
6. Show the result (written but not proved in the course) that $M=0$ if and only if the three 3 D camera centers C_{i} and X are aligned.
7. Explain geometrically why, provided the existence of X, we can expect in general that given x_{2} and x_{3} (and all products $K_{i} R_{i} K_{1}^{-1}$ and $K_{i} T_{i}$) we can recover x_{1}.
8. Prove by computation that the exception to the previous question happens if and only if points C_{i} and X are coplanar.

3 Graph Cuts Meet RANSAC

9. Write as pseudo-code the RANSAC algorithm applied to the estimation of a homography H from pairs of hypothetically matching image points $\left(x_{i}, x_{i}^{\prime}\right)$.
10. The variant LO-RANSAC proposes as "local optimization" to refine a hypothetic H by recomputing a new H^{\prime} from all inliers of H. Explain why the inliers of H^{\prime} may be different from the ones of H.
11. Propose an iterative refinement of H in LO-RANSAC.
12. Given a hypothesis for H, we use as error metrics the distance from points $H x_{i}$ and x_{i}^{\prime}. Depending on an inlier/outlier threshold δ on such distance, show that the labelling L of point pairs (0 for inlier, 1 for outlier) in RANSAC minimizes some energy $E_{d}(L)$.
13. In practice, it is observed that close pairs (in $\left.\mathbb{R}^{4}\right)\left(x_{i}, x_{i}^{\prime}\right)$ and $\left(x_{j}, x_{j}^{\prime}\right)$ should usually have the same label $L_{i}=L_{j}$. Propose an energy $E_{r}(L)$ whose lower values promote this property.
14. Show that the optimal labelling minimizing the energy $E(L)=E_{d}(L)+\lambda E_{r}(L)$ can be found via graph-cuts (explain the contruction of the graph).
15. How can we mix the ideas of the graph cuts and of LO-RANSAC? This was done in the literature under the name GC-RANSAC.
