Single-View Reconstruction by Cross-Instance Consistency

Motivation

Goal → predict 3D from a single image without supervision

Previous works → multi-view supervision or strong priors

Our approach

1. Autoencoding into explicit factors (shape, texture, pose, bkg)
2. To remove the supervision / hypotheses used in prior works, we leverage the consistency across different instances

Results

Comparison on ShapeNet [A]

Comparison on CUB-200 [B] & PASCAL Cars [C]

Real-world images - CompCars [D] & LSUN [E]

Ablation study

Qualitative analysis on CompCars [D]

Quantitative study on ShapeNet [A]

UNICORN: UNsupervised Cross-Instance COnsistency for 3D Reconstruction

1. Progressive conditioning (PC)
2. Swap reconstruction $\mathcal{L}_{\text{swap}}$

Overview

Unconstrained task → overfitting

Leveraging instance consistency

1. **Progressive conditioning (PC)** = training procedure to gradually specialize to instances by increasing the latent code sizes
2. **Swap reconstruction** = training loss $\mathcal{L}_{\text{swap}}$ enforcing consistency between neighboring instances

Two other technical contributions

A. Custom rendering function to learn from raw photometry
B. Alternate 3D / pose learning to avoid identified failure modes

PyTorch code