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Probabilistic inference

Given a discrete Gibbs model of the form:

p(x) =
1

Z

∏
C∈C

ψC(xC),

where C is the set of cliques of the graph, inference is the problem of
computation of several related quantities of interest:

Computation of the marginal p(xi) or more generally, p(xC).

Computation of the partition function Z

Computation of the conditional marginal p(xi|Xj = xj , Xk = xk)

Inference is actually necessary

For the computation of the gradient of the likelihood of a model

Computation of the expected value of the log-likelihood of an
exponential family at step E of the EM algorithm (for example
for the HMM)
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Hardness of inference

Problem: In general, the inference problem is NP-hard.

For trees

the inference problem is efficient: its cost is linear in n.

For “tree-like” graphs

we use the Junction Tree Algorithm which enables us to bring the
situation back to that of a tree.

In the general case

There are several methods for approximate/inexact inference.
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Rest of this part of the lecture

We will focus in the rest of this part to inference for undirected
graphical models that have cliques of size 1 and 2.

p(x) =
1

Z

∏
i∈V

ψi(xi)
∏
{i,j}∈E

ψi,j(xi, xj)

The general case is not much more difficult but requires the
concept of factor graph.

To perform inference on a directed graph, we will simply
moralize the graph and apply the inference algorithm for
undirected graphs

We will focus on the cases where inference can be done
efficiently using dynamic programming, that is:

in the chain case
in the tree case
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Inference on a chain

We define Xi a random variable, taking value in {1, . . . ,K},
i ∈ V = {1, . . . , n} with joint distribution

p(x) =
1

Z

n∏
i=1

ψi(xi)

n∏
i=2

ψi−1,i(xi−1, xi)

Computing

p(xj) =
∑
xV \{j}

p(x1, . . . , xn)

has a priori a complexity of O(Kn).
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Inference on a chain: a dynamic program

p(xj)

=
1

Z

∑
xV \{j}

n∏
i=1

ψi(xi)

n∏
i=2

ψi−1,i(xi−1, xi)

=
1

Z

∑
xV \{j}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn)

=
1

Z

∑
xV \{j,n}

∑
xn

n−1∏
i=1

ψi(xi)

n−1∏
i=2

ψi−1,i(xi−1, xi)ψn(xn)ψn−1,n(xn−1, xn)

=
1

Z

∑
xV \{j,n}

n−1∏
i=1

ψi(xi)
n−1∏
i=2

ψi−1,i(xi−1, xi)
∑
xn

ψn(xn)ψn−1,n(xn−1, xn)︸ ︷︷ ︸
µn→n−1(xn−1)
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Inference on a chain: ascending messages
Now marginalizing from the left, p(xj) =

=
1

Z

∑
xV \{j,n,n−1}

n−2∏
i=1

ψi(xi)

n−2∏
i=2

ψi−1,i(xi−1, xi)µn−1→n−2(xn−2)

=
1

Z

∑
xV \{1,j,n,n−1}

∑
x1

ψ1(x1)ψ1,2(x1, x2)︸ ︷︷ ︸
µ1→2(x2)

×
n−2∏
i=2

ψi(xi)
n−2∏
i=3

ψi−1,i(xi−1, xi)×

×µn−1→n−2(xn−2)

=
1

Z

∑
xV \{1,j,n,n−1}

µ1→2(x2)
n−2∏
i=2

ψi(xi)
n−2∏
i=3

ψi−1,i(xi−1, xi)µn−1→n−2(xn−2)

Ascending messages:

µi→ i+1(xi+1) =
∑
xi

µi−1→ i(xi)ψi(xi)ψi,i+1(xi, xi+1)
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Ascending and descending messages

µi→ i−1(xi−1) =
∑
xi

ψi−1,i(xi−1, xi)ψi(xi)µi+1→ i(xi)

µi→ i+1(xi+1) =
∑
xi

µi−1→ i(xi)ψi(xi)ψi,i+1(xi, xi+1)

Note that node i always receives a message which is a function of xi.

After propagating all the messages, we have

p(xj) =
1

Z
µj−1→j(xj) ψj(xj) µj+1→j(xj).

How do we compute Z?

1 =
∑
xj

p(xj) ⇒ Z =
∑
xj

µj−1→j(xj) ψj(xj) µj+1→j(xj)
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Note that node i always receives a message which is a function of xi.

After propagating all the messages, we have

p(xj) =
1

Z
µj−1→j(xj) ψj(xj) µj+1→j(xj).

How do we compute Z?

1 =
∑
xj

p(xj) ⇒ Z =
∑
xj

µj−1→j(xj) ψj(xj) µj+1→j(xj)
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Computing all marginals p(x1), p(x2), . . . , p(xn)

Computing p(xj) requires to compute

µ1→2 → µ2→3 → . . .→ µj−1→j and

µj+1→j ← . . .← µn−1→n−2 ← µn→n−1

How do we compute p(xj′) for j′ 6= j? Can use the same messages !

If we compute all n− 1 ascending messages

µ1→2 → µ2→3 → . . .→ µj−1→j → . . .→ µn−2→n−1 → µn−1→n

... and all n− 1 descending messages

µ2→1 ← µ3→1 ← . . .→ µj+1→j ← . . .← µn−1→n−2 ← µn→n−1

then all marginals are computed with an additional O(n)
computation.
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Computing pairwise marginals p(xj, xj+1)

Passing

ascending messages until node j

descending messages until node j + 1

one gets:

p(xj , xj+1) =
1

Z
µj−1→j(xj)ψj(xj)ψj+1(xj+1)ψj,j+1(xj , xj+1)µj+1→j(xj)
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Inference in undirected trees
Let (V,E) be a tree and assume a tree graphical model

p(x) =
1

Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj)

Again we wish to compute p(xr) for some node r

Orient the tree by setting node r to be the root

Let Cj be the set of children of node j

Let Dj be the set of descendants of node j

Let πj be the parent of node j

Let

F (xi, xj , xDj ) := ψi,j(xi, xj)ψj(xj)
∏
k∈Dj

[
ψk(xk)ψπk,k(xπk , xk)

]
Then we have

p(x) = ψr(xr)
∏
i∈C(r)

F (xr, xi, xDi)
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Exploiting a recursion on the tree

F (xi, xj , xDj ) := ψi,j(xi, xj)ψj(xj)
∏
k∈Dj

[
ψk(xk)ψπk,k(xπk , xk)

]

F (xi, xj , xDj ) = ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

F (xj , xk, xDk
)

As a consequence∑
xj , xDj

F (xi, xj , xDj ) =
∑
xj

[
ψi,j(xi, xj)ψj(xj)

∑
xDj

∏
k∈Cj

F (xj , xk, xDk
)
]

=
∑
xj

[
ψi,j(xi, xj)ψj(xj)

∏
k∈Cj

∑
xk, xDk

F (xj , xk, xDk
)
]

So if we define µj→i(xi) :=
∑

xj , xDj
F (xi, xj , xDj ), then we have

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

µk→j(xj)
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Rooted sum-product algorithm: ascending scheme
The recursion

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏
k∈Cj

µk→j(xj)

defines an algorithm starting at the leaves.

1 For any leaf j with parent i = πj

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)

2 Then for any node that only has leaves, we can compute the
message to their parents

3 etc

At the end of the algorithm:

Each node i has sent a message µi→πi(xπi) to its parent.
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Finally computing p(xr)
Remember

p(x) =
1

Z
ψr(xr)

∏
i∈C(r)

F (xr, xi, xDi)

p(xr) =
∑
xDr

p(x) =
1

Z
ψr(xr)

∑
xDr

∏
i∈C(r)

F (xr, xi, xDi)

=
1

Z
ψr(xr)

∏
i∈C(r)

∑
xi,xDi

F (xr, xi, xDi)

=
1

Z
ψr(xr)

∏
i∈C(r)

µi→r(xr)

So

p(xr) =
1

Z
ψr(xr)

∏
i∈C(r)

µi→r(xr)
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Towards the sum-product without root

Notice

if we change the root, the edges whose orientation does not
change still transmit the same message !

the edges whose orientation has changed now send a message in
the other direction...

This leads to a general scheme in which each edge will at some point
be traversed by a message in each direction.

Message passing without orientation of the tree

Let Ni denote the set of neighbors of node i.
Consider the update:

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈Nj\{i}

µk→j(xj)

Key remark: a node can only send a message if it has received
messages from all of its neighbors except one.
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Sum-product algorithm: sequential version

At each iteration:
Any node j that has received messages from all but one – call it i –
of its neighbors sends a message µj→i(xi) to i with

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈Nj\{i}

µk→j(xj)
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Flooding sum-product algorithm (aka parallel SP)

Initialize all messages at random
At each iteration:

For each node j

For each neighbor i ∈ Nj

j sends to i the message µj→i(xi) with

µj→i(xi) =
∑
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈Nj\{i}

µk→j(xj)

The algorithm converges after a number of iterations equal to the
diameter of the tree.

G. Obozinski Exact inference and sum-product 18/36



Computing the marginals from the messages

At each node i ∈ V

p(xi) =
1

Z
ψi(xi)

∏
k∈Ni

µk→i(xi).

For each edge,

p(xi, xj) =
1

Z
ψi(xi)ψj(xj)ψij(xi, xj)

∏
k∈Ni
k 6=j

µk→i(xi)


∏
`∈Nj

`6=i

µ`→j(xj)


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Computing conditional marginals p(xi | XB = xB0)

Example

p(xi|x5 = 3, x10 = 2) ∝ p(xi, x5 = 3, x10 = 2)

Idea: redefine potentials

ψ̃5(x5) = ψ5(x5) δ(x5, 3)
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Computing conditional marginals p(xi | XB = xB0)

Given observations Xj = xj0 for j ∈ B, define modified potentials:

ψ̃j(xj) = ψj(xj) δ(xj , xj0)

so that

p(x | XB = xB0) =
1

Z̃

∏
i∈V

ψ̃i(xi)
∏

(i,j)∈E

ψi,j(xi, xj)

Indeed we have

p(x | XB = xB0) p(XB = xB0) = p(x)
∏
j∈B

δ(xj , xj0)

We then simply apply the SPA to these new potentials.
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Inference beyond trees

The SPA is also called belief propagation or message passing.

On trees, it is an exact inference algorithm.

If G is not a tree, the algorithm can be extended to loopy belief
propagation but

It does not converge in general to the correct marginals
it sometimes gives reasonable approximations.

Junction trees

The exact SPA can be extended to graphs that are close to trees,
in the sense that they can be viewed as trees if nodes can be
grouped together into cliques to form a tree.

Elegant theory, but rarely used in practice.
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Generalized distributive law
We needed to compute

p(xi0) =
∑

xV \{i0}

[∏
i∈V

ψi(xi)
∏
{i,j}∈E

ψij(xi, xj)

]

The only key property we used is that

The addition is distributive over the product

(a+ b)(c+ d) = ac+ bc+ ad+ bd

Max product for decoding (MAP inference)

Decoding consists in computing the most probable configuration

p(x∗) = max
xV

[∏
i∈V

ψi(xi)
∏
{i,j}∈E

ψij(xi, xj)

]

Remark: this is often the most probable configuration of a
conditional model (given some input data).

We can use again distributivity

Maximization is distributive over the product

(a ∨ b)(c ∨ d) = ac ∨ bc ∨ ad ∨ bd
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Decoding (aka MAP inference) with max-product

Apply the same algorithms as for SPA, but replace the update with

µ̌j→i(xi) = max
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈Nj\{i}

µ̌k→j(xj)

Known as the Viterbi algorithm in the case of chains.

Max-sum algorithm

Same on log-scale:

log µ̌j→i(xi) = max
xj

[
logψi,j(xi, xj) + logψj(xj) +

∑
k∈Nj\{i}

log µ̌k→j(xj)

]
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Other inference methods

There are many (exact/approximate/inexact) inference
algorithms

For a general graph exact inference is NP-hard

The sum-product algorithm (SPA) performs inference on trees,
with a complexity linear in the number of nodes.

SPA can be generalized to graph that are close to trees in some
sense using the junction tree theory.

In general, one needs to use approximate or inexact methods

Gibbs sampling, and other MCMC sampling methods

Variational methods

Mean field (/Structured mean field)
Loopy belief propagation
TRW-entropy based inference
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Hidden Markov Model (HMM)

voice recognition

natural langage processing

handwritten character recognition

modelling biological sequence (protein, DNA)

b  r  a  c  e 

G. Obozinski Exact inference and sum-product 26/36



Hidden Markov Model (HMM)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

p(x1, . . . ,xN , z1, . . . ,zN ) = p(z1)

N∏
n=2

p(zn|zn−1)
∏
n=1

p(xn|zn)

Homogeneous Markov chains

zn ∈ {0, 1}K state indicator variable (1, . . . ,K)

homogeneous Markov chain: ∀n, p(zn|zn−1) = p(z2|z1)

emitted symbol xn ({0, 1}K) / observation (Rd)
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Hidden Markov Model (HMM)

Parameterization

distribution of the initial state p(z1;π) =
∏K
k=1 π

z1k
k

transition matrix p(zn|zn−1;A) =
K∏
j=1

K∏
k=1

A
zn−1, j znk

jk

emission probabilities p(xn|zn;φ) e.g. Gaussian Mixture

Interpretation

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

Transistions of zn

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

p(xn|zn)

0 0.5 1
0

0.5

1

Path of xn
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Maximum likelihood for HMMs

Application of the EM algorithm

γ(zn) = p(zn|X,θt) ξ(zn−1, zn) = p(zn−1, zn|X,θt)

Expected value of the log-likelihood:

Q(θ,θt) =

K∑
k=1

γ(z1k) log πk+

N∑
n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) logAjk+

N∑
n=1

K∑
k=1

γ(znk) log p(xn|φk)

Maximizing with respect to the parameters {π,A}, one gets

πt+1
k =

γ(z1k)∑K
j=1 γ(z1j)

At+1
jk =

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

If the emissions are Gaussian then we also have:

µt+1
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

Σt+1
k =

∑N
n=1 γ(znk)(xn − µk)(xn − µk)>∑N

n=1 γ(znk)
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Maximum likelihood for HMMs

Baum-Welch algorithm

The Baum-Welch algorithm is a special instance of the sum-product
algorithm. It is also known under the name forward-backward.

One propagates the messages

forward α(zn) = p(xn|zn)
∑

zn−1
α(zn−1)p(zn|zn−1)

backward β(zn) =
∑

zn+1
β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

that satisfy the following properties:

α(zn) = p(x1, . . . ,xn, zn) β(zn) = p(xn+1, . . . ,xN |zn)

Finally one gets the marginals:

γ(zn) = p(zn|X,θt) =
α(zn)β(zn)

p(X|θt)
et

ξ(zn−1,zn) =
α(xn−1)p(xn|zn)p(zn|zn−1)β(xn)

p(X|θt)
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Conclusions

Graphical models offer a language to design structured
probabilistic models
The graph encodes both

A factorization of the probability distribution
Implicitly associated conditional independences between the
variables

Three key operations on graphical model are decoding, inference
and learning.

Probabilistic inference and decoding and can be done efficiently
using sum-product and max-product algorithm if the graph is a
tree.

Learning with the maximum likelihood principle in exponential
families is a convex optimization problem requires to solve the
probabilistic inference problem.

Latent variables are easily handled using the
Expectation-Maximization algorithm, which again requires to
solve the probabilistic inference problem.
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Books

Pattern Recognition and Machine Learning,
Christopher Bishop, Springer (2006).
http:

//research.microsoft.com/~cmbishop/PRML/

Many of the figures of these lectures are figures from Bishop’s book
that are kindly made available for teaching purposes.
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Books

Machine Learning, a probabilistic perspective
Kevin Murphy, MIT Press (2012).

Bayesian reasoning and machine learning,
David Barber,
Cambridge University Press (2012).
http://www.cs.ucl.ac.uk/staff/d.barber/brml/
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Books

Wainwright, M. J., & Jordan, M. I. (2008).
Graphical models, exponential families, and
variational inference. Foundations and Trends in
Machine Learning.

Daphne Koller and Nir Friedman, Probabilistic
Graphical Models - Principles and Techniques,
2009, MIT Press.
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Going further

There are many approximate/inexact variational inference
algorithms (Wainwright, 2008)

Graphical models can be learned in the max-margin
setting (Taskar et al., 2003; Tsochantaridis et al., 2005; Pletscher
et al., 2010)

Graphical models techniques are used in deep learning:
variational auto-encoders, RBMs, generative adversarial
networks, etc.
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